Supplementary Information (SI) for Materials Advances. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

A novel copper formate-based framework RbCu(HCO₂)₂Cl: synthesis, crystal structure, thermal, vibrational and magnetic properties and antibacterial activity

Asmae Ben Abdelhadi,^{a,b} Safaa Hidaoui,^a Rachid Ouarsal,^a Morgane Poupon,^c Michal Dusek,^c María de los Llanos Palop Herreros,^d Marco Antonio López de la Torre,^e Luis Lezama,^f Brahim El Bali,^a Mohammed Lachkar*^a and Abderrazzak Douhal*^b.

^aEngineering Laboratory of Organometallic, Molecular Materials, and Environment (LIMOME), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, 30000 Fez, Morocco.

^bDepartamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, e INAMOL, Campus Tecnológico de Toledo, Universidad de Castilla-La Mancha (UCLM), Avenida Carlos III, S.N., 45071 Toledo, Spain.

^cInstitute of Physics of the Czech Academy of Sciences, Na Slovance 2, 8, Praha 182 21, Czech Republic.

^dDepartamento de Química Analítica y Tecnología de los Alimentos, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, (UCLM), Avenida Carlos III, S.N., 45071 Toledo, Spain.

^eDepartamento de Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S.N., 45071 Toledo, Spain.

fDepartamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Bº Sarriena s/n, 48940 Leioa, Spain.

*Corresponding authors: mohammed.lachkar@usmba.ac.ma (M. L.) & Abderrazzak.Douhal@uclm.es (A. D.)

Index

Eval	luation	ot A	\ntik	oacter	ial <i>i</i>	Activity

Page 3

Table S1. Fractional atomic coordinates and isotropic or equivalent isotropic displacementparameters (\mathring{A}^2) for RbCu(HCO2)2Cl.Page 5**Table S2.** Atomic displacement parameters (\mathring{A}^2) for RbCu(HCO2)2Cl.Page5

Table S3. IR absorption bands (cm⁻¹) and their assignments for RbCu(HCO₂)₂Cl (Relative intensities: vs, very strong; s; strong, m: medium; w: weak; vw: very weak; sh: shoulder; br: broad).

Figure S1. Typical synthesis procedure for synthesizing RbCu(HCO₂)₂Cl single crystal using a facile slow diffusion process (A). Optical photograph of the as-prepared $\bf 1$ single crystal in the daylight (B).

Figure S2. HR-MS spectrum of RbCu(HCO₂)₂Cl. Page 7

Figure S3. Field-dependent magnetization of RbCu(HCO₂)₂Cl at 5 K. Page 7

Figure S4. Thermal evolution of the X-band EPR spectra of a powder sample. Page 8

Figure S5. Experimental and simulated X-band EPR spectra of RbCu(HCO_2)₂Cl at 5 K (see text for details of fit).

Figure S6. Inhibition of halo diameters from disc and agar well diffusion methods obtained for *S. aureus* CECT 86 (A); *L. monocytogenes* CECT 4031 (B), *E. coli* CECT 99 (C) and *K. pneumoniae* CECT 143^T (D).

Acknowledgments Page 9

References Page 9

Evaluation of Antibacterial Activity. RbCu(HCO₂)₂Cl was assayed for its antibacterial activity against four potentially pathogenic bacteria: two Gram-positive bacteria, *S. aureus* CECT 86 and *L. monocytogenes* CECT 4031 and two Gram-negative bacteria, *E. coli* CECT 99 and *K. pneumoniae* CECT 143^T. All of them were purchased from the Colección Española de Cultivos Tipo (CECT). These bacteria were maintained frozen (-80 °C) with 20% (v/v) glycerol and they were revitalized by cultivation in Triptone Soy Broth (TSB) (*S. aureus*, *E. coli* and *K. pneumoniae*) or Brain Heart Infusion (BHI) broth (*L. monocytogenes*) and incubated under static conditions at 37 °C for 24 h.

