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Supplementary Methods:
Basis set convergence test
To ensure the reliability of our calculations, we carefully performed a basis set convergence

test with respect to the RK,,.x parameter (Ry;r*Rmax). The total energy was monitored as a

function of RK,,.«, as illustrated in Fig.1.
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Fig. 1. Converge curve, the total energy is a function of RKmax.

The results show that the total energy decreases sharply at lower RK,,.x values and gradually

approaches a constant value beyond RK,,,x = 8.0. The converged total energy was obtained as
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=-212638.81687 Ry, and further increase of RK,,,x from 8.0 to 9.0 resulted in a negligible
energy variation of less than 1 x 10 Ry (= 1.36 meV/atom). This indicates that the total
energy and derived quantities are fully converged with respect to RK,,,x. Therefore, RK,.x =
8.0 was adopted for all subsequent calculations, as it ensures numerical stability and an
optimal balance between accuracy and computational cost. The convergence criterion was set
so that the change in total energy remained below 1 x 10 Ry, which is a standard and
rigorous threshold for accurate first-principles simulations. Additionally, we verified that
increasing RK,,x beyond the converged value did not alter the band structure, density of
states, or optical properties, confirming that our chosen cutoff provides a stable and reliable

energy baseline for all physical analyses.

Table S1. Calculated converge data of RK,,.x and total energy.

Rkmax Total Energy
5.0 -212636.7181
5.5 -212637.7664
6.0 -212638.3197
6.5 -212638.5945
7.0 -212638.7263
7.5 -212638.788
8.0 -212638.8169
8.5 -212638.8302
9.0 -212638.8363

Formation Enthalpy and Cohesive Energy

Table S2: Calculated formation enthalpy and cohesive energy

Total enthalpy of Isolated Energy ineV COheCiYe
) energy in
CuBiSeCl2 Cu Bi Se Cl eV/atom
-53179.8414 -3307.3865 | -43163.0142 | -4860.4467 | -921.6282 -15.613
Total enthalpy of Bulk Energy in eV lg?lrer?atl?:ll
CuBiSeClI2 . gy
Cu Bi Se Cl eV/atom
-53179.8414 -3309.6858 | -43163.0717 | -4860.2954 | -922.8887 -2.7514




2.1. Optical Constants: Calculation Methods

The frequency-dependent complex dielectric function is given by:

f(w) = g(w) + igy(w) (1)
where £1(w) represents the real part, and &(w) accounts imaginary part. In cartesian
coordinates,

& (W) exy(a)) £,,(w)

g(w) = [E(@) &, (w) &,(w) 2)
ex(W) &, (@) &, (w)

At long-wavelength infrared (LWIR) wavelengths for the intra-band transitions the overall

dielectric function can be represented by,

E((J)) — ginter(w) + Eintra(w) (3)
The derivation of the inter-band component of the dielectric function from first-order time-

dependent perturbation theory [1],

¢ iqr| v v|  -iqr ¢
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In this formulation, Q represents the volume of a single unit cell , the parameter g captures

the photon momentum, ® symbolizes the phonon frequency, r defines the position vector, the

v Cc
elementary charge of an electron is represented by e,. Furthermore, Ek and i+ q correspond
to the wavefunctions of electrons in the valence and conduction bands at a specific

wavevector k. Using the Kramers-Kronig relation,

2 7 w'emger(a)')dw'
f 2 ' (5)
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With the help of the free-electron plasma model, the intra-band contributions to the dielectric

function,
| w’
Smter(w) — 1 _ : (6)
w(w +iy)

Herein, The inverse lifetime (y) may vary from 0 to 1 eV [2] and the complex optical

conductivity (o) is established based on the following relation:



W
o) =iy {e(@) - 1] ™)

However, the optical properties can be determined with the help of the following equations

[3]:

I
K(w) = g—f ®)
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= K (h
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n(@) = (ﬁ) (2@ + (@) - &,(w))? (12)
el(w)=n2— K* (13)
&(w) =2nK (14)
Ve() = n(w) +iK () (15)

2.2. Methods of elastic and mechanical properties

The mechanical performance of solids is fundamentally governed by the elastic stiffness

constants Ci]’, which describe the linear relationship between stress and strain within the
elastic regime. These constants offer crucial insights into a material’s structural stability,
dynamic response, and hardness. To determine the elastic constants, stress - strain methods
are employed, where small deformations are applied to the crystal structure to observe its
mechanical response [4]. The expression below is used to compute the stress that counteracts
the applied strain and restores equilibrium:

( 01 Ci1 Cip Ciz Gy Cis Cig 48 \
93 Cp1 Gy Gz Gy Cys Cyelle,
O3] _ C31 C3p C33 C3y (35 C3gfl&3 (16)
51 Cap Cup Cyz Cyy Cus Cyel|Vy
T2 Cs1 Csy Cs3 Csq Css Cosgf|72

\\73 Co1 Cor Coz Coun Cos Cogl \V3))




0, T, &€

The symbols  and Vi represents normal stress, Eulerian strain, and shear stress,

respectively. This equation demonstrates how Hooke’s law relates the stresses (ai’ Ti’) to their

. . E. Vo - .
corresponding strains (“7 yl) in a material.

