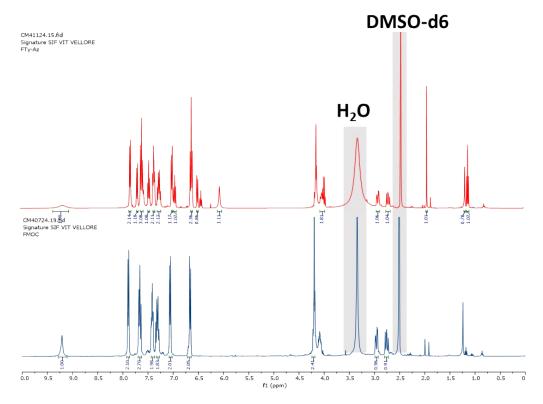
Supplementary Information (SI) for Materials Advances. This journal is © The Royal Society of Chemistry 2025

Supporting Information

for

Light responsive single amino acid-based supramolecular hydrogel for photocontrolled vitamin release


Divya Chauhan, Chandan Maity*

(Organic)Material Science and Engineering Laboratory, Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore Campus, Tamil Nadu-632014, India.

Email: chandanmaitylab@gmail.com, chandan.maity@vit.ac.in (CM)

Instrumentation and characterization:

Nuclear magnetic resonance (NMR) spectra (¹H NMR and ¹³C NMR) were acquired using a Bruker Avance III 400 MHz spectrometer at 298K using residual protonated solvent signals as internal standard. Thin layer chromatography (TLC) was performed on Merck Silica Gel 60 F254 TLC plates, and were visualized under UV light of 254 nm wavelength. Fourier-transform infrared spectroscopic (FTIR) analysis was performed using the Thermo Fisher Scientific, Thermo Nicolet iS50 with an inbuilt ATR. The spectra were recorded in the range of 4000 cm⁻¹ to 400 cm⁻¹ with resolution of 2 cm⁻¹. The spectra were obtained by averaging over 32 scans. High-resolution mass spectrometry (HRMS) was performed using an Acetonitrile, XEVO-G2-XS-QTOF system. Field Emission Scanning Electron Microscope (FE-SEM) was recorded by Thermo Fischer FEI QUANTA 250 FEG. Transmission electron microscopic (TEM) images were recorded with a G2-20 TWIN (Operating voltage 200 kV) (FEI-TECNAI) transmission electron microscope. rating voltage 200 kV) (FEI-TECNAI) transmission electron microscope. UV-Vis absorption spectra were recorded on a diode-array spectrophotometer (Shimadzu UV-2600) at room temperature. The cell path length was 1.0 cm. Fluorescence spectra was recorded by using Hitachi F 7000 Fluorescence Spectrophotometer instrument with a 1.0 cm path length quartz cuvette. Irradiation experiment conducted using Kessil PR160L-370 nm Gen 2 UV light. All the hydrogel samples which are lyophilized using an Alpha 1,2 LD-plus Martin Christ lyophilizer. Confocal laser scanning microscopic (CLSM) images were taken using an Olympus Confocal Laser Scanning Microscope-Fluoview Fv3000 at a 10x magnification. The rheology measurements were conducted on Anton Paar MCR 92 rheometer operating in oscillatory mode, with a parallel plate geometry. All pH measurements were done using Aceteg pH meter (Model: PH-035).

Figure S1: Comparative ¹H NMR spectra of FmocY (bottom) and FmocY-Azo (top) in DMSO-d₆ at room temperature.

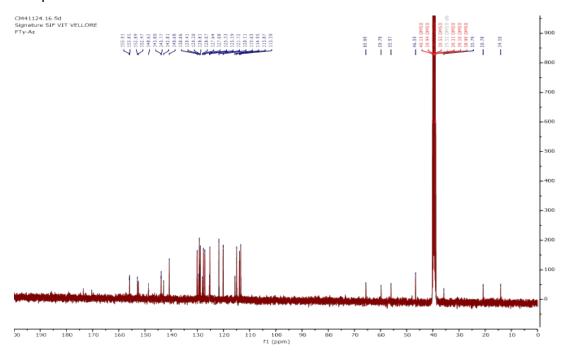


Figure S2: ¹³C NMR spectrum of FmocY-Azo in DMSO-d₆ at room temperature.