A phenotypic assay by using both the disc diffusion method¹ and the agar well diffusion method² was carried out. Cells from overnight cultures of the strains in TSB or BHI broth were harvested by centrifugation at $18,500 \times g$ for 5 min at 4 °C and suspended in sterile phosphate buffer saline (PBS) pH 7.2 to reach the 0.5 McFarland turbidity standard, equivalent to 10^8 colony-forming units (CFU)/mL. These suspensions were smeared on Mueller-Hinton (Pronadisa, Madrid, Spain) agar (MHA) plates by using a sterile cotton swab and allowed to dry for 10 min.

For the disc diffusion method, 6 mm blank discs (Oxoid, Hampshire, UK) were used which were spotted with 20 μ L of a sterile 15 mg/mL solution of compound 1 in distilled water. Millex-GV 0.22 μ m filters were used for sterilization. On the same plate, discs containing antibiotics able to inhibit growth of each of the bacteria assayed were also overlaid as a control. For *S. aureus* CECT 86 the antibiotics norfloxacin (5 μ g) and vancomycin (30 μ g) were used; for *L. monocytogenes* CECT 4031, gentamicin (10 μ g) and ampicillin- sulfactam (10/10 μ g); for *E. coli* CECT 99 trimethoprim-sulfamethoxazole (25 μ g) and nitrofurantoin (300 μ g) and for *K. pneumoniae* CECT 143^T ciprofloxacin (5 μ g) and gentamicin (10 μ g). All were purchased from Bio-Rad (Marnes-la Coquette, France).

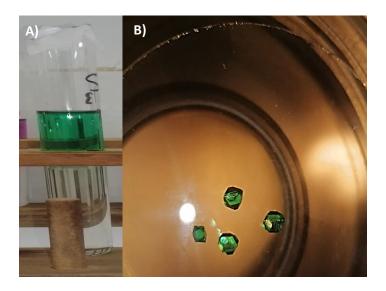
For the agar well diffusion method, MHA plates were smeared as described for the disc diffusion test and wells of 6 mm of diameter were bored on the surface of the agar. 20 μ L of the same solution used for the disc diffusion test were added to the wells. Plates from both assays were incubated at 37 °C for 24 h and then the inhibition halos (diameter in mm) were recorded. Both assays were performed in duplicate.

In addition, a quantitative assay to determine the MIC (Minimum Inhibitory Concentration) was carried out by using 96-well microtiters plates. Concentrations of the compound 1 between 400 μ g/mL and 2500 μ g/mL were assayed by adding to each well a volume of the culture medium (TSB or BHI broth) and the adequate volume of the sterile 15 mg/mL solution of the compound to reach the desired concentration. All the wells were inoculated with 20 μ L of an overnight culture of the strain assayed. The final volume in wells was 200 μ L. Blanks without inoculum were also prepared to confirm the maintenance of sterility of both the culture medium and the solution of compound 1 during incubation. In addition, cultures of each of the strains in the culture medium in absence of the compound were prepared. Assays were performed by triplicate. Microtiters plates were incubated at 37 °C during 24 h in the reader Synergy HT (Biotek, EEUU), and the growth during incubation was monitored by measurement of the optical density at 600 nm (OD₆₀₀) in the wells every 30 min, previous gentle stirring.

To determine the cell population in the overnight culture of the strain used as inoculum and that in the wells after the incubation, a viable cell count was carried out. 10 μ L of serial dilutions of the cultures in sterile saline solution (9.5 g/L w/v) were plated onto TSA or BHIA plates by triplicate. After incubating the plates for 24 h at 37°C, the colonies were counted, and the results were expressed as CFU/mL of culture. The decrease of growth in percentage from each concentration of compound 1 assayed was calculated with respect to the counts obtained in the cultures in the absence of the compound.

Table S1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2) for RbCu(HCO₂)₂Cl.

	х	у	Z	$U_{\rm iso}^*/U_{\rm eq}$
Rb1	-0.01499 (4)	0.52896 (4)	0.26858 (3)	0.03449 (12)
Cu2	0.38405 (4)	0.61818 (5)	0.51068 (3)	0.02161 (12)
Cl1	0.16548 (9)	0.79632 (10)	0.56700 (8)	0.0322 (2)
01	-0.2490 (2)	0.5895 (3)	0.4757 (2)	0.0305 (7)
O2	0.3428 (3)	0.6045 (3)	0.3089 (2)	0.0333 (7)
O3	0.4710 (3)	0.5987 (3)	0.7056 (2)	0.0315 (7)
O4	0.5578 (3)	0.7859 (3)	0.4840 (2)	0.0324 (7)
C1	0.4206 (4)	0.5001 (4)	0.2442 (3)	0.0299 (10)
C2	-0.2997 (4)	0.7366 (4)	0.4728 (3)	0.0297 (10)
H1c1	0.394537	0.495467	0.145968	0.0359*
H1c2	-0.220418	0.822152	0.460593	0.0357*


Table S2. Atomic displacement parameters (Ų) for RbCu(HCO₂)₂Cl.