Due to the lattice symmetry of the crystal structure, there are nine independent elastic

constants: C11C12C13C22 003 C33’C44’C55,, and C66. For orthorhombic crystals at zero
pressure, the mechanical stability must satisfy the Born stability criteria, which are expressed

as follows: [5,6]:

C11>0;Cy, > 0;C53>0; \
Cys>0;Ccs>0;Cc0 > 0;

[C11+ Cop+ C33+2(Cry + 5+ Cy3)| > 0;
(Ci1 4 C33-2C15) > 0; {17
(Cy1+C33-2C13)>0;

\ (C11+ C33-2Cp3)>0 /

!

The shear moduli (G) and bulk moduli (B) can be calculated using the Voigt-Reuss-Hill
(VRH) approximation method [5,7,8]:
1
By = E(B r+B,)
1 (18)
Gy = E(GR +G,)

B, and B are the upper and lower bounds of the bulk modulus, calculated using the

Here,
Voigt and Reuss methods. The Voigt Reuss bounds for B and G in the orthorhombic
configuration are presented as follows:

3 (C11+ Copp + C33) +2(C1p + Cy3)

f By 9 \
B — A
g [Ciq % (Copt+ C33-2%Cy3) + Copx (C33- 2% Cp3) -
(2% Cy3%Cpp) +Cip* (2% Cy3-Cp) + Ci3% (2% C1p=Cy3)
+ Cp3 % (2% Cy3- Cy3)]
. - Ci1+ Cop+ C33+ 3 (Cag + Cys+ Co6) = (Crp+ C13+ Co3) (19)
v 15

[4{Cy1 % (Cop + C33+ Cy3) + Cpp
(C33+ Cy3) + C33% C1p=Cip* (Co3+ Cpp) = Coz%

\G (Ciz+Cy3) = Cpz* (Ci3+ Co3) 3/A + 3{(1/644) + (1/655) + (1/666)}]
R~ 15 ‘




Young’s modulus (Y) and Poisson’s ratio (v) were determined, using the following formulas,
9B,Gy
Y35 +¢
H H
3By - 2Gy (20)
Ve———
2(3By + Gp)

£ CuBiSeCl,

To gain deeper insights into the mechanical behavior o , additional parameters

such as the Kleinman parameter ({), machinability index (um) were evaluated, as summarized

in Table 4. The following formula were utilized to obtain them,
d @
‘LLM =
Cpq
vE

A=

T @+ na-2n)
Hardness is a key mechanical property that reflects a material’s resistance to deformation or
£ CuBiSeCl

[ ¢

indentation. In this study, the hardness o 2 was estimated using the theoretical
model proposed by Chen et al. [9], along with additional semi-empirical formulas for

hardness prediction [10] . The relevant equations are as follows:

H,= 0.0963B
H,=00607E |
H, = 0.1475G
H,= 0.0635E
Hy = -2.899+ 0.1769G
_(1-2v)B (22)
6 6(14v)
_(1-2v)E
7 6(1+v)
\Hg=2(K?6G)*5® -3=H, |
" G 1
Where B and G are Bulk and Shear modulus in GPa and B Pugh'sratio

The direction dependent characteristics of solids can be explained by anisotropy. To estimate

elastic anisotropy, the universal index (AU) is utilized [11].

G, B
{AU =5 4+ L 6] (23)
GR GR



G
Some additional indicators of anisotropy are, shear anisotropy (4 ),[12], Zener anisotropy
VA B
factor (A7), bulk anisotropy (4 ), equivalent Zener anisotropy factor (Aeq)[IS], log-

Euclidean index ( AL) [12] are obtained by the below relations [14],

A=" 24
= | o
A = 25
[ ! C11+C33‘2613} ()
4Cc:
A, = 26
[ ’ C22+C33‘2C23} 20)
Ay = 27
[ ’ C11+sz‘2(:12} 27
A7 = (28)
i 2C, (29)
(C11-C1p)
A% = 1+3AU + 1+iAU2—1 (30)
12 12
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AL = [[In (B—) + 5[In (—R)]2 (31)
R Cyy
Cpy C . cR . ,
Here, 44 is the ~44 values for Voigt and ~44 is the same for Reuss, which can be expressed
as-
RS C44(C11 - C12)
M33(Cy- Cp) a4 (32)
y 3 (C11-C1-2Cyy)
" 53( Ci1— Cpp) +4Cy,
Supplementary Results:

3. Results and Discussion

3.1. Structural Analysis with Ground-State Properties

Table S3: Energy configuration with volume.



