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Supplementary Methods:

Basis set convergence test

To ensure the reliability of our calculations, we carefully performed a basis set convergence 

test with respect to the RKmax parameter (RMT×Rmax). The total energy was monitored as a 

function of RKmax, as illustrated in Fig.1.

Fig. 1. Converge curve, the total energy is a function of RKmax.

The results show that the total energy decreases sharply at lower RKmax values and gradually 

approaches a constant value beyond RKmax = 8.0. The converged total energy was obtained as 
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E = –212638.81687 Ry, and further increase of RKmax from 8.0 to 9.0 resulted in a negligible 

energy variation of less than 1 × 10⁻⁴ Ry (≈ 1.36 meV/atom). This indicates that the total 

energy and derived quantities are fully converged with respect to RKmax. Therefore, RKmax = 

8.0 was adopted for all subsequent calculations, as it ensures numerical stability and an 

optimal balance between accuracy and computational cost. The convergence criterion was set 

so that the change in total energy remained below 1 × 10⁻⁴ Ry, which is a standard and 

rigorous threshold for accurate first-principles simulations. Additionally, we verified that 

increasing RKmax beyond the converged value did not alter the band structure, density of 

states, or optical properties, confirming that our chosen cutoff provides a stable and reliable 

energy baseline for all physical analyses.

Table S1. Calculated converge data of RKmax and total energy.

Rkmax Total Energy

5.0 -212636.7181

5.5 -212637.7664

6.0 -212638.3197

6.5 -212638.5945

7.0 -212638.7263

7.5 -212638.788

8.0 -212638.8169

8.5 -212638.8302

9.0 -212638.8363

Formation Enthalpy and Cohesive Energy

Table S2: Calculated formation enthalpy and cohesive energy

Isolated Energy in eVTotal enthalpy of 
CuBiSeCl2 Cu Bi Se Cl

Cohecive 
energy in 
eV/atom

-53179.8414 -3307.3865 -43163.0142 -4860.4467 -921.6282 -15.613

Bulk Energy in eVTotal enthalpy of 
CuBiSeCl2

Cu Bi Se Cl

Formation 
Energy in 
eV/atom

-53179.8414 -3309.6858 -43163.0717 -4860.2954 -922.8887 -2.7514
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2.1. Optical Constants: Calculation Methods
The frequency-dependent complex dielectric function is given by:

𝜀(𝜔) =  𝜀1(𝜔) +  𝑖𝜀2(𝜔) (1)

where  represents the real part, and  accounts imaginary part. In cartesian 𝜀1(𝜔) 𝜀2(𝜔)

coordinates, 

𝜀(𝜔) = (𝜀𝑥𝑥(𝜔) 𝜀𝑥𝑦(𝜔) 𝜀𝑥𝑧(𝜔)
𝜀𝑦𝑥(𝜔) 𝜀𝑦𝑦(𝜔) 𝜀𝑦𝑧(𝜔)
𝜀𝑧𝑥(𝜔) 𝜀𝑧𝑦(𝜔) 𝜀𝑧𝑧(𝜔)) (2)

At long-wavelength infrared (LWIR) wavelengths for the intra-band transitions the overall 

dielectric function can be represented by,

𝜀(𝜔) =  𝜀𝑖𝑛𝑡𝑒𝑟(𝜔) + 𝜀𝑖𝑛𝑡𝑟𝑎(𝜔) (3)

The derivation of the inter-band component of the dielectric function from first-order time-

dependent perturbation theory [1],

𝜀𝑖𝑛𝑡𝑒𝑟
𝛼𝛽 (𝜔) = 1 ‒  

8𝜋𝑒2

Ω
 ∑
𝑘,𝑣,𝑐

⟨𝜓 𝑐
𝑘 + 𝑞𝑒𝛼│𝑒𝑖𝑞.𝑟│𝜓𝑣

𝑘⟩ ⟨𝜓𝑣
𝑘│𝑒 ‒ 𝑖𝑞.𝑟│𝜓 𝑐

𝑘 + 𝑞𝑒𝛽⟩
(𝐸 𝑐

𝑘 + 𝑞 ‒ 𝐸𝑣
𝑘 ‒ ℏ𝜔 ‒ 𝑖ℏ𝛼)

+ 𝐶𝐶 (4)