	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
Rb1	0.0328 (2)	0.0356 (2)	0.0355 (2)	-0.00112 (14)	0.00563 (14)	0.00607 (14)
Cu2	0.0222 (2)	0.0209 (2)	0.0219 (2)	0.00037 (14)	0.00264 (14)	0.00013 (14)
Cl1	0.0307 (4)	0.0286 (4)	0.0381 (4)	0.0090 (3)	0.0080 (3)	0.0031 (3)
01	0.0264 (11)	0.0244 (12)	0.0418 (13)	-0.0044 (9)	0.0089 (10)	-0.0009 (10)
O2	0.0338 (12)	0.0441 (14)	0.0217 (11)	0.0075 (11)	0.0010 (9)	-0.0005 (10)
О3	0.0398 (13)	0.0311 (13)	0.0228 (11)	0.0044 (10)	-0.0021 (10)	0.0006 (9)
04	0.0306 (12)	0.0224 (12)	0.0452 (13)	-0.0015 (10)	0.0085 (10)	0.0027 (10)
C1	0.0332 (18)	0.0358 (19)	0.0199 (15)	-0.0038 (15)	-0.0016	0.0019 (14)

					(13)	
C2	0.0340 (18)	0.0250 (18)	0.0308 (16)	-0.0102 (14)	0.0058 (14)	-0.0005 (14)

Table S3. IR absorption bands (cm $^{-1}$) and their assignments for RbCu(HCO $_2$) $_2$ Cl (Relative intensities: vs, very strong; s; strong, m: medium; w: weak; vw: very weak; sh: shoulder; br: broad).

Wavenumber (cm ⁻¹)	Assignment
2976 vw, br and 2945 vw, br	2^{v_4} (HCOO), $v_4 + v_5$
2595 vw and 2845 vw	C-H stretching mode v_1 (HCOO)
1614 s and 1552 s, sh	C–O asymmetric stretching modes v_4 (HCOO)
1413 m, 1386 m and 1376 sh	C-H in-plane bending mode v_5 (HCOO)
1337s	C-O symmetric stretching mode v_2 (HCOO)
1045 w	C–H out-of-plane bending mode v_6 (HCOO)
769m	O-C-O symmetric bending mode $^{ u_3}$ (HCOO)
403m	Cu-O stretch

Figure S1. Typical synthesis procedure for synthesizing RbCu(HCO₂)₂Cl single crystal using a facile slow diffusion process (A). Optical photograph of the as-prepared $\bf 1$ single crystal in the daylight (B).

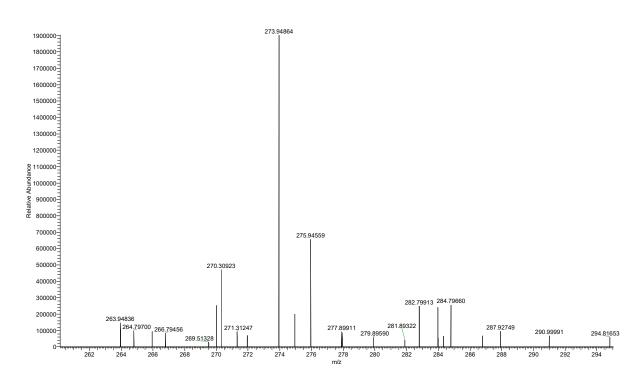


Figure S2. HR-MS spectrum of RbCu(HCO₂)₂Cl.