Volume (Bohr?) Volume (A?) AVol (%) Total Energy (Ry)
2958.426 438.4444 -5 -212638.71641
2989.567 443.1787 -4 -212638.72147
3020.709 447913 -3 -212638.72531

3051.85 452.6473 -2 -212638.72739
3082.992 457.3817 -1 -212638.72847
3114.133 462.116 0 -212638.72742
3145.274 466.8503 1 -212638.72552
3176.416 471.5847 2 -212638.72238
3207.557 476.319 3 -212638.71812
3238.698 481.0533 4 -212638.71275
3269.839 485.7876 5 -212638.70622

Table S4: Lattice parameters
Parameters PBEsol Exp. Relative errors
) 8.75477 8.78415 0.38%
Lattice 3.98466 3.998 0.34%
Constants
13.09603 13.13998 0.36%

3.2. Electronic Properties
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Fig. S2: Element- and orbital-resolved (s, p, d) PDOS analysis o
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Fig. S3: Charge density analysis for Cu, Bi, Se, and Cl in

References:

[1] S.Bharadwaj, T. Van Mechelen, Z. Jacob, Picophotonics: Anomalous Atomistic Waves
in Silicon, Phys. Rev. Applied 18 (2022) 044065.
https://doi.org/10.1103/PhysRevApplied.18.044065.

[2] M.J. Van Setten, S. Er, G. Brocks, R.A. De Groot, G.A. De Wijs, First-principles study
of the optical properties of Mg x Ti 1 —x H 2, Phys. Rev. B 79 (2009) 125117.
https://doi.org/10.1103/PhysRevB.79.125117.

[3] Md.L. Ali, Z. Hossain, S.N. Mim, S.K. Saha, Pressure Effects on Physical Properties of
Binary Rare Earth Mono-Pnictide YBi for Optoelectronics Applications, Advanced
Theory and Simulations n/a (n.d.) 2401066. https://doi.org/10.1002/adts.202401066.

[4] A. Dal Corso, Elastic constants of beryllium: a first-principles investigation, Journal of

Physics: Condensed Matter 28 (2016) 075401.

10



[5] Z.Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, J. Meng, Crystal structures and elastic
properties of superhard Ir N 2 and Ir N 3 from first principles, Phys. Rev. B 76 (2007)
054115. https://doi.org/10.1103/PhysRevB.76.054115.

[6] H. Ozisik, K. Colakoglu, H.B. Ozisik, E. Deligoz, Structural, elastic, and lattice
dynamical properties of Germanium diiodide (Gel2), Computational Materials Science
50 (2010) 349-355. https://doi.org/10.1016/j.commatsci.2010.08.026.

[7] R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. A 65 (1952)
349. https://doi.org/10.1088/0370-1298/65/5/307.

[8] D.G. Pettifor, Theoretical predictions of structure and related properties of
intermetallics, Materials Science and Technology 8 (1992) 345-349.
https://doi.org/10.1179/mst.1992.8.4.345.

[9] X.-Q. Chen, H. Niu, D. Li, Y. Li, Modeling hardness of polycrystalline materials and
bulk metallic glasses, Intermetallics 19 (2011) 1275-1281.

[10] M.I. Naher, S.H. Naqib, Possible applications of Mo2C in the orthorhombic and
hexagonal phases explored via ab-initio investigations of elastic, bonding,
optoelectronic and thermophysical properties, Results in Physics 37 (2022) 105505.

[11] D. Engin, C. Kemal, C.Y. Oztekin, Ab initio study on hypothetical silver nitride,
Chinese Physics Letters 25 (2008) 2154.

[12] C.M. Kube, Elastic anisotropy of crystals, AIP Advances 6 (2016).
https://pubs.aip.org/aip/adv/article/6/9/095209/873497 (accessed August 17, 2024).

[13] S.I. Ranganathan, M. Ostoja-Starzewski, Universal Elastic Anisotropy Index, Phys.
Rev. Lett. 101 (2008) 055504. https://doi.org/10.1103/PhysRevLett.101.055504.

[14] R. Gaillac, P. Pullumbi, F.-X. Coudert, ELATE: an open-source online application for
analysis and visualization of elastic tensors, Journal of Physics: Condensed Matter 28

(2016) 275201.

11



