Supplementary Information (SI) for Materials Advances. This journal is © The Royal Society of Chemistry 2025

Exploring the Facet-engineered Anatase Nanoparticles for amplification of Sensitivity in Heavy Metal Ion Detection and Other Applications

Md. Anayet Ullah^{a,b}, Fataha Nur Robel^b, Newaz Mohammed Bahadur^c, Dipa Islam^d, Subarna Shandani dey^e, Samina Ahmed^{a*}, and Md. Sahadat Hossain^{a*}

^aInstitute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh

^bDepartment of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh

^cDepartment of Chemistry, Noakhali Science and Technology University, Noakhali 3814, Bangladesh

^dBiomedical and Toxicological Research Institute, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh

^eInstitute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh

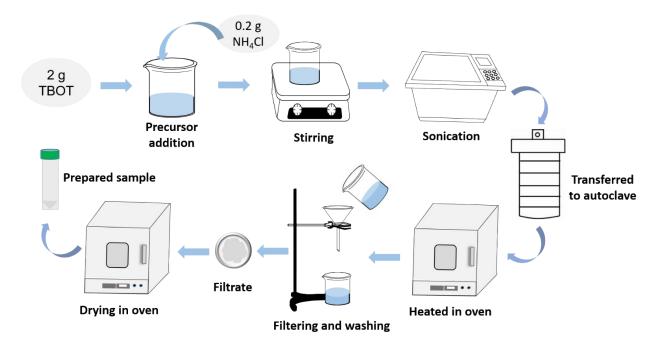


Figure S1: Schematic depiction of the synthesis procedure of {101}-faceted TiO₂.

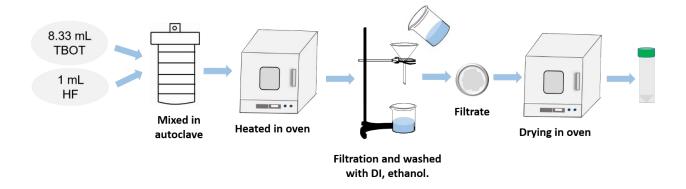


Figure S2: Schematic depiction of the synthesis procedure of {001}-faceted TiO₂.

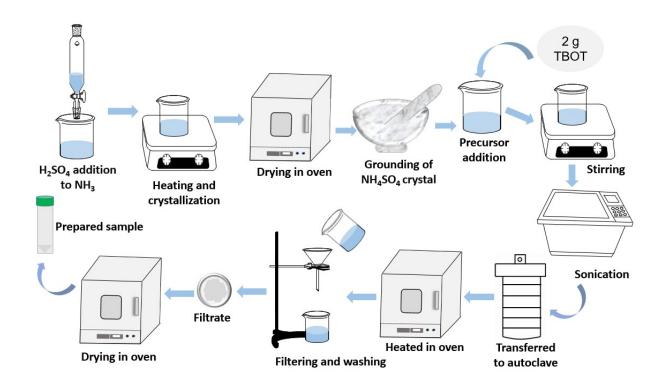


Figure S3: Schematic depiction of the synthesis procedure of {101}/{001 co--faceted TiO₂.

Lattice parameter,
$$(\frac{1}{d_{hkl}})^2 = (\frac{h^2 + k^2}{a^2}) + \frac{l^2}{c^2}$$
 (E1)

Crystallite size,
$$D = \frac{K\lambda}{\beta \cos \theta}$$
 (E2)

Dislocation density,
$$\delta = \frac{1}{\text{(Crystallite size)2}}$$
 (E3)

$$\text{Microstrain}, \in = \frac{FWHM}{4\tan(\theta)}$$
(E4)

Crystallinity index =
$$\frac{H(004) + H(200) + H(105)}{H(101)}$$
(E5)

Here, D = size of crystallite; K = 0.9 = shape factor; h, k, and l = planes of the unit cell; λ = wavelength, θ = diffraction angle (degree), d_{hkl} = interplanar distance, β (in radian) = FWHM = full width at half maximum; H = height of the correlating plane's peak.

Relative intensity =
$$\frac{I_{(101)}}{I_{(004)} + I_{(200) + I_{(105)}}}$$
(E6)

Texture coefficient,
$$T_C = \frac{I/I_o}{N^{-1}} (\sum_n I/I_o)^{-1}$$
 (E8)

In this context, N represents the number of reflections, I_o signifies the average intensity of the plane as obtained from the JCPDS data, and I refers to the relative intensity of a specific plane as observed.

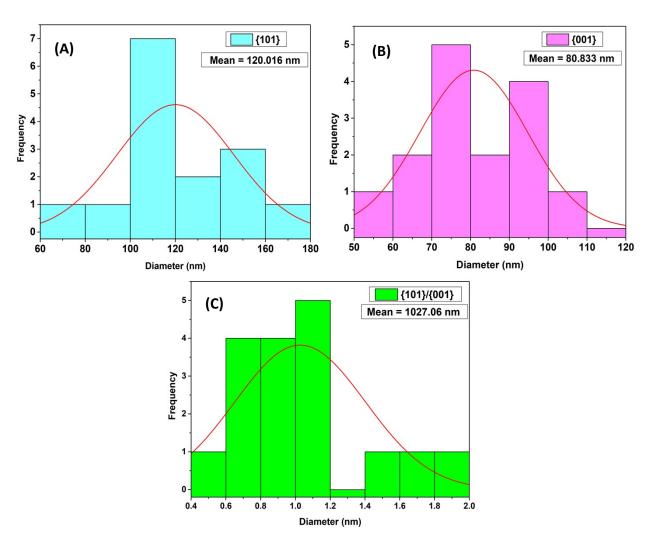
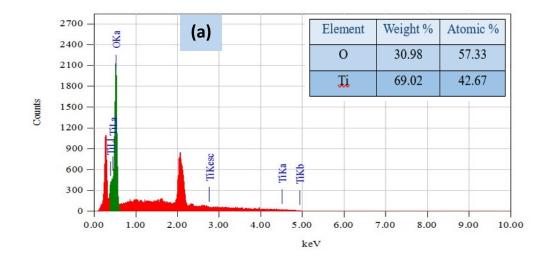



Figure S4: Histogram analysis of the synthesized $\{101\}$ -faceted, $\{001\}$ -faceted and $\{101/\{001\}\ co\text{-faceted TiO}_2\ samples.$

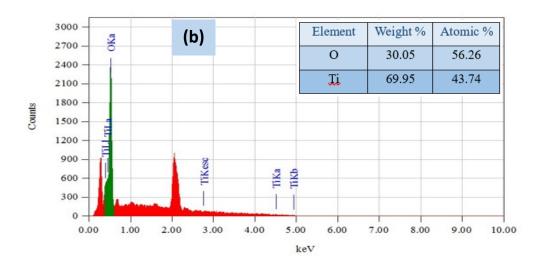


Figure S5: EDX spectra with elemental mapping of the synthesized (a) {101}-faceted (b) {001}-faceted TiO_2 samples