

Supplementary Information
DFT insights into nano-Au/carbon nitride: Potent CO oxidation facilitated
by weak metal-support interaction

Milad Behroozi and Esmail Doustkhah*

Chemistry Department, Faculty of Engineering and Natural Sciences,
Istinye University, Istanbul 34396 Türkiye. and

Clean Energy Research Center (TEAM), Istinye University, Sarıyer, Istanbul 34396 Türkiye.

M. Hussein N. Assadi†

RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198 Japan and
Chemistry Department, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396 Türkiye.
(Dated: December 15, 2025)

SUPPLEMENTARY ANALYSIS

Supplementary Table

TABLE S1. The lattice parameters of the optimised $\text{Au}_x@\text{C}_3\text{N}_2$ supercells.

Configuration	a (Å)	b (Å)	c (Å)	α	β	γ
1-Layer	10.169	5.069	33.681	89.48°	85.98°	89.98°
2-Layer	10.217	5.023	53.929	89.51°	85.97°	89.98°
4-Layer	10.249	4.954	60.002	89.94°	90.05°	90.06°
8-Layer	10.171	5.085	70.585	90.00°	90.00°	90.00°

Supplementary Figures

Au is renowned for its catalytic activity, even at uncommonly low temperatures (~ 203 K), in oxidising CO to CO_2 [S1]. This reaction is essential in various industrial processes, particularly automotive catalytic converters and gas sensors. The precise mechanism by which gold catalyses this reaction is still an active research area [S2]. In principle, sufficient charge transfer from the catalyst to the CO and O_2 molecules is indispensable for any catalytic CO oxidation to be effective. We demonstrate the criticality of such charge transfer in Figure S1a and b, where we can see that for both CO and O_2 , the lowest energy orbitals that can still accept electrons, presumably from the catalyst, have antibonding π_{2p}^* nature. Upon the adsorption of CO and O_2 molecules onto the Au surface, given the high lability of 5d electrons at the surface, their transfer into the antibonding π_{2p}^* orbital weakens the O–O and C–O bonds. The case for O_2 is particularly acute because the weakening of the bond results in the formation of chemisorbed oxygen species (O^\bullet) [S3], which would react with the adsorbed CO to form CO_2 . The resulting CO_2 desorbs relatively easily from the catalyst surface because its lowest available orbital is too high to retain the charge from Au [S4] (also schematically shown in Figure S1c), thus being released and freeing up active sites for further CO oxidation. In other words, Au's sizable 5d population, minimal interaction with the substrate, which preserves its catalytically labile and active electrons, and resistance to CO_2 poisoning render it an ideal sub-nano catalyst.

Crystal orbital hamilton population (COHP) identifies bonding, non-bonding, and antibonding interactions between specific atomic pairs by partitioning the band-structure energy into Hamilton-matrix-weighted contributions. Negative COHP values reveal stabilising bonding interactions, whilst positive values indicate destabilising antibonding states, allowing quantification of interaction strength and structural preferences. Integrating the COHP up to the Fermi level provides the ICOHP (Integrated COHP) value, an index of net bond strength. A more negative ICOHP value indicates a stronger bond between the atoms [S6]. COHP analysis is particularly valuable for catalysis as it reveals how adsorbates bind to catalyst surfaces and whether orbital interactions stabilise or destabilise the binding. Specifically, it determines the occupancy of bonding versus antibonding orbitals involved in adsorption. This enables correlation between electronic structure and catalytic activity, since effective catalysts require an optimal

