Supplementary Information

Discovery of new imidazole[1,2-a] pyridine derivatives as CDK9 inhibitors: Design, synthesis and biological evaluation

Zihan Sun, ¹Shijun Sun, ¹Xiayu Li, ¹Xiang Li, ¹Chuang Li, ¹Li Tang, ¹Maosheng Cheng, ¹Yang Liu^{1*}

¹Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China

Figure no.	Contents	Page
		no.
Figure S1	ESI-MS of intermediate 2a	S1
Figure S2	¹ H NMR (600 MHz, DMSO- d_6) Spectrum of compound 2a	S2
Figure S3	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound 2a	S2
Figure S4	ESI-MS of intermediate 3a	S3
Figure S5	¹ H NMR (600 MHz, DMSO- d_6) Spectrum of compound 3a	S4
Figure S6	¹³ C NMR (151 MHz, DMSO- d_6) spectrum of compound 3a	S4
Figure S7	ESI-MS of intermediate 6a	S5
Figure S8	¹ H NMR (600 MHz, DMSO- <i>d6</i>) spectrum of compound 6a	S6
Figure S9	ESI-MS of intermediate 6b	S7
Figure S10	¹ H NMR (600 MHz, DMSO- d_6) Spectrum of compound 6b	S8
Figure S11	ESI-MS of intermediate 6c	S9
Figure S12	¹ H NMR (600 MHz, DMSO- d_6) Spectrum of compound 6c	S10

Table of Contents

Figure S13	ESI-MS of intermediate 6d	S11
Figure S14	¹ H NMR (600 MHz, DMSO- d_6) Spectrum of compound 6d	S12
Figure S15	ESI-MS of intermediate 6e	S13
Figure S16	¹ H NMR (600 MHz, DMSO- d_6) Spectrum of compound 6e	S14
Figure S17	ESI-MS of intermediate 6f	S15
Figure S18	¹ H NMR (600 MHz, DMSO- d_6) Spectrum of compound 6f	S16
Figure S19	ESI-MS of intermediate 6g	S17
Figure S20	¹ H NMR (600 MHz, DMSO- d_6) Spectrum of compound 6g	S18
Figure S21	ESI-MS of intermediate 6h	S19
Figure S22	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound 6h	S20
Figure S23	ESI-MS of intermediate 6i	S21
Figure S24	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound 6i	S22
Figure S25	ESI-MS of intermediate 6 j	S23
Figure S26	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound 6 j	S24
Figure S27	ESI-MS of intermediate 6k	S25
Figure S28	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound 6 k	S26
Figure S29	ESI-MS of intermediate 61	S27
Figure S30	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound 6	S28
Figure S31	ESI-MS of intermediate 6m	S29
Figure S32	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound 6m	S30
Figure S33	HRMS of compound LA-1	S31
Figure S34	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LA-1	S31
Figure S35	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LA-1	S32
Figure S36	HRMS of compound LA-2	S33
Figure S37	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LA-2	S33
Figure S38	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LA-2	S34
Figure S39	HRMS of compound LA-3	S35
Figure S40	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LA-3	S35
Figure S41	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LA-3	S36
Figure S42	HRMS of compound LA-4	S37
Figure S43	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LA-4	S37

Figure S44	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LA-4	S38
Figure S45	HRMS of compound LA-5	S39
Figure S46	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LA-5	S39
Figure S47	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LA-5	S40
Figure S48	HRMS of compound LA-6	S41
Figure S49	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LA-6	S41
Figure S50	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LA-6	S42
Figure S51	HRMS of compound LA-7	S43
Figure S52	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LA-7	S43
Figure S53	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LA-7	S44
Figure S54	HRMS of compound LA-8	S45
Figure S55	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LA-8	S45
Figure S56	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LA-8	S46
Figure S57	HRMS of compound LA-9	S47
Figure S58	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LA-9	S47
Figure S59	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LA-9	S48
Figure S60	HRMS of compound LA-10	S49
Figure S61	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LA-10	S49
Figure S62	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LA-10	S50
Figure S63	HRMS of compound LA-11	S51
Figure S64	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LA-11	S51
Figure S65	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LA-11	S52
Figure S66	HRMS of compound LA-12	S53
Figure S67	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LA-12	S53
Figure S68	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LA-12	S54
Figure S69	HRMS of compound LA-13	S55
Figure S70	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LA-13	S55
Figure S71	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LA-13	S56
Figure S72	HRMS of compound LB-1	S57
Figure S73	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LB-1	S57
Figure S74	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LB-1	S58

Figure S75	HRMS of compound LB-2	S59
Figure S76	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LB-2	S59
Figure S77	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LB-2	S60
Figure S78	HRMS of compound LB-3	S61
Figure S79	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LB-3	S61
Figure S80	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LB-3	S62
Figure S81	HRMS of compound LB-4	S63
Figure S82	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LB-4	S63
Figure S83	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LB-4	S64
Figure S84	HRMS of compound LB-5	S65
Figure S85	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LB-5	S65
Figure S86	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LB-5	S66
Figure S87	HRMS of compound LB-6	S67
Figure S88	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LB-6	S67
Figure S89	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LB-6	S68
Figure S90	HRMS of compound LB-7	S69
Figure S91	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LB-7	S69
Figure S92	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LB-7	S70
Figure S93	HRMS of compound LB-8	S71
Figure S94	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LB-8	S71
Figure S95	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LB-8	S72
Figure S96	HRMS of compound LB-9	S73
Figure S97	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LB-9	S73
Figure S98	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LB-9	S74
Figure S99	HRMS of compound LB-10	S75
Figure S100	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LB-10	S75
Figure S101	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LB-10	S76
Figure S102	HRMS of compound LB-11	S77
Figure S103	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LB-11	S77
Figure S104	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LB-11	S78
Figure S105	HRMS of compound LB-12	S79

