
Supplementary Information

Enhanced Synergistic Photocatalysis: A Thorough Investigation of $Bi_2Sn_2O_7/C_3N_5$ Heterojunctions

Adarsh Kumar $^{a, b}$, Deepak Tyagi $^{a, b}$, Sagnik Mitra $^{a, b}$ Jitendra Bahadur $^{b, c}$, Avesh K. Tyagi b , Kaustava Bhattacharyya $^{*a, b}$

- a- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-40085, India
- b- Homi Bhabha National Institute, Mumbai 400 094, India
- c- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai -400 085, India

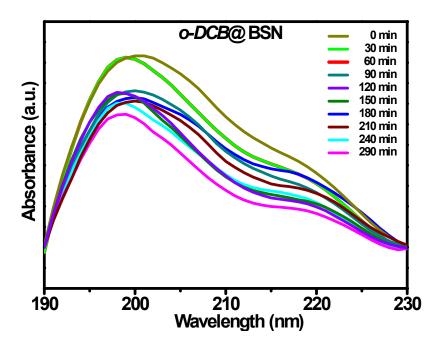

- 1. Different control experiments for the *o-DCB* degradation.
- a. Self-degradation of *o-DCB* under visible light & adsorption of *o-DCB* over photocatalysts in dark. (Photo-catalytic activity)

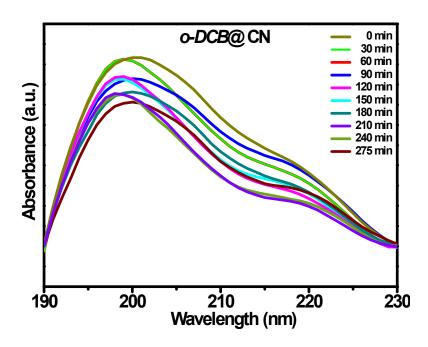
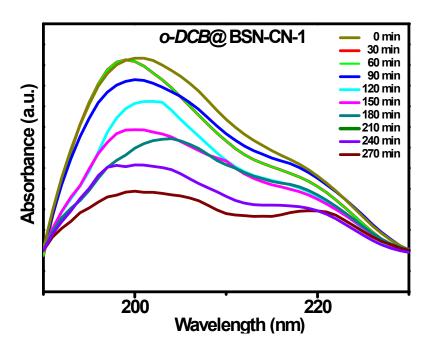
Fig.S.1. (A.): UV -Vis data for self-degradation of *o-DCB* in visible light irradiation; (B) Adsorption of *o-DCB* over BSN-CN-15 in dark; (C) Adsorption of *o-DCB* over BSN-CN-1 in dark

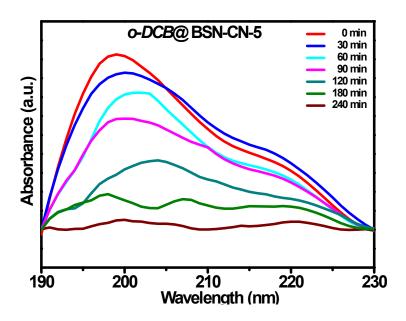
The adsorption of *o-DCB* in absence of irradiation for the all the photocatalyst has been performed for almost the same time the photocatalytic reaction is performed and the representative adsorption profile is presented for BSN-CN-15 and BSN-CN-1. It is noticed that effect of adsorption over these catalytic surfaces are nominal. Therefore, as the effect of the adsorption is not such strong for most of photocatalysts of CN, BSN and BSN-CN heterojunctions the effect of adsorption does not play a very strong role for the catalytic reactions

2. Degradation of o-DCB using BSN catalyst in visible light

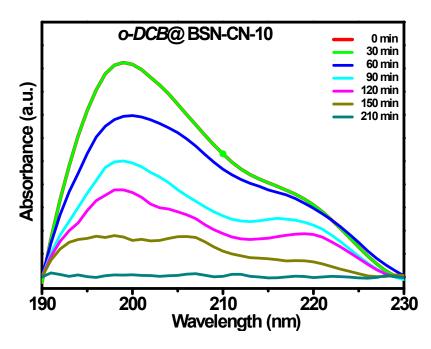
Fig.S.2. UV -Vis data for degradation of *o-DCB* using BSN catalyst in visible light irradiation.