In this formulation, Ω represents the volume of a single unit cell , the parameter 𝑞 captures 

the photon momentum, ω symbolizes the phonon frequency, 𝑟 defines the position vector, the 

elementary charge of an electron is represented by 𝑒,. Furthermore,  and  correspond 𝐸𝑣
𝑘 𝐸 𝑐

𝑘 + 𝑞

to the wavefunctions of electrons in the valence and conduction bands at a specific 

wavevector 𝑘. Using the Kramers-Kronig relation,

𝜀𝑖𝑛𝑡𝑒𝑟
1 (𝜔) = 1 +

2
𝜋

𝑃
∞

∫
0

𝜔'𝜀𝑖𝑛𝑡𝑒𝑟
2 (𝜔')𝑑𝜔'

𝜔'2 ‒ 𝜔2
. (5)

With the help of the free-electron plasma model, the intra-band contributions to the dielectric 

function,

𝜀𝑖𝑛𝑡𝑒𝑟(𝜔) = 1 ‒
𝜔2

𝑝

𝜔(𝜔 + 𝑖𝛾)'
(6)

Herein, The inverse lifetime (γ) may vary from 0 to 1 eV [2] and the complex optical 

conductivity (ω) is established based on the following relation:
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.
𝜎(𝜔) =‒ 𝑖

𝜔
4𝜋

[𝜀(𝜔) ‒ 1] (7)

However, the optical properties can be determined with the help of the following equations 

[3]:

𝐾(𝜔) =  
𝐼(𝜔)
2𝜔

(8)

𝐼(𝜔) =  2𝜔 ( 𝜀1(𝜔)2 + 𝜀2(𝜔)2 ‒  𝜀1(𝜔))1 2 (9)

𝐿(𝜔) =  
𝐸

(𝜀1(𝜔)2 + 𝜀2(𝜔)2)
(10)

𝑟(𝜔) =  
𝑛 + 𝑖𝐾 ‒ 1
𝑛 + 𝑖𝐾 + 1

(11)

𝑛(𝜔) = ( 1
2

 ) ( 𝜀1(𝜔)2 + 𝜀2(𝜔)2 ‒  𝜀1(𝜔))1 2 (12)

𝜀1(𝜔) = 𝑛2 ‒  𝐾2 (13)

𝜀2(𝜔) = 2𝑛𝐾 (14)

 (ω)𝜀(𝜔) = 𝑛(𝜔) + 𝑖𝐾 (15)

2.2. Methods of elastic and mechanical properties
The mechanical performance of solids is fundamentally governed by the elastic stiffness 

constants , which describe the linear relationship between stress and strain within the 𝐶𝑖𝑗

elastic regime. These constants offer crucial insights into a material’s structural stability, 

dynamic response, and hardness. To determine the elastic constants, stress - strain methods 

are employed, where small deformations are applied to the crystal structure to observe its 

mechanical response [4]. The expression below is used to compute the stress that counteracts 

the applied strain and restores equilibrium:

{(
𝜎1
𝜎2
𝜎3
𝜏1
𝜏2
𝜏3

) = (
𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16
𝐶21 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26
𝐶31 𝐶32 𝐶33 𝐶34 𝐶35 𝐶36
𝐶41 𝐶42 𝐶43 𝐶44 𝐶45 𝐶46
𝐶51 𝐶52 𝐶53 𝐶54 𝐶55 𝐶56
𝐶61 𝐶62 𝐶63 𝐶64 𝐶65 𝐶66

)(
𝜀1
𝜀2
𝜀3
𝛾1
𝛾2
𝛾3

)} (16)
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The symbols  and  represents normal stress, Eulerian strain, and shear stress, 𝜎𝑖, 𝜏𝑖, 𝜀𝑖, 𝛾𝑖

respectively. This equation demonstrates how Hooke’s law relates the stresses ( ) to their 𝜎𝑖, 𝜏𝑖,

corresponding strains (  ) in a material. 𝜀𝑖, 𝛾𝑖

Due to the lattice symmetry of the crystal structure, there are nine independent elastic 

constants: , and . For orthorhombic crystals at zero 𝐶11,𝐶12,𝐶13,𝐶22,𝐶23, 𝐶33,𝐶44,𝐶55, 𝐶66

pressure, the mechanical stability must satisfy the Born stability criteria, which are expressed 

as follows: [5,6]:

