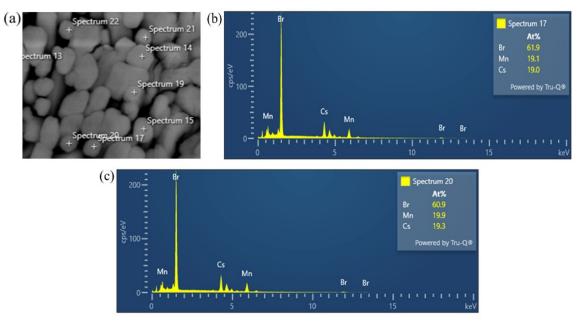
Supplementary Information


Low temperature green synthesis of red emitting Pb-free CsMnBr₃ perovskite films

Saurabh Singh a)*, Xiyu Wen b), Fuqian Yang a)

^{a)} Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA

b) Center for Aluminium Technology, University of Kentucky, Lexington, KY 40506, USA

1. EDS analysis

Fig. S1. (a-c) EDS analysis depicting 1:1:3 molar ratios of Cs:Mn:Br in as-prepared CsMnBr₃ films.

2. Mathematical equations

Bragg's law is used to calculate the interplanar spacing 'd' from the diffraction peaks of CsMnBr₃ peaks and given below:

$$n\lambda = 2dSin\theta \tag{S1}$$

where 'n' is the order of diffraction, ' λ ' is the incident wavelength, 'd' is the interplanar spacing and ' θ ' is the diffraction angle.

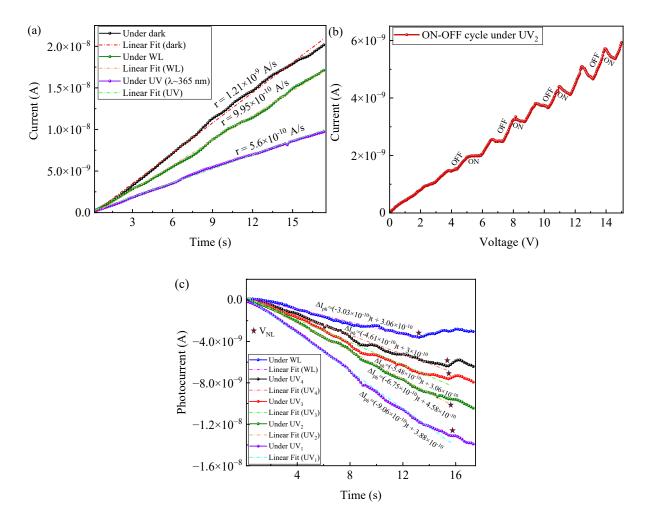
The following d-spacing equation is used to calculate lattice parameters for hexagonal systems:

$$\frac{1}{d_{hkl}^2} = \frac{4(h^2 + hk + k^2)}{3(a^2)} + \frac{l^2}{c^2}$$
(S2)

where 'd_{hkl}' is the interplanar spacing for (hkl) crystallographic plane, and 'a' and 'c' are corresponding lattice constants for respective hexagonal structure.

The temperature dependence of PL peak wavelength is given as:

$$\lambda (T) = \lambda (T_0) + \beta_T \Delta T$$
 (S3) for


 $|\Delta T/T_0| \ll 1$. Here, ' $\lambda(T)$ ' and ' $\lambda(T_0)$ ' are the PL peak wavelengths at temperature T and a reference temperature ' T_0 ', and ' β_T ' is a factor determining the thermal shift of PL peak wavelength, respectively.

The conductance (G) of the CsMnBr₃ films is determined from corresponding I-V curves via the following equation:

$$G = \frac{dI}{dV} \tag{S4}$$

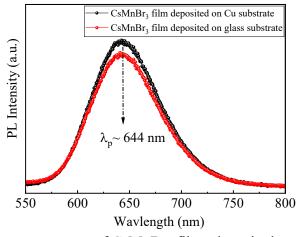
where 'G' represents the conductance, and 'dI/dV' represents the slope of I-V curves.

3. Electrical response of CsMnBr₃ films

Fig. S2. (a) Current-time (I-t) characteristics of as-prepared CsMnBr₃ films under dark, white light, and UV light (λ : ~365 nm) at a scan rate of 0.55 V·s⁻¹, and (b) I-V curve of as-prepared CsMnBr₃ films under UV light (λ : ~365 nm) with ON-OFF cycles at a scan rate of 0.25 V·s⁻¹, and (c) photocurrent-time (Δ I_{ph}-t) curves of as-prepared CsMnBr₃ films under UV irradiations of varying intensities.

The slopes of I-t curves are calculated using the following equation:

$$r = \frac{dI}{dt} \tag{S5}$$


where 'r' denotes the change rate of current, and 'dI/dt' is the slope of I-t curves.

The current-time (I-t) curves for the CsMnBr₃ films under cyclic ON-OFF UV irradiation can be approximately described by the following exponential equation:

$$I = I_0 + A_1 e^{-t/\tau} (S6)$$

where ' I_0 ' denotes the baseline current at 'dark' state, ' A_1 ' represents steady state current under UV irradiation, and ' τ ' represents the characteristic rise/decay time constants, respectively.

4. PL spectra of CsMnBr₃ films on different substrates

Fig. S3. Photoluminescence spectra of CsMnBr₃ films deposited on copper (Cu) and glass substrates, under UV excitation of ~ 365nm wavelength.

5. White LCD backlight structures

5.1 Schematic illustration of the fabrication procedure

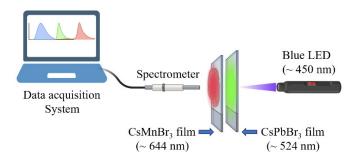


Fig. S4. Schematic of a white-emitting RGB LCD backlight structures fabricated via redemitting CsMnBr₃ and green-emitting CsPbbr₃ films, excited with blue LED ($\lambda \sim 450$ nm).

5.2 Color gamut coverage area calculations

Table S1. CIE coordinates of NTSC 1953 standard, sRGB standard and present work

Standards	$(X_R, Y_R)^*$	$(X_G, Y_G)^*$	$(X_B, Y_B)^*$	Gamut Coverage Area (GCA)	Relative Area Ratio (RAR) (%)
sRGB	(0.64,0.33)	(0.3, 0.6)	(0.15, 0.06)	0.1120	186.88
NTSC 1953	(0.67, 0.33)	(0.21, 0.71)	(0.14, 0.08)	0.1582	132.36
Present work	(0.71, 0.289)	(0.16, 0.79)	(0.15, 0.03)	0.2094	100

^{*}Here, the subscripts 'R', 'G', and 'B' correspond to red, green, and blue emissions, respectively.

The color Gamut Coverage Area (GCA) spanned by RGB triangle in Fig. 11 (manuscript) is calculated via:

$$GCA = (X_R \times Y_G + X_G \times Y_B + X_B \times Y_R - X_R \times Y_B - X_G \times Y_R - X_B \times Y_G)/2$$
 (S7)

Further, the Relative Area Ratio (RAR) is calculated via:

$$RAR = \frac{(GCA)_{Present \ work}}{(GCA)_{Standard}} \times 100$$
(S8)