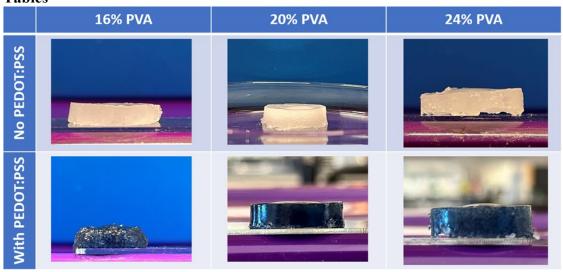
Supplementary Information (SI) for Materials Advances. This journal is © The Royal Society of Chemistry 2025

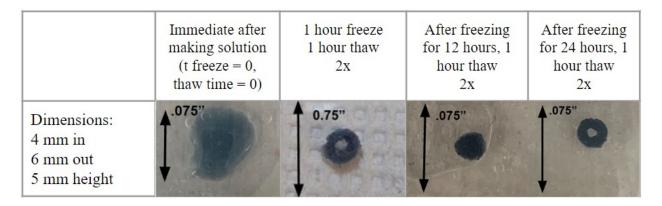
Supporting Information

Engineering 3D-printed standalone conductive nerve guides using soft bioinks for peripheral nerve injuries

Lin Li[†], Angel Hernandez^{†, ‡}, Ryan Grevsmuehl^{†, ‡}, Yu-Ting Kou[†], Shang Song^{†, ††, *}


[†] Department of Biomedical Engineering, College of Engineering, University of Arizona,

^{††} Departments of Materials Science and Engineering, Neuroscience GIDP, and BIO5 Institute, University of Arizona, Tucson, Arizona, 85721, US


[‡] These authors contributed equally to the manuscript

^{*} Corresponding author; shangsong@arizona.edu

Tables

Table S1. Crosslinked conductive bioinks. Bioinks underwent gelation using a freeze-thaw cycle consisting of a twelve-hour freeze at -20° C and a six-hour thaw at room temperature. The presence of PEDOT: PSS resulted in dark color while no gross change in morphology was detected for PVA at various concentrations.

Table S2. The effect of freeze-thaw process on 3D-printed CNGs. A visual comparison highlighted the structural differences of bioinks at varying freeze-thawing periods. All bioinks consisting of 20% PVA with PEDOT: PSS experienced a fixed one-hour thawing time with variable freeze time from immediately after the solution was made (left: control) up to 24 hours of freezing (right).