{
𝐶11 > 0;𝐶22 > 0;𝐶33 > 0;
𝐶44 > 0; 𝐶55 > 0;𝐶66 > 0;

[𝐶11 + 𝐶22 + 𝐶33 + 2(𝐶12 + 𝐶13 + 𝐶23)] > 0;
(𝐶11 + 𝐶33 ‒ 2𝐶12) > 0;
(𝐶11 + 𝐶33 ‒ 2𝐶13) > 0;
(𝐶11 + 𝐶33 ‒ 2𝐶23) > 0

} (17)

The shear moduli (G) and bulk moduli (B) can be calculated using the Voigt-Reuss-Hill 

(VRH) approximation method [5,7,8]: 

{𝐵𝐻 =
1
2

(𝐵𝑅 + 𝐵𝑣)

𝐺𝐻 =
1
2

(𝐺𝑅 + 𝐺𝑣)} (18)

Here,  and  are the upper and lower bounds of the bulk modulus, calculated using the 𝐵𝑣 𝐵𝑅

Voigt and Reuss methods. The Voigt Reuss bounds for B and G in the orthorhombic 

configuration are presented as follows:

{
𝐵𝑣 =

(𝐶11 + 𝐶22 + 𝐶33) + 2(𝐶12 + 𝐶13)
9

𝐵𝑅 =
∆

[𝐶11 ∗ (𝐶22 + 𝐶33 ‒ 2 ∗ 𝐶23) + 𝐶22 ∗ (𝐶33 ‒ 2 ∗ 𝐶13) ‒
(2 ∗ 𝐶33 ∗ 𝐶12) + 𝐶12 ∗ (2 ∗ 𝐶23 ‒ 𝐶12) + 𝐶13 ∗ (2 ∗ 𝐶12 ‒ 𝐶13)

+ 𝐶23 ∗ (2 ∗ 𝐶13 ‒ 𝐶23)]

𝐺𝑣 =
𝐶11 + 𝐶22 + 𝐶33 + 3 ∗ (𝐶44 + 𝐶55 + 𝐶66) ‒ (𝐶12 + 𝐶13 + 𝐶23)

15

𝐺𝑅 =

[4{𝐶11 ∗ (𝐶22 + 𝐶33 + 𝐶23) + 𝐶22 ∗
(𝐶33 + 𝐶13) + 𝐶33 ∗ 𝐶12 ‒ 𝐶12 ∗ (𝐶23 + 𝐶12) ‒ 𝐶13 ∗

(𝐶12 + 𝐶13) ‒ 𝐶23 ∗ (𝐶13 + 𝐶23) }/∆ + 3{(1
𝐶44

) + (1
𝐶55

) + (1
𝐶66

)}]

15

} (19)
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Young’s modulus (Y) and Poisson’s ratio (ν) were determined, using the following formulas,

{ 𝑌 =
9𝐵𝐻𝐺𝐻

3𝐵𝐻 + 𝐺𝐻

𝜈 =
3𝐵𝐻 ‒ 2𝐺𝐻

2(3𝐵𝐻 + 𝐺𝐻)
} (20)

To gain deeper insights into the mechanical behavior of , additional parameters 𝐶𝑢𝐵𝑖𝑆𝑒𝐶𝑙2

such as the Kleinman parameter (ζ), machinability index (μₘ) were evaluated, as summarized 

in Table 4. The following formula were utilized to obtain them,

{ 𝜁 =
𝐶11 + 8𝐶12

7𝐶11 + 2𝐶12

𝜇𝑀 =
𝐵

𝐶44

𝜆 =
𝜈𝐸

(1 + 𝜈)(1 ‒ 2𝜈)
} (21)

Hardness is a key mechanical property that reflects a material’s resistance to deformation or 

indentation. In this study, the hardness of  was estimated using the theoretical 𝐶𝑢𝐵𝑖𝑆𝑒𝐶𝑙2

model proposed by Chen et al. [9], along with additional semi-empirical formulas for 

hardness prediction [10] . The relevant equations are as follows: 

{
𝐻1 =  0.0963𝐵
𝐻2 = 0.0607𝐸

𝐻3 =  0.1475𝐺
𝐻4 =  0.0635𝐸

𝐻5 =  ‒ 2.899 +  0.1769𝐺

𝐻6 =
(1 ‒ 2𝜈)𝐵
6(1 + 𝜈)

