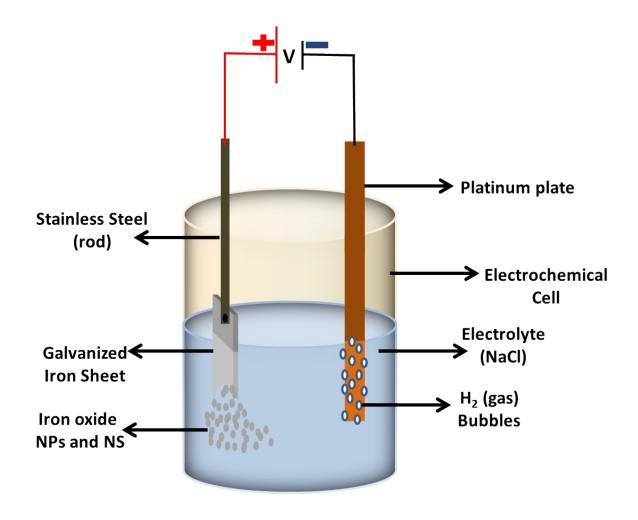
Supplementary Information (SI) for Materials Advances. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Electrochemical Evaluation of Anodic Galvanized-Iron Nanoparticles as Electrode Materials for Supercapacitors

Muhammad Haseem Bhatti¹, Muhammad Danish¹, Jawad Ahmad¹, Wasif Ali², Maaz Khan¹, Mashkoor Ahmad¹, Ghafar Ali^{1*}, Muhammad Nadeem³, Nasir Mehboob⁴, Imran Shakir⁵

¹Nanomaterials Research Group, Physics Division, PINSTECH, Islamabad 45650, Pakistan


²Department of Physics, Abdul Wali Khan University Mardan, KPK, Pakistan

³Nuclear Engineering Division, PINSTECH, Islamabad 45650, Pakistan

⁴Ripah International University, Islamabad, Pakistan

⁵Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia

* E-mail: ghafarali@kaist.ac.kr,

Figure S1: Schematic diagram showing the experimental set-up for the production of the Fe₂O₃ nanoparticles in 1M NaCl electrolyte at room temperature.

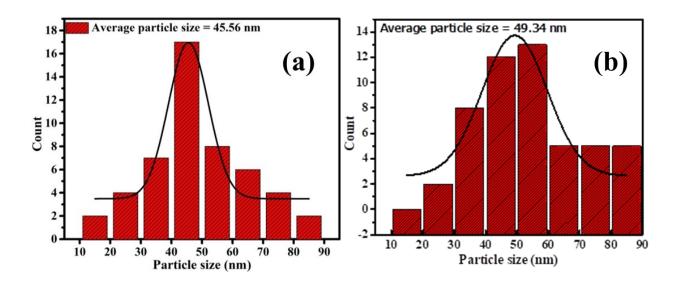


Figure S2: Histogram of the (a) pure iron-oxide NPs, and (b) GI-oxide NPs.

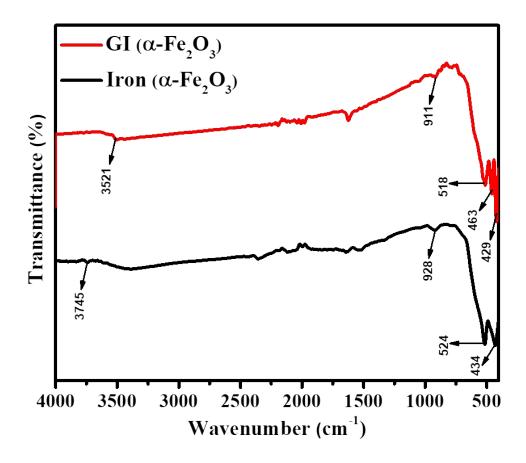


Figure S3: FTIR spectra of GI-oxide and the pure iron-oxide NPs.

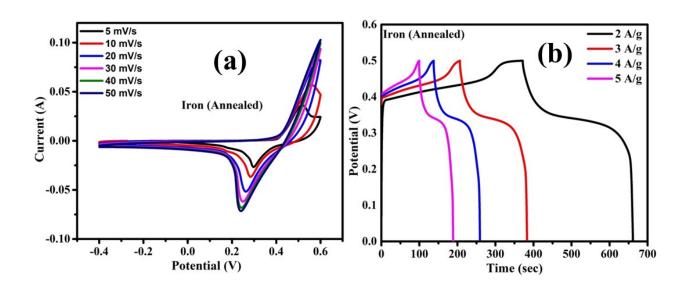


Figure S4: CV (a) and GCD (b) response of the pure iron-oxide NPs electrode.

 Table S1: Comparison between GI-oxide electrode and iron-oxide electrode.

Current density (A/g ⁻)	2		3		4		5	
Materials	G-iron (Anneale d)	Iron (Anneale d)	G-iron (Anneale d)	Iron (Anneale d)	G-iron (Anneale d)	Iron (Anneale d)	G-iron (Anneale d)	Iron (Anneale d)
Specific capacitan ce (Fg ⁻¹)	694	586	639	531	584	484	555	450
Energy density (Wh/kg)	24.09	20.34	22.18	18.43	20.27	16.80	19.27	15.62
Power density (Wkg ⁻¹)	252.83	252.49	374.87	374.84	499.80	499.83	624.97	624.8