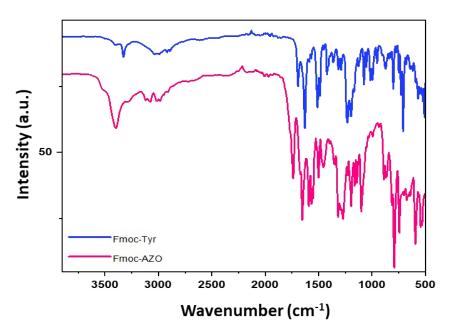


Figure S3: Comparative IR spectrum of FmocY (blue line) and FmocY-Azo (pink line).

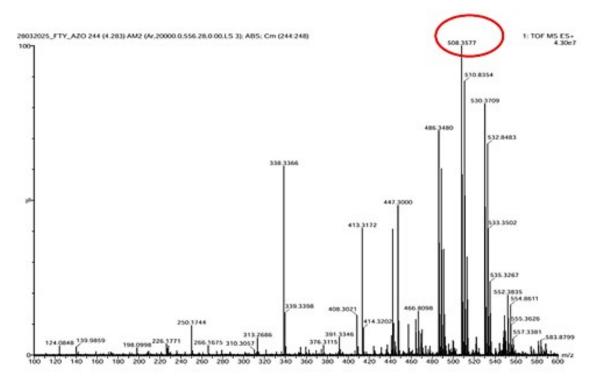


Figure S4: Mass spectrum of FmocY-Azo.

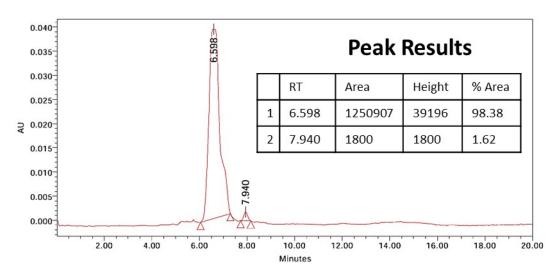
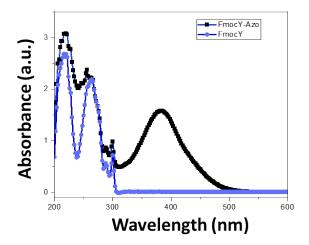
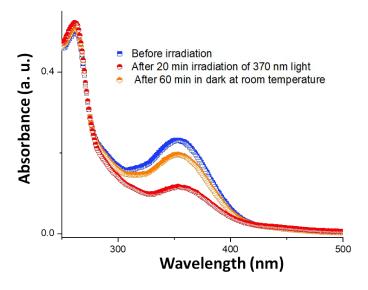




Figure S5: HPLC profile of FmocY-Azo.

Figure S6: Comparative absorption spectra of FmocY (violet line), and FmocY-Azo (black line) in DMSO (conc. = $2x \cdot 10^{-4} \text{ M}$) at room temperature.

Figure S7: UV-Vis absorption spectra of FmocY-Azo in >99 % water (conc. = $5 \times 10^{-5} \text{ M}$) before light irradiation (blue square), upon irradiation of 370 nm light for 20 minutes (red circle), and after keeping in the dark at room temperature for 60 minutes (orange hexagon).

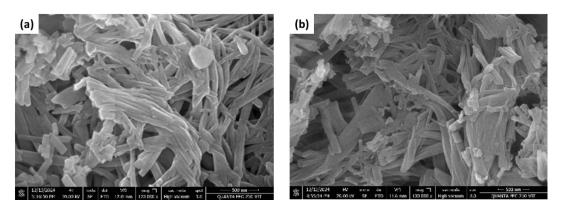

Preparation of Hydrogel and determination of minimum gelation concentration (MGC).