𝐻7 =
(1 ‒ 2𝜈)𝐸
6(1 + 𝜈)

𝐻8 = 2(𝑘2𝐺)0.585 ‒ 3 = 𝐻𝑣 

} (22)

Where B and G are Bulk and Shear modulus in GPa and .
𝑘 =

𝐺
𝐵

=
1

𝑃𝑢𝑔ℎ’𝑠 𝑟𝑎𝑡𝑖𝑜

The direction dependent characteristics of solids can be explained by anisotropy. To estimate 

elastic anisotropy, the universal index ( ) is utilized [11].𝐴𝑈

{𝐴𝑈 = 5
𝐺𝑉

𝐺𝑅
+

𝐵𝑉

𝐺𝑅
‒ 6} (23)
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Some additional indicators of anisotropy are, shear anisotropy ( ,[12], Zener anisotropy 𝐴𝐺)

factor ( ), bulk anisotropy ( , equivalent Zener anisotropy factor [13], log-𝐴𝑍 𝐴𝐵)  ( 𝐴𝑒𝑞)

Euclidean index (  [12] are obtained by the below relations [14],𝐴𝐿)

{𝐴𝐺 =
𝐺𝑣 ‒ 𝐺𝑅

2𝐺𝐻
} (24)

{𝐴1 =
4𝐶44

𝐶11 +  𝐶33 ‒ 2𝐶13 } (25)

{𝐴2 =
4𝐶55

𝐶22 +  𝐶33 ‒ 2𝐶23 } (26)

{𝐴3 =
4𝐶66

𝐶11 +  𝐶22 ‒ 2𝐶12 } (27)

{𝐴𝐵 =
𝐵𝑉 ‒ 𝐵𝑅

𝐵𝑉 + 𝐵𝑅
} (28)

{𝐴𝑍 =
2𝐶44

(𝐶11 ‒ 𝐶12)
    } (29)

{𝐴𝑒𝑞 = (1 +
5

12
𝐴𝑈) +  ( 1 +

5
12

 𝐴𝑈)² ‒ 1} (30)

{𝐴𝐿 = [ln (𝐵𝑉

𝐵𝑅
) + 5[ln (

𝐶 𝑉
44

𝐶 𝑅
44

)]²} (31)

Here,  is the  values for Voigt and  is the same for Reuss, which can be expressed 𝐶 𝑣
44 𝐶44 𝐶 𝑅

44

as- 

{𝐶 𝑅
44 =

5
3

𝐶44(𝐶11 ‒ 𝐶12) 

3( 𝐶11 ‒  𝐶12) + 4𝐶44   

𝐶 𝑉
44 =

3
5

(𝐶11 ‒ 𝐶12 ‒ 2𝐶44)² 

3( 𝐶11 ‒  𝐶12) + 4𝐶44   
} (32)

Supplementary Results:

3. Results and Discussion

3.1. Structural Analysis with Ground-State Properties 
Table S3: Energy configuration with volume.
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Volume (Bohr³) Volume (Å³) ΔVol (%) Total Energy (Ry)

2958.426 438.4444 -5 -212638.71641
2989.567 443.1787 -4 -212638.72147
3020.709 447.913 -3 -212638.72531
3051.85 452.6473 -2 -212638.72739
3082.992 457.3817 -1 -212638.72847
3114.133 462.116 0 -212638.72742
3145.274 466.8503 1 -212638.72552
3176.416 471.5847 2 -212638.72238
3207.557 476.319 3 -212638.71812
3238.698 481.0533 4 -212638.71275
3269.839 485.7876 5 -212638.70622

Table S4: Lattice parameters

Parameters PBEsol Exp. Relative errors
a 8.75477 8.78415 0.38%
b 3.98466 3.998 0.34%Lattice

Constants
c 13.09603 13.13998 0.36%

3.2. Electronic Properties 
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Fig. S2: Element- and orbital-resolved (s, p, d) PDOS analysis of .𝐶𝑢𝐵𝑖𝑆𝑒𝐶𝑙2
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Fig. S3: Charge density analysis for Cu, Bi, Se, and Cl in .𝐶𝑢𝐵𝑖𝑆𝑒𝐶𝑙2
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