* esmail.doustkhah@istinye.edu.tr

† h.assadi.2008@ieee.org

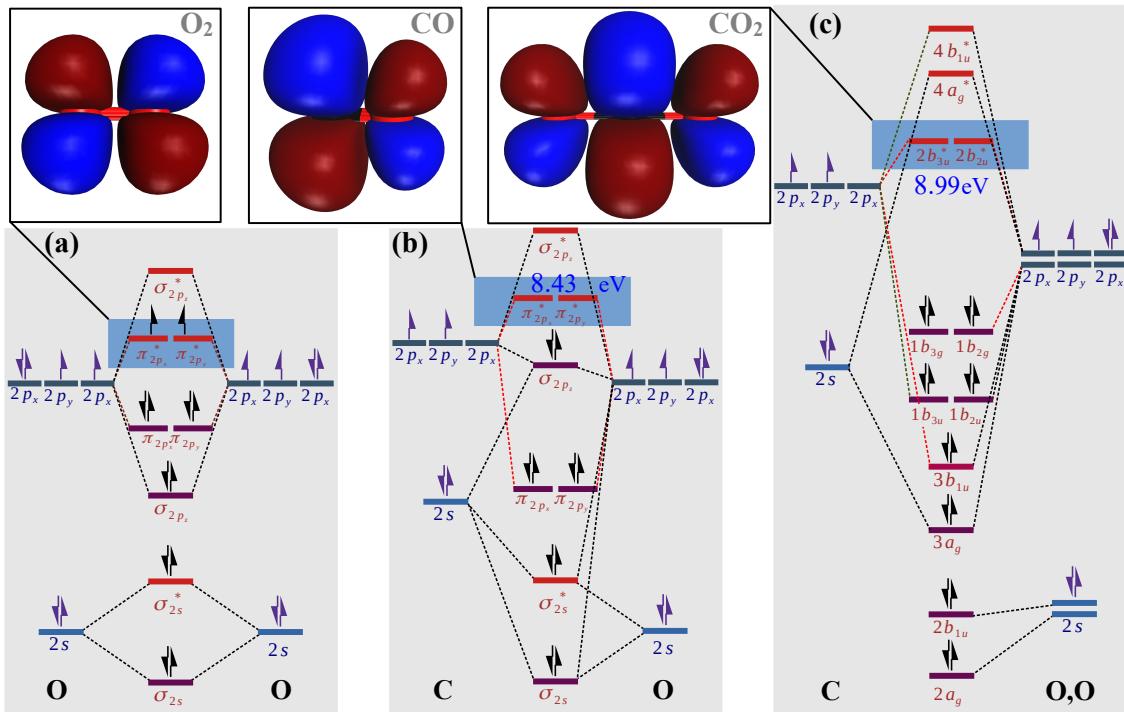


Figure S1. The arrangement of the molecular orbitals for the O₂, CO and CO₂ molecules is given in (a), (b) and (c), respectively. The lowest empty (or partially empty) orbitals available for accepting electrons during catalytic reactions are marked in blue, and their eigenvalues relative to the highest occupied molecular orbitals are given. These quantum molecular calculations were conducted using the Gaussian code [S5] and computational settings equivalent to the supercell calculations reported in the Computational Settings.

balance: strong reactant binding whilst avoiding excessive product stabilisation.

To use COHP analysis for further investigating the CO oxidation process, we studied the adsorption of CO, O₂, CO₂ and (CO + O₂) on the Au(111) surface. The surface was constructed by cleaving a 2 × 2 × 1 Au supercell orthogonal to the (111) surface. The surface was two layers deep, with the positions of the bottom Au layer being constrained. Multiple starting configurations were examined and optimised, and the most stable ones were reported. Structural stability at room temperature was verified using *ab initio* molecular dynamics under canonical ensemble with Nosé-Hoover thermostat [S7] at 300 K for 10 ps (0.25 fs timesteps). Configurations remained stable aside from thermal motion. Finally, COHP analysis was performed using LOBSTER code [S8] with a very tight *k*-point mesh of 23 × 23 × 1.

Using Spin-resolved COHP analysis of CO, O₂, CO + O₂ and CO₂ molecules on the Au's (111) surface, here we examine a possible pathway for CO oxidation (CO + $\frac{1}{2}$ O₂ → CO₂). Figure S2 shows the adsorption of the isolated CO molecule on the Au surface, with the C end stabilising closer to the Au surface. The C–Au interaction, based on COHP analysis, is dominated by occupied bonding states below the Fermi level (~ -4 eV) with minimal occupied antibonding weight, predicting Au–C chemisorption. The integrated $-\text{COHP}$, $-\text{ICOHP}$, value is about 0.037 e/bond. Figure S3 shows the adsorption of an isolated O₂ molecule on the Au surface, stabilised with both O₂ atoms bonding to the Au surface. Both O–Au interactions are dominated by occupied bonding states below the Fermi level at ~ -15 , ~ -8 and ~ -6 eV. The combined $-\text{ICOHP}$ is 0.623 e/bond, indicating a bond an order of magnitude stronger than that of CO.

