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Figure S1. (a) LSV data of different batches of samples at different scan rates showing

consistent effect of annealing atmosphere on the photocathodic behaviour. (b) LSV and EIS

data of ambient air and argon annealed BFO thin films in the presence of H>Oz, an electron

acceptor. Reaction conditions: AM 1.5G; power density= 1000 W/m?; electrolyte employed is

0.1M K>SOy4; pH=5.6. (c) CV of thin films annealed in argon and ambient air at different scan

rates to determine ECSA. (d) Plots of current and scan rate to determine the Cq value.
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Figure S2. Chronoamperometry measurements at —0.1 V vs RHE, to test the stability of BFO

thin films annealed in ambient air and argon.
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Figure S3. Comparing (a) the Fa (b) percent reflectance, and (c) percent transmittance of BFO

thin films annealed in ambient air and argon. All data is compared with the FTO substrate.
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Figure S4. EDS images of BFO thin films annealed in (a) ambient air, (b) argon atmosphere.
Note that, a greater >1 Bi:Fe ratio in argon-annealed BFO can be attributed to the excess of Bi

precursor added during the synthesis of the samples. AFM images of the BFO thin films

annealed in (¢) ambient air and (d) argon.
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Figure SS5. XPS survey spectra of BFO thin films annealed in two different atmospheres.

Table S1. Peak parameters and percentage contribution of the deconvoluted peaks of XPS

core level Bi 4f spectra.

a. Bi4f spectrum of ambient air annealed BFO thin films.

Peak Position (eV) | FWHM (eV) | Percentage composition (%)
Bi** 4f) 158.67 1.08 86.32
Bi** 4fs) 163.97 1.08
BiG®" 47, 157.67 1.08 13.68
BiG®" 4f5) 163.02 1.08

b. Bi 4f spectrum of argon annealed BFO thin

films.

Peak Position (eV) | FWHM (eV) | Percentage composition (%)
Bi** 4f) 158.69 1.08 91.24
Bi** 4fs) 163.99 1.08
BiG®" 47, 157.57 1.08 8.76
BiG®" 4f5) 162.95 1.08

Table S2. Peak parameters and percentage contribution of the deconvoluted peaks of XPS core

level O 1s spectra.

a. O 1s spectrum of ambient air annealed BFO thin films.

Peak Position (eV) | FWHM (eV) Percentage composition (%)
Oi 529.29 1.18 41
O:ii 529.90 1.18 36
Oiii 531.12 1.18 23

b. O Is spectrum of argon annealed BFO thin films.

Peak Position (eV) | FWHM (eV) Percentage composition (%)
Oi 529.36 1.14 67.6

Oii 530.92 1.18 31

Oiii 533.38 1.18 1.4




Table S3. Peak parameters and percentage contribution of the deconvoluted peaks of XPS core

level Fe 2p spectra.

a. Fe 2p spectrum of ambient air annealed BFO thin films.

Peak Position (¢V) | FWHM (eV) Percentage Fe¥*/Fe*
composition (%) ratio
Fe** 2p3n 710.79 1.4 55.67 1.25
Fe™ 2p1n 724.00 1.4
Fe? 2p3p 709.55 1.4 44.32
Fe* 2pin 722.91 1.4

b. Fe 2p spectrum of argon annealed BFO thin films.

Peak Position (¢V) | FWHM (eV) Percentage Fe¥*/Fe*
composition (%) ratio
Fe¥* 2p3p 710.89 1.4 71.73 2.54
Fe¥* 2pin 724.20 1.4
Fe? 2p3p 709.57 1.4 28.27
Fe2+ 2p1/2 722.97 1.4
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Figure S6. (a) Leakage current density of BFO thin films annealed in air and argon atmosphere
with respect to time. (b) Graphical representation of the device configuration utilized for
leakage current measurements, where 0.1 V was applied with 0.1 s soak time, followed by

measuring the current for next 0.1 s.
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Figure S7. Summary of the annealing atmosphere dependent processes and optoelectronic

properties that determine the PEC performance.
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Figure S8. LSV data of 20% Bi-excess and stoichiometric BFO (both films annealed in
ambient air) under solar simulator illumination. Reaction conditions: AM 1.5G; power density=

1000 W/m?; electrolyte employed is 0.1M K,SO4; pH=5.6; scan rate=50 mV/s, scan direction
is from 0.8 V towards 0 V vs RHE.



Table S4. Fitting parameters of the EIS data presented in Figure 7 of the main text.

Sample Bulk electrolyte/ Interfacial charge transfer Constant phase
solution resistance, resistance, element
Rs (Q2) Rcr (©Q) CPE (uMho*sY)
Ambient air 43.9 5300 10.8
annealed BFO N=0.835
Argon 43.9 1930 15.5
annealed BFO N=0.855