3. Degradation of o-DCB using CN catalyst in visible light

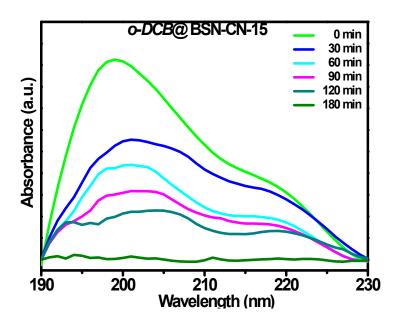




Fig.S.3. UV -Vis data for degradation of *o-DCB* using CN catalyst in visible light irradiation.

4. Degradation of o-DCB using BSN-CN-1 catalyst in visible light


Fig.S.4. UV -Vis data for degradation of *o-DCB* using BSN-CN-1 catalyst in visible light irradiation.

5. Degradation of o-DCB using BSN-CN-5 catalyst in visible light


Fig.S.5. UV -Vis data for degradation of *o-DCB* using BSN-CN-5 catalyst in visible light irradiation.

6. Degradation of o-DCB using BSN-CN-10 catalyst in visible light

Fig.S.6. UV -Vis data for degradation of *o-DCB* using BSN-CN-10 catalyst in visible light irradiation.

7. Degradation of *o-DCB* using BSN-CN-15 catalyst in visible light

Fig.S.7. UV -Vis data for degradation of *o-DCB* using BSN-CN-15 catalyst in visible light irradiation.

8. CV Data

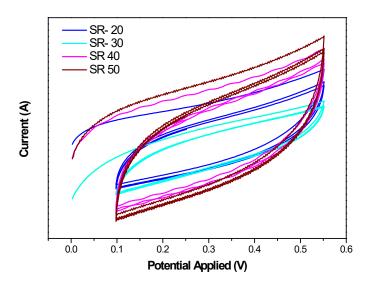


Fig. S-8: CV data for $g-C_3N_5$ with different scan rates.

9. EDS-Data

Element	Weight (%)	Atomic (%)
С К	1.40	57.00
NK	0.77	27.01
ОК	0.51	15.61
Sn L	0.05	0.19
Bi M	0.08	0.19
Total	2.81	-

Table-S.1- EDS data for the BSN-CN-15 photocatalyst.

10. Apparent Quantum Efficiency.

Apparent Quantum Efficiency (AQE) calculation Bi-loaded C₃N₅ photocatalysts

The Apparent Quantum Efficiency (AQE) of the photocatalysts, as detailed in the Supporting Information (SI), demonstrates a clear increase with Bi substitution. 15% BSN-CN exhibited the highest AQE of 0.45%, while Bi₂Sn₂O₇ displayed the lowest (0.093%) and CN exhibited the least AQE of 0.080%. This trend suggests a systematic enhancement in AQE with % dispersion of BSN-CN. The tabulated AQE values for all photocatalysts are provided in Table-S-X (S.I.).

AQE of Bi₂Sn₂O₇

Apparent quantum Efficiency (AQE) is defined as the ratio of number of reacted electrons to the number of incident photons. The general equation is given as below (1, 2, 3, 4)

$$AQE = \frac{Number\ of\ reacted\ electrons}{Number\ of\ incident\ photons} \quad _{X\ 100} \qquad(5)$$

As given in equation (1), during the photocatalytic *o-DCB* oxidation, stoichimetrically 2, electrons are required to produce one molecule of CO₂. Though this reaction is a multistep reaction and to be checked which is the slowest, however generically each step being a 2 electrons step will mostly a two electron step.

$$3C_6H_4Cl_2 + 39/2 O_2 \longrightarrow 18 CO_2 + 6 H_2O + 3HCl$$
(6)

Therefore, number of reacted electrons can be calculated by directly multiplying 2 with mole of CO₂ produced during the photocatalytic reaction.