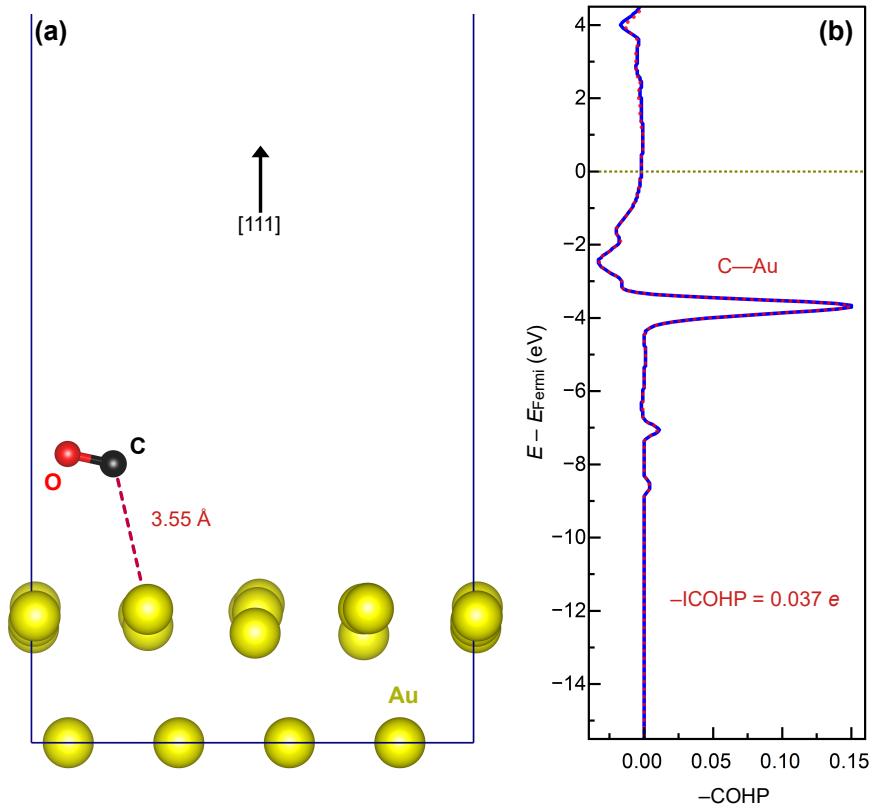


Figure S2. (a) Optimised structure of CO adsorption on the Au(111) surface. (b) $-\text{COHP}$ plot for the C–Au interaction. Blue and red curves denote the spin-up and spin-down channels, which are degenerate in this case.