Table S1: Optimization data for FmocY-Azo hydrogelation at different pH.

pH of Buffer solution	4	5	6	7	7.4	8
Conc. of FmocY-Azo (in mM)	5.4	5	5.7	6.0	6.3	6.5
Time required for gelation	45 min	45 min	80 min	90 min	120 min	> 2 h
Observation	Stable & strong	Stable & strong	Stable & strong	Stable	Stable	Unstable

Table S2: Optimization data for FmocY-Azo hydrogelation at pH = 5

Conc. of FmocY-Azo (mM)	4.5	4.7	4.9	5
Observation	Unstable	Unstable	Stable, but weak	Stable & strong

Figure S8: FESEM micrograph of the hydrogel prepared at (a) pH = 7, and (b) pH = 8. Scale bar is 500 nm.

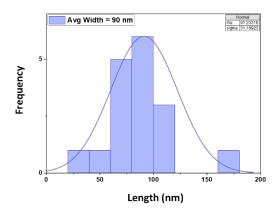
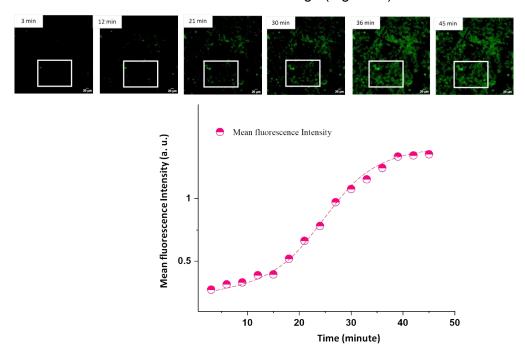



Figure S9: Distribution of fiber diameter from TEM image (Figure 3f).

Figure S10: The CLSM images were imported into ImageJ software, and the specific region was selected. Fluorescent intensity of the rectangular zone was measured with time. Mean fluorescence intensity was measured with time showing change in fluorescence intensity over time. The mean value was plotted using Origin software. The line is drawn to guide the eyes.

Table \$3: Thixotropic behaviour at different pH.

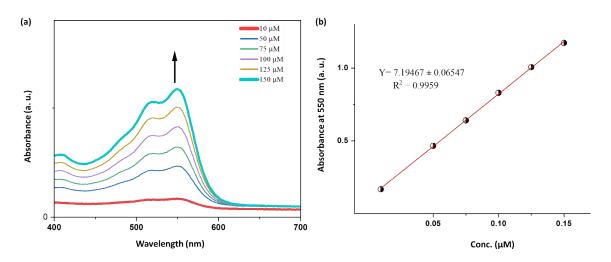
pH of medium	MGC (mM)	Recovery time (in hour)
4	5.4	Not recovered
5	5.0	~5
6	5.7	6
7	6.0	Not recovered
8	6.5	Not recovered

Light-induced gel↔sol transitions:

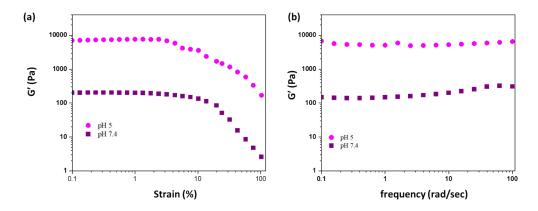
Table S4: Optimization data for Gel to sol of FmocY-Azo hydrogel upon light irradiation

Conc. of FmocY-	Time required for gel→ sol		
Azo (mM)	conversion upon light irradiation		
5.0	30 min		
5.5	60 min		
6.0	130 min		
6.5	>200 min		
7.0	>200 min		

Vitamin B_{12} (VB₁₂) entrapped with FmocY-Azo hydrogel:


Table S5: Optimization for VB₁₂ trapped FmocY-Azo hydrogel in pH 5.0

Conc. of FmocY-Azo with VB ₁₂ (mM)	5.0	5.4	5.7	5.9	6.0
Observation	unstable	unstable	weak	weak	stable


Table S6: Optimization for VB₁₂ trapped FmocY-Azo hydrogel in pH 7.4

Conc. of FmocY-Azo with VB ₁₂ (mM)	6.3	6.6	7.0	7.4	7.8
Observation	No gelation	unstable	Unstable	weak	stable

Light-induced release of VB₁₂:

Figure S11: UV-Vis absorption spectra of VB_{12} with increasing concentration, the calibration graph for VB_{12} recorded at 550 nm.