Number of reacted electrons=
$$[P.F] \times 2 \times N_A$$
(7)

Where, [P.F] = Percent Product fomed from
$$3.3 \times 10^{-5}$$
 molar solution in time (t)
& N_A = Avogadro's number (6.022 x 10^{23} mol⁻¹)

$$[P.F]_{Bi2Sn2O7} = 30\% \text{ (in 290 min)}$$

$$= 0.30 \text{ X } 3.3 \text{ X } 10^{-5} \text{ X } 6.023 \text{ X } 10^{23}$$

$$= 5.96 \text{ x } 10^{18}$$

Therefore,

No. of Reacted electrons =
$$2 \times 5.96 \times 10^{18}$$

= 11.92×10^{18}

Light absorbed by the photocatalyst

Now, No. of photons = The average photon energy x t(8)

Where; t= time taken for the reaction

Light Absorbed by the photocatalyst = $H \times A$

H= Input from the Source of the Light= $234 \text{ mW/cm}^2 = 2340 \text{W/m}^2$

A= Illuminated Geometrical Surface Area of the Reactor Used = Illuminated Geometric irradiation area of the photocatalyst placed inside the photo-reactor = 0.00049 m^2 = 50% of the Geometric Surface area of the used reactor (Reference by Grätzel *et al.*)

Light absorbed by the photocatalyst= 2340 x 0.00049= 1.14 J/sec

ho

The average photon energy = $\overline{\lambda}$

 $h = \text{Planck's constant} = 6.626 \times 10^{-34} \text{ Jsec}; c = \text{velocity of light} = 3 \times 10^8 \text{ m/sec}$

 λ = Maximum Emission Wavelength for the spectrum of the Source = 430 nm= 430 x 10⁻⁹ m

The average photon energy= 4.62×10^{-19}

Therefore,

No. of Photons =
$$1.14 / 4.62 \times 10^{-19} \times 290 \times 60$$

= 4293×10^{19}
= 4.29×10^{22} photons

$Number\ of\ reacted\ electrons$

AQE= Number of incident photons $_{X\ 100}$

$$= 11.93 \times 10^{18}/4.29 \times 10^{22} \times 100$$

= 0.027 %.

The above calculated Quantum Efficiency is the Apparent Quantum Efficiency= AQE of $Bi_2Sn_2O_7$.

AQE of C₃N₅

$$[P.F]_{C3N5} = 36\%$$
 (in 275 min)

$$AQE = \frac{Number\ of\ reacted\ electrons}{Number\ of\ incident\ photons} \times_{X\ 100}$$
(9)

As given in equation (1), during the photocatalytic *o-DCB* oxidation, stoichimetrically 2, electrons are required to produce one molecule of CO₂. Though, this reaction is a multistep reaction as shown in the formation of the intermediates (and to be checked which is the slowest to determine the R.D.S.), however generically each step being a two electron step will mostly a two electron step.

[P.F]
$$_{C3N5}$$
= 36% (in 275 min)
= 0.36 X 3.3 X 10⁻⁵ X 6.023 X 10²³
= 7.15 x 10¹⁸
No. of Reacted electrons = 2 x 7.15 x 10¹⁸
= 14.30 x10¹⁸
No. of Photons= 1.14 / 4.62 x 10⁻¹⁹ x 275 x 60
= 4071.43 x 10¹⁹ photons
= 4.07 x 10²² photons

$$AQE = 14.30 \times 10^{18}/4.07 \times 10^{22} \times 100$$
$$= 3.513 \times 10^{-2}$$
$$= 0.035\%$$

AQE of BSN-CN-1

[P.F]
$$_{\text{BSN-CN-1}} = 80\%$$
 (in 270 min)

$$\frac{Number\ of\ reacted\ electrons}{Number\ of\ incident\ photons} \times 100$$
(10)

As given in equation (1), during the photocatalytic *o-DCB* oxidation, stoichimetrically 2, electrons are required to produce one molecule of CO₂. Though this reaction is a multistep reaction as shown in the formation of the intermediates (and to be checked which is the slowest to determine the R.D step), however generically each step being a two electron step will mostly a two electron step.