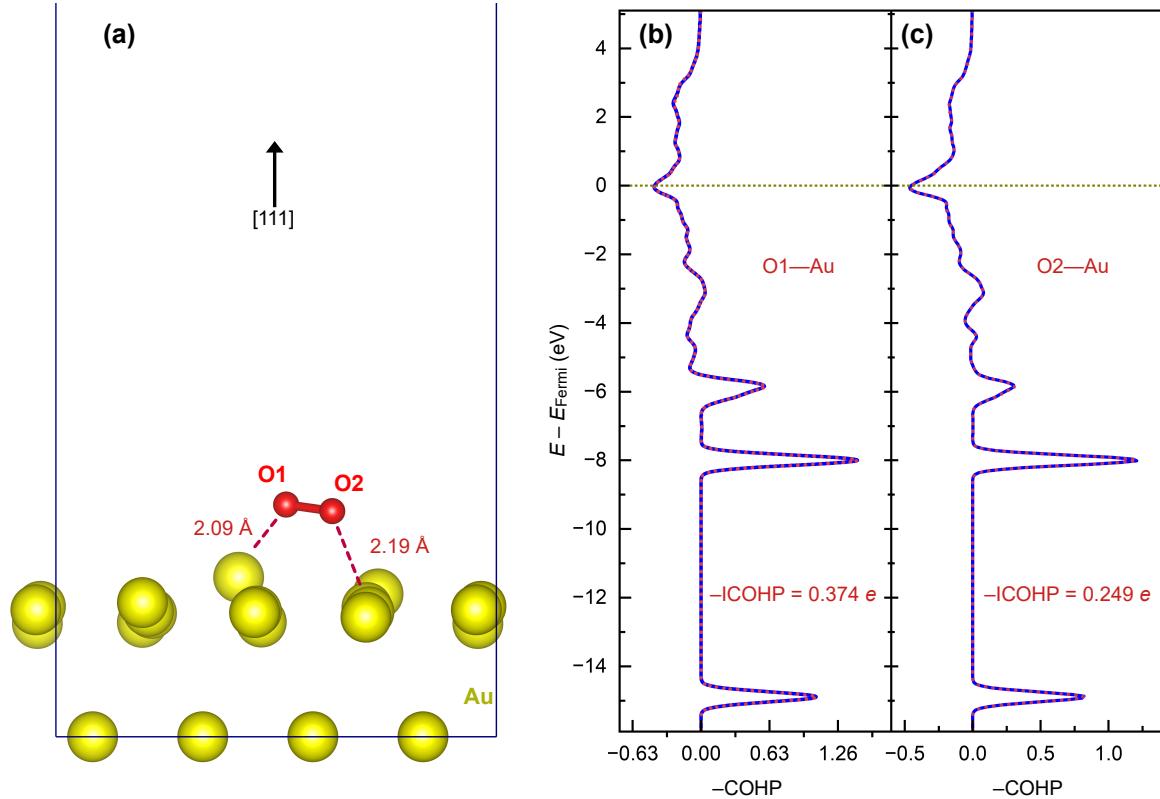


Figure S3. (a) Optimised structure of O_2 adsorption on the Au(111) surface. (b) and (c) $-\text{COHP}$ plot for the two O–Au interactions. The two oxygen atoms in the adsorbed O_2 molecule are labelled O1 and O2. As O1 and O2 relax to different distances from their nearest Au atoms, their integrated $-\text{COHPs}$ differ slightly. Blue and red curves denote the spin-up and spin-down channels, which are degenerate in this case.