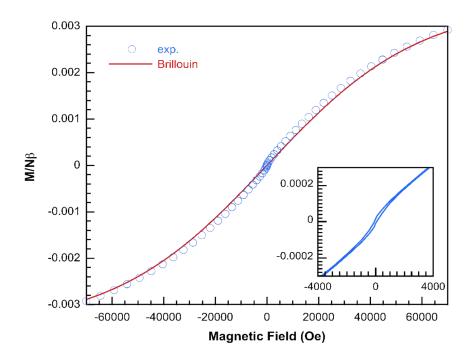


Figure S3. Field-dependent magnetization of RbCu(HCO₂)₂Cl at 5 K.

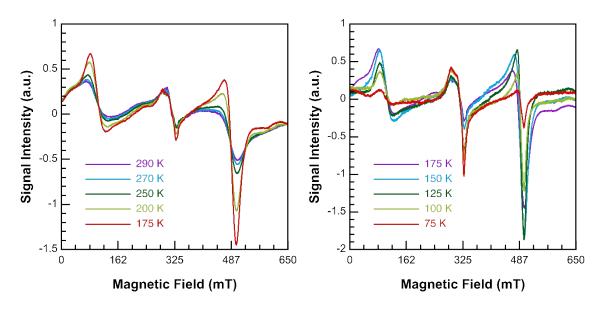
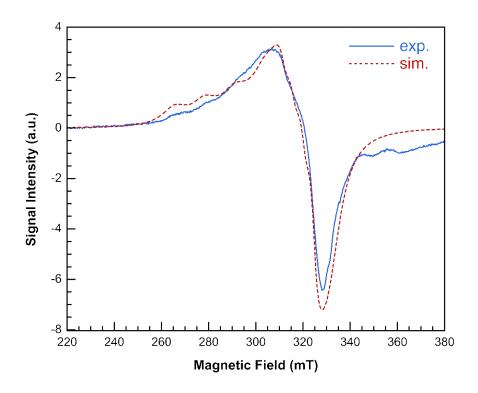
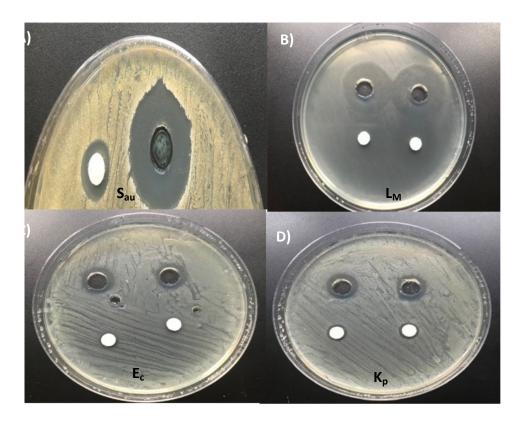




Figure S4. Thermal evolution of the X-band EPR spectra of a RbCu(HCO₂)₂Cl powder sample.

Figure S5. Experimental and simulated X-band EPR spectra of RbCu(HCO $_2$) $_2$ Cl at 5 K (see text for details of fit).

Figure S6. Inhibition of halo diameters from disc and agar well diffusion methods obtained for *S. aureus* CECT 86 (A); *L. monocytogenes* CECT 4031 (B), *E. coli* CECT 99 (C) and *K. pneumoniae* CECT 143^T (D).

Acknowledgements

This work was supported by the following grants: grant PID2020-116519RB-I00 and TED2021-131650B—I00 funded by MICIU/AEI/10.13039/501100011033 and the European Union (EU). A.B.A. is grateful for the grant from the Spanish Service for the Internationalization of Education (SEPIE), through the EU Erasmus+ key action program (2020-1-ES01-KA107-079868). The authors A. B. A., S. H., R. O., B. E. B. and M. L. would like to acknowledge the technical assistance of the Interface Regional University Center (University Sidi Mohammed Ben Abdellah, Fez, Morocco). Crystallographic analysis was supported by the project 20-LM2023051 of the Czech Nanolab Infrastructures, supported by MEYS CR.

References

- 1. H. Fleming, J. Etchells and R. Costilow, *Applied microbiology*, 1975, **30**, 1040-1042.
- 2. S. Magaldi, S. Mata-Essayag, C. H. De Capriles, C. Pérez, M. Colella, C. Olaizola and Y. Ontiveros, *International journal of infectious diseases*, 2004, **8**, 39-45.