[P.F]
$$_{\rm BSN\text{-}CN\text{-}1}$$
 = 80% (in 270 min)
= 0.80 X 3.3 X 10⁻⁵ X 6.023 X 10²³
= 15.90 x 10¹⁸
= 1.590 x 10¹⁹
No. of Reacted electrons = 2 x 1.590 x 10¹⁹
= 3.18 x10¹⁹
No. of Photons = 1.14 / 4.62 x 10⁻¹⁹ x 270 x 60
= 3997.40 x 10¹⁹ photons
= 3.997x 10²² photons

$$AQE = 3.180 \times 10^{19}/3.997 \times 10^{22} \times 100$$
$$= 0.80 \times 10^{-1}$$
$$= 0.08\%$$

AQE of BSN-CN-5

[P.F]
$$_{\text{BSN-CN-5}}$$
= 93 % (in 240 min)

$$\frac{Number\ of\ reacted\ electrons}{Number\ of\ incident\ photons} \times 100$$
(11)

As given in equation (1), during the photocatalytic *o-DCB* oxidation, stoichimetrically 2, electrons are required to produce one molecule of CO₂. Though, this reaction is a multistep reaction as shown in the formation of the intermediates (and to be checked which is the slowest to determine the R.D.S.), however generically each step being a 2 electron step will mostly a two electron step.

[P.F]
$$_{\text{BSN-CN-5}=}$$
 93% (in 240 min)
= 0.93 X 3.3 X 10⁻⁵ X 6.023 X 10²³
= 18.48 x 10¹⁸
= 1.848 x 10¹⁹

No. of Reacted electrons = $2 \times 1.848 \times 10^{19}$

$$= 3.696 \times 10^{19}$$
No. of Photons = 1.14 / 4.62 x 10⁻¹⁹ x 240 x 60
$$= 3553.24 \times 10^{19} \text{ photons}$$

$$= 3.553 \times 10^{22} \text{ photons}$$

AQE=
$$3.696x \ 10^{19}/3.553x10^{22} \ x100$$

= $1.040 \ x \ 10^{-1}$
= 0.10%

AQE of BSN-CN-10

[P.F]
$$_{\text{BSN-CN-10}}$$
= 99 % (in 210 min)

$$\frac{Number\ of\ reacted\ electrons}{Number\ of\ incident\ photons} \times 100$$
(11)

As given in equation (1), during the photocatalytic *o-DCB* oxidation, stoichimetrically 2, electrons are required to produce one molecule of CO₂. Though, this reaction is a multistep reaction as shown in the formation of the intermediates (and to be checked which is the slowest to determine the R.D.S.), however generically each step being a 2 electron step will mostly a two electron step.

[P.F]
$$_{\rm BSN\text{-}CN\text{-}10\text{=}}$$
 99% (in 210 min)
$$= 0.99 \text{ X } 3.3 \text{ X } 10^{\text{-}5} \text{ X } 6.023 \text{ X } 10^{23}$$

$$= 19.87 \text{ x } 10^{18}$$

$$= 1.987 \text{ x } 10^{19}$$
No. of Reacted electrons = 2 x 1.987 x 10¹⁹

$$= 3.974 \text{ x} 10^{19}$$
No. of Photons = 1.14 / 4.62 x 10⁻¹⁹ x 210 x 60
$$= 3109.09 \text{ x } 10^{19} \text{ photons}$$

$$= 3.109 \text{ x } 10^{22} \text{ photons}$$

$$AQE = 3.974 \times 10^{19}/3.109 \times 10^{22} \times 100$$

$$= 1.278 \times 10^{-1}$$

 $= 0.12\%$

AQE of BSN-CN-15

[P.F]
$$_{\text{BSN-CN-15}}$$
= 99.9 % (in 180 min)

$$\frac{\text{Number of reacted electrons}}{\text{Number of incident photons}} \times 100$$
(11)

As given in equation (1), during the photocatalytic *o-DCB* oxidation, stoichimetrically 2, electrons are required to produce one molecule of CO₂. Though, this reaction is a multistep reaction as shown in the formation of the intermediates (and to be checked which is the slowest to determine the R.D.S.), however generically each step being a 2 electron step will mostly a two electron step.