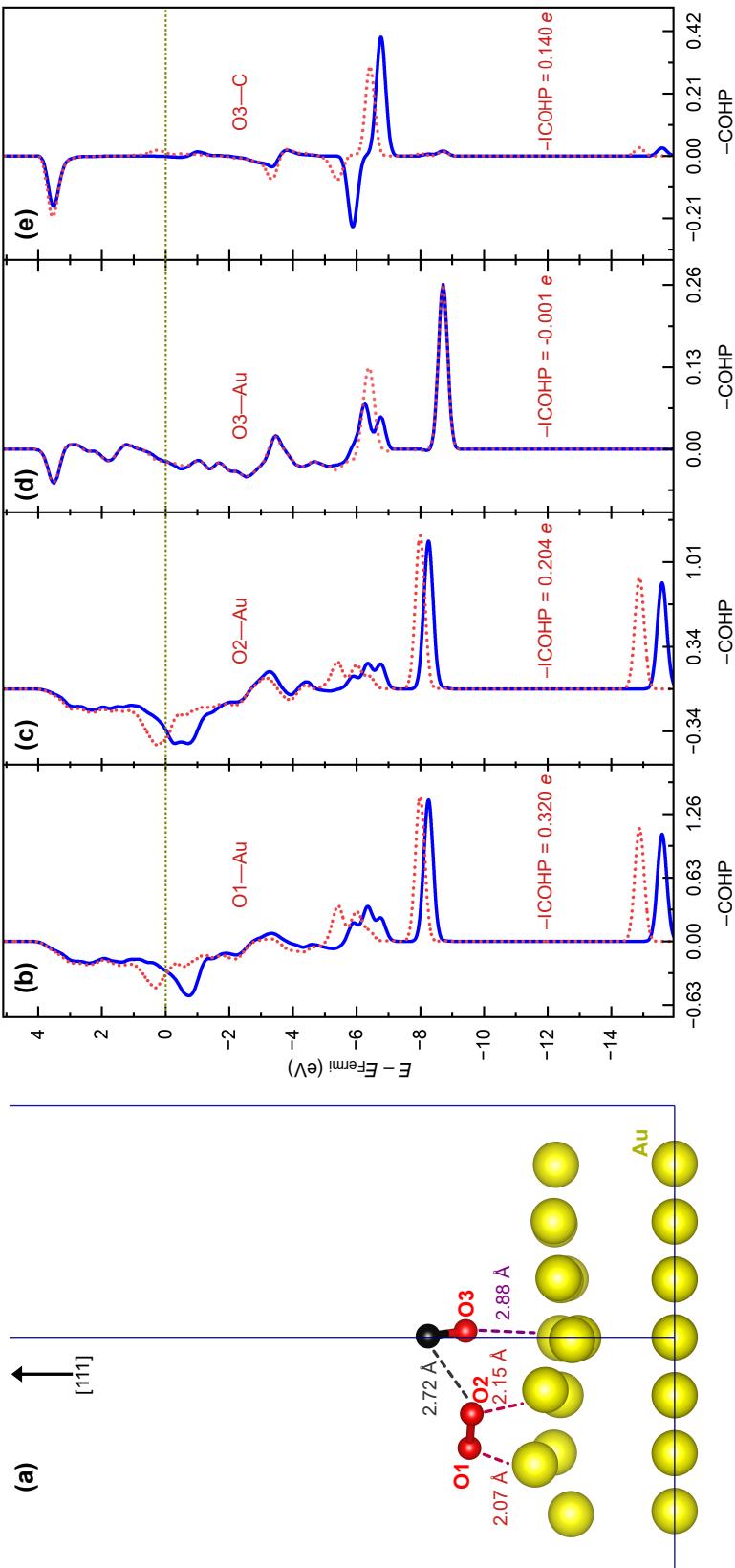


Figure S4. (a) Optimised structure of O₂ and CO co-adsorption on the Au(111) surface. (b, c) -COHP plots for the two O–Au interactions originating from the O₂ molecule. The oxygen atoms in adsorbed O₂ are labelled O1 and O2. As O1 and O2 relax to slightly different distances from their nearest Au atoms, their integrated -COHPs show minor variations. (d) -COHP for the interaction between the CO oxygen (O₃) and Au. (e) -COHP for the interaction between the CO carbon and the O₂ oxygen (O₂). Blue and red curves denote the spin-up and spin-down channels in the COHP analysis.

Figure S4 illustrates the co-adsorption configuration of CO and O₂ molecules on the Au surface. Upon co-adsorption, the CO molecule reorients such that its oxygen atom (denoted O3) faces the Au surface, while its carbon atom points toward the O₂ molecule. The O₂ molecule, in contrast, largely retains the same configuration as in its isolated adsorption state. The combined $-\text{ICOHP}$ for the O₂ molecule (its atoms denoted as O1 and O2) is 0.524 e/bond, indicating a slightly weaker adsorption compared to the isolated O₂ molecule. For CO, the combined $-\text{ICOHP}$ is 0.139 e/bond, which is about three folds larger than that of isolated CO (0.037 e/bond), exclusively promoted by the CO's attraction to the O₂ molecule on the Au(111) surface.