Figure S12: Rheology measurement of the gel prepared at pH = 5.0 (purple circle) and at pH 7.4 (magenta square): (a) strain sweep performed at 6 rad/sec, (b) frequency sweep performed at 0.1 % strain.

Kinetic study for the release VB₁₂:

Table S7: Equation for release study^[S1]

Equation for release study	Equation	
Zero Order	$Qt = k_o t + Q_o$	
First order	$logC = logC_0 + K_t/2.303$	
Higuchi	$Q = KH\sqrt{t}$	
Korsmeyer-Peppas	$log (M_t/M_{\infty}) = logk + n logt$	

Absorbance at 550 nm was plotted as the dependent variable with time (t) as independent variable, and the graph was fitted in Origin 2022 to obtain the correlation coefficient (R^2). The best fits of VB12 release are given in **Figure S13** and **Figure S14** for pH = 5.0.

Table S8: Result of release Model in term of R² at pH=5.0

Release Model	VB ₁₂ release without light irradiation	VB ₁₂ release with light irradiation
Zero-Order	$R^2 = 0.99874$	$R^2 = 0.99873$
First-Order	$R^2 = 0.98515$	$R^2 = 0.98839$
Higuchi	$R^2 = 0.97724$	$R^2 = 0.98818$
Korsmeyer-Peppas	$R^2 = 0.98803$	$R^2 = 1.0$

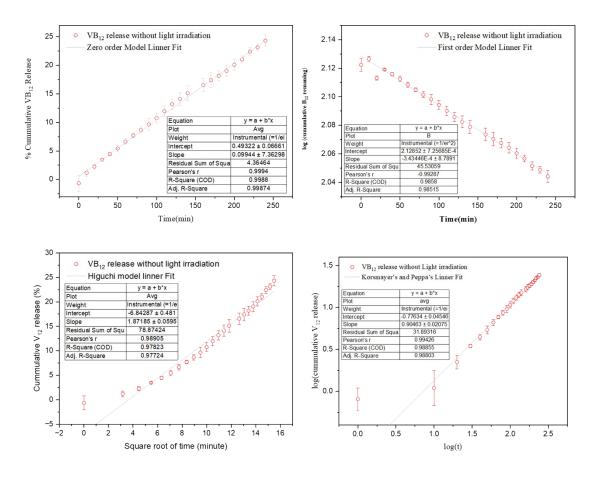
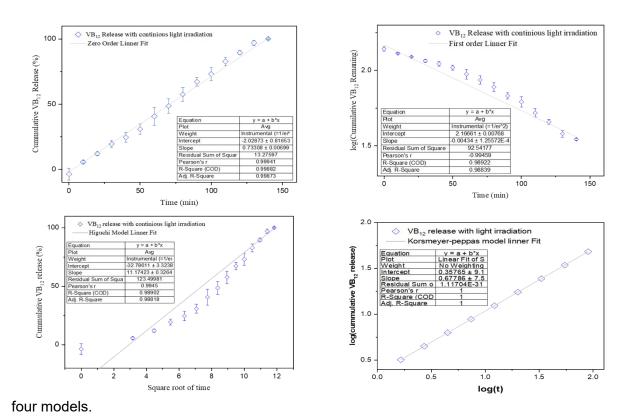



Figure S13: Kinetic studies for the release of VB_{12} at pH = 5.0 without light irradiation, based on

Figure S14: Kinetic studies for the release of VB_{12} at pH = 5.0 in presence of light irradiation, based on four models.

References

[S1] S. Dash, P. N. Murthy, L. Nath, P. Chowdhury. Kinetic modeling on drug release from controlled drug delivery systems. *Acta. Pol. Pharm.* 2010, **67**, 217-23.