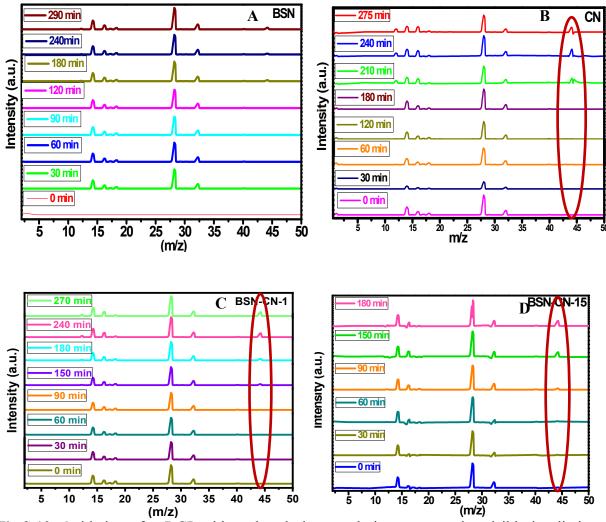
[P.F]
$$_{\text{BSN-CN-15=}}$$
 99.9% (in 180 min)
= 0.999 X 3.3 X 10⁻⁵ X 6.023 X 10²³
= 19.87 x 10¹⁸
= 1.987 x 10¹⁹
No. of Reacted electrons = 2 x 1.987 x 10¹⁹
= 3.974 x 10¹⁹
No. of Photons = 1.14 / 4.62 x 10⁻¹⁹ x 180 x 60
= 2664.93 x 10¹⁹ photons
= 2.664 x 10²² photons

AQE=
$$3.974 \times 10^{19}/2.664 \times 10^{22} \times 100$$

= 1.491×10^{-1}
= 0.14%

Catalysts	AQE (%)
BSN	0.027
CN	0.035
BSN-CN-1	0.08

BSN-CN-5	0.10
BSN-CN-10	0.12
BSN-CN-15	0.14


Table S-2: Calculated Apparent Quantum efficiencies of different photocatalysts.

10. Complete mineralization of *o-DCB* with different photocatalysts and Mass spectroscopic evaluation in closed photocatalytic reactor.

We conducted photocatalytic mineralization experiments in a 90 ml closed quartz reactor (Fig. S-8), fitted with a glass valve for evacuating the system. For each run, we introduced 60 ml of *o-DCB* solution (initial concentration 3.3×10^{-5} mol/dm³, pH around 6.7) and 100 mg of the photocatalytic material. Reaction progress was tracked using an Extorr RGA quadruple mass spectrometer, capable of detecting masses from 1 to 200. This monitoring occurred under vacuum conditions of 10^{-7} mbar, with a sample pressure of 10^{-6} mbar. Prior to data collection, we obtained baseline mass spectra of air. We then established CO₂ calibration curves by preparing various CO₂ air mixtures in an evacuated glass bulb. These three distinct calibration curves, tailored for different concentration ranges, were linearly fitted using ORIGIN software, yielding an adjusted R² value of approximately 0.998.

Fig.S.9. The experiments have been conducted in the above photocatalytic reactor.

Fig.S.10. Oxidation of *o-DCB* with a closed photocatalytic reactor under visible irradiation using (A) BSN; (B) CN; (C) BSN-CN-1; (D) BSN-CN-15 -photocatalysts and the product being studied with the mass spectroscopy.