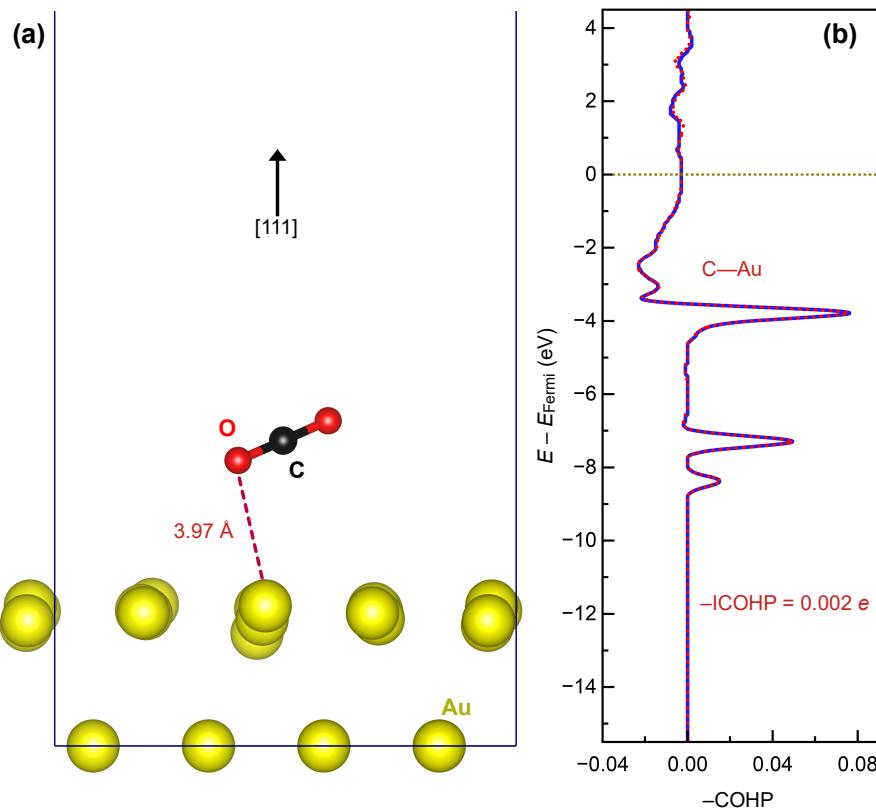


Figure S5. (a) The optimised structure of CO₂ molecule adsorption on Au(111) surface. (b) One of the CO₂'s oxygen atoms bonds to the Au surface, for which the $-\text{COHP}$ graph is presented. The blue and red lines represent spin-up and spin-down curves, which in this case are degenerate.

Figure S5 shows the adsorption of the isolated CO₂ molecule on the Au surface, with one of the O ends stabilising closer to the Au surface. According to the COHP analysis, the interaction between O and Au is characterised by several occupied bonding peaks appearing below the Fermi level (around ~ -4 , ~ -7 , and ~ -9 eV), and an antibonding tail below the Fermi level, consistent with weak adsorption. The corresponding integrated $-\text{COHP}$ ($-\text{ICOHP}$) value is 0.002 e/bond, which is the smallest among the investigated molecules.

From the simulations, it can be inferred that in the isolated state, O₂ exhibits a stronger interaction with the Au surface than either CO or CO₂. In the presence of pre-adsorbed O₂, however, the CO–Au interaction becomes significantly enhanced. These observations suggest that CO oxidation on Au surfaces is initiated by O adsorption, which subsequently promotes CO adsorption and activation. The resulting CO₂ species exhibits a substantially weaker interaction with the surface, facilitating its desorption and completing the catalytic cycle. By elucidating systematic molecular adsorption trends, this work provides additional perspective that may assist in interpreting earlier computational studies on small-molecule adsorption at metallic interfaces [S9, S10].

[S1] M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C, *Chem. Lett.* **16**, 405 (2006).

[S2] D. Widmann and R. J. Behm, Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts, *Acc. Chem. Res.* **47**, 740 (2014).

[S3] M. Farnesi Camellone and D. Marx, Nature and role of activated molecular oxygen species at the gold/titania interface in the selective oxidation of alcohols, *J. Phys. Chem. C* **118**, 20989 (2014).

[S4] M. L. Kimble, N. A. Moore, G. E. Johnson, J. Castleman, A. W., C. Bürgel, R. Mitrić, and V. Bonačić-Koutecký, Joint experimental and theoretical investigations of the reactivity of Au_2O_n^- and Au_3O_n^- ($n = 1-5$) with carbon monoxide, *J. Chem. Phys.* **125**, 204311 (2006).

[S5] M. e. Frisch, G. Trucks, H. B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, G. Petersson, H. Nakatsuji, *et al.*, Gaussian 16 (2016).

[S6] S. Steinberg and R. Dronskowski, The crystal orbital Hamilton population (COHP) method as a tool to visualize and analyze chemical bonding in intermetallic compounds, *Crystals* **8**, 225 (2018).

[S7] W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, *Phys. Rev. A* **31**, 1695 (1985).

[S8] S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, LOBSTER: A tool to extract chemical bonding from plane-wave based DFT, *J. Comput. Chem.* **37**, 1030 (2016).

[S9] K. W. Qadir, M. D. Mohammadi, N. J. Ridha, and H. Y. Abdulla, Determining the binding mechanism of $\text{B}_{12}\text{N}_{12}(\text{Zn})$ with CH_4 , CO , CO_2 , H_2O , N_2 , NH_3 , NO , NO_2 , O_2 , and SO_2 gases, *Microporous Mesoporous Mater.* **379**, 113289 (2024).

[S10] K. W. Qadir, M. Doust Mohammadi, and H. Y. Abdulla, Adsorption mechanism of CO , CO_2 , NO , NO_2 , and SO_2 gases onto $\text{AlNNT}(m, n)_k$, ($m = 5, 7$; $n = 0, 5, 7$; $k = 3 \sim 9$), *Mater. Sci. Semicond. Process.* **185**, 108973 (2025).