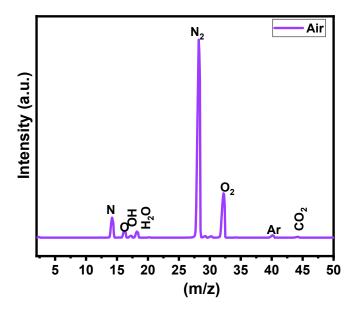
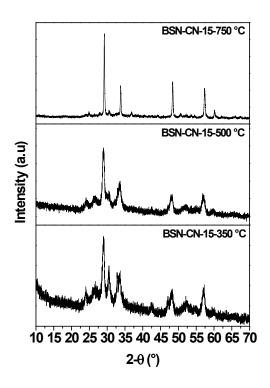


Fig. S.11. Mass spectra of atmospheric air.

Volume of CO_2 formed analysed from the calibration curve from the mass spectroscopic data =A

Amount of CO_2 to be formed stoichimetrically from the volume of *o-DCB* present where it is completely oxidised to $CO_2 = B$


Percentage of product formed (CO₂%) =
$$\frac{A}{B}$$
 x 100(12)

11. Catalytic recyclability:

Catalytic recyclability has been tested for four consecutive cycles and there is slight lowering in the catalytic efficacy as a function of the recyclability that has been shown in the **Fig.11.C**. The catalytic efficiency increases after heat treatment of the catalysts @ 100 °C in air.

12. Calculation of Strain in the BSN as a function of temperature.

In order to calculate the strain, the BSN-CN-15 samples as a function of heating initially the XRD for (1h) duration (Fig.S-14) for each sample was obtained. Through rietveld refinement was performed to calculate the lattice parameters as well as the broadening; which was later plotted in the Fig.S-15 to obtain the lattice strain as per the Williamson Hall equation -1.

Fig.S-12: Long time XRD (1h) of the BSN-CN-15 as a function of temperature the a) 350 $^{\circ}$ C; b) 500 $^{\circ}$ C & c) 750 $^{\circ}$ C.

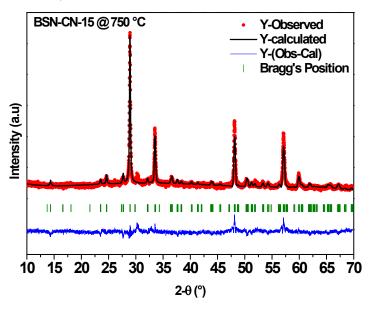
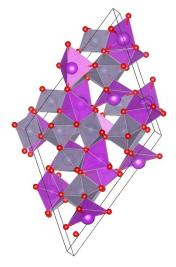



Fig.S-13: Rietveld Refinement plot for BSN-CN-15 -750 °C

Scheme-1: C1c1 Monoclinic Bi₂Sn₂O₇ with lattice parameter of (a= 13.15; b= 7.54; c= 16.01) and (α = β = 90°); (γ =125.012°):- ICSD- 239965.

The contribution from the crystallite size and strain could be delineated by using Williamson-Hall equation (eqn.-1).

$$B\cos\theta = 0.9\lambda t + \eta \sin\theta \qquad [13]$$

where,

B = Broadening (in radian) as calculated from Rietveld Refinement, t = crystallite size & $\eta = 4\epsilon(\epsilon = Strain)$

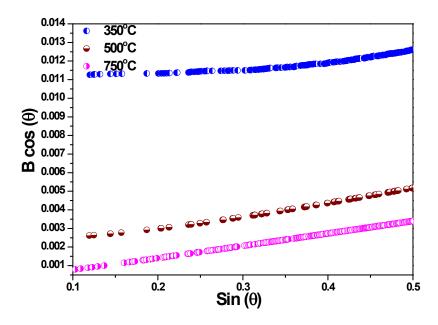


Fig. S-14: Williamson Hall plot to determine strain calculation (In equation 13)

13. Crystallographic understanding of the HRTEM images of the BSN-CN samples.

Sample	1/2r	1/r	d-spacing		
	(nm ⁻¹)	(nm ⁻¹)	r(nm)	(Å)	(hkl)
BSN-	6.3	3.15	0.317460317	3.174603175	622
CN-15	14.123	7.0615	0.141612972	1.416129717	8 12 4
	17.121	8.5605	0.116815607	1.168156066	12 3 2

Table-S-3: SAED Pattern calculation of the Fig.2.A (BSN-CN-15) showing the different planes as compared to the ICSD-File-239965

Sample	1/2r (nm ⁻¹)	1/r (nm ⁻¹)	r(nm)	d-spacing (Å)	(hkl)
BSN-	7.695	3.8475	0.259909032	2.599090318	004
CN-1	9.134	4.567	0.21896212	2.189621196	224
	11.912	5.956	0.167897918	1.678979181	262

Table-S-4: SAED Pattern calculation of the Fig.2.B (BSN-CN-15) showing the different planes as compared to the ICSD-File-239965

14. Elemental Analysis from XPS for the photocatalysts and used photocatalysts.

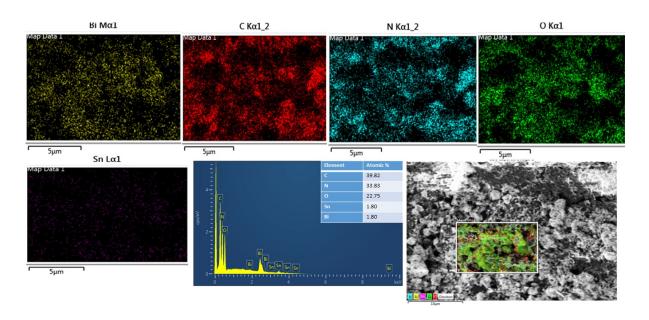

BSN (Elements)	Atom (%)	FWHM	Atom (%) after	FWHM
			reaction	
Bi	15.34	2.24	15.89	2.04
Sn	22.37	2.35	21.48	2.24
О	62.69	3.5	62.63	3.61

Table-S-5: Elemental analysis from XPS of the BSN sample before and after catalysis.

BSN-CN-15 (Elements)	Atom (%)	FWHM	Atom (%) after reaction	FWHM
Bi	1.34	2.24	1.27	2.04
Sn	1.37	2.35	1.47	2.24
О	14.13	3.5	13.79	3.61
С	29.23	2.7	31.51	3.1
N	53.96	2.05	51.96	2.5

Table-S-6: Elemental analysis from XPS of the BSN-CN-15 sample before and after catalysis

15. **SEM** of the used sample after catalysis.

Fig.S-15: SEM image for the used BSN-CN-15 samples with elemental mapping for the different elements (a) Bi-Ma;(b) C-Ka;(c) N-Ka;(d) O-Ka;(e) Sn-La(f) EDS spectra for the required sample.

The elemental percentage as obtained from the EDS analysis is presented below along with that of the comparison for the same sample before catalysis.

After Catalysis ^a		Before Catalysis b		
Element Atomic %		Element	Atomic %	
С	39.82	С	37.82	
N	33.83	N	35.83	
О	22.75	О	22.81	
Sn	1.80	Sn	1.73	
Bi	1.80	Bi	1.81	
Total	100.00	Total	100.00	

Table:S-7: Elemental analysis form the EDS analysis of the a) BSN-CN-15 -After catalysis from Fig.S-15.f and b) BSN-CN-15-sample before catalysis Fig.3.C.

This show there is generically no leaching of the BSN elements post catalysis as can be understood both from the SEM-EDS analysis and the of the XPS elemental analysis and it should be so as the heterojunction is formed with tetragonal BSN (Bi₂Sn₂O₇) and that of g-C₃N₅, thereby leaching of the Bi or will change the phase altogether for BSN. Thereby no alteration in the Bi:Sn:O ratio post catalysis confirms the fact that the phase entity remains intact even after photocatalysis for these heterojunctions.