Figure S106	¹ H NMR (600 MHz, DMSO- d_6) spectrum of compound LB-12	S79
Figure S107	¹³ C NMR (151 MHz, DMSO- d_6) Spectrum of compound LB-12	S80
HPLC	HPLC of compound LA and LB series	S81~91
	Kinase Assays, Cell cytotoxicity assay, Annexin V/PI staining assay and ROS level	S92
Pharmacological assay	assay	
	Cellular cycle assay, GreenNuc living cell Caspase 3 activity assay, Liver	S93-S94
	microsomal stability assay, Plasma protein binding assay and Cytochrome P450	
	inhibition assay	
	In vivo PK study	S94
In silico studies	Molecular docking study	S94-S95

Figure S1. ESI-MS of intermediate 2a

Figure S2. ¹H NMR Spectrum of compound 2a

Figure S3. ¹³C NMR Spectrum of compound **2a**

Figure S4. ESI-MS of intermediate 3a

Figure S5. ¹H NMR Spectrum of compound **3a**

Figure S6. ¹³C NMR Spectrum of compound **3a**

Figure S7. ESI-MS of intermediate 6a

Figure S8. ¹H NMR Spectrum of compound 6a

Figure S9. ESI-MS of intermediate 6b

Figure S10. ¹H NMR Spectrum of compound 6b

Figure S11. ESI-MS of intermediate 6c

Figure S12.¹H NMR Spectrum of compound 6c

Figure S13.ESI-MS of intermediate 6d

Figure S14. ¹H NMR Spectrum of compound 6d

Figure S15. ESI-MS of intermediate 6e

Figure S16. ¹H NMR Spectrum of compound 6e

16

Figure S17. ESI-MS of intermediate 6f

Figure S18. ¹H NMR Spectrum of compound 6f

Figure S19. ESI-MS of intermediate 6g

Figure S20. ¹H NMR Spectrum of compound 6g

Figure S21. ESI-MS of intermediate 6h

Figure S22. ¹H NMR Spectrum of compound 6h

Figure S23. ESI-MS of intermediate 6i

Figure S24. ¹H NMR Spectrum of compound 6i

Figure S25. ESI-MS of intermediate 6j

Figure S26. ¹H NMR Spectrum of compound 6j

Figure S27. ESI-MS of intermediate 6k

Figure S28. ¹H NMR Spectrum of compound 6k

Figure S29. ESI-MS of intermediate 61

Figure S30. ¹H NMR Spectrum of compound 61

Figure S31. ESI-MS of intermediate 6m

Figure S32. ¹H NMR Spectrum of compound 6m

16

Figure S35. ¹³C NMR Spectrum of compound LA-1

Figure S36. HRMS of compound LA-2

Figure S37. ¹H NMR Spectrum of compound LA-2

Figure S38. ¹³C NMR Spectrum of compound LA-2

Figure S39. HRMS of compound LA-3

Figure S40. ¹H NMR Spectrum of compound LA-3

Figure S41. ¹³C NMR Spectrum of compound LA-3

Figure S43. ¹H NMR Spectrum of compound LA-4

Figure S44.13C NMR Spectrum of compound LA-4

Figure S46.1H NMR Spectrum of compound LA-5

Figure S47.13C NMR Spectrum of compound LA-5

Figure S48.HRMS of compound LA-6

Figure S49.1H NMR Spectrum of compound LA-6

Figure S50.¹³C NMR Spectrum of compound LA-6

Figure S52. ¹H NMR Spectrum of compound LA-7

Figure S53. ¹³C NMR Spectrum of compound LA-7

Figure S55. ¹H NMR Spectrum of compound LA-8

Figure S56. ¹³C NMR Spectrum of compound LA-8

Figure S57. HRMS of compound LA-9

Figure S58. ¹H NMR Spectrum of compound LA-9

Figure S59. ¹³C NMR Spectrum of compound LA-9

Figure S60. HRMS of compound LA-10

Figure S61. ¹H NMR Spectrum of compound LA-10

Figure S62. ¹³C NMR Spectrum of compound LA-10

5

Figure S64. ¹H NMR Spectrum of compound LA-11

Figure S65. ¹³C NMR Spectrum of compound LA-11

Figure S67. ¹H NMR Spectrum of compound LA-12

Figure S68. ¹³C NMR Spectrum of compound LA-12

Figure S70. ¹H NMR Spectrum of compound LA-13

Figure S71. ¹³C NMR Spectrum of compound LA-13

Figure S72. HRMS of compound LB-1

Figure S73. ¹H NMR Spectrum of compound LB-1

Figure S74. ¹³C NMR Spectrum of compound LB-1

Figure S76. ¹H NMR Spectrum of compound LB-2

Figure S77. ¹³C NMR Spectrum of compound LB-2

Figure S79. ¹H NMR Spectrum of compound LB-3

Figure S80. ¹³C NMR Spectrum of compound LB-3

Figure S82. ¹H NMR Spectrum of compound LB-4

Figure S83. ¹³C NMR Spectrum of compound LB-4

Figure S85. ¹H NMR Spectrum of compound LB-5

Figure S86. ¹³C NMR Spectrum of compound LB-5

Figure S88. ¹H NMR Spectrum of compound LB-6

Figure S89. ¹³C NMR Spectrum of compound LB-6

Figure S90. HRMS of compound LB-7

Figure S91. ¹H NMR Spectrum of compound LB-7

Figure S92. ¹³C NMR Spectrum of compound LB-7

Figure S94. ¹H NMR Spectrum of compound LB-8

Figure S95. ¹³C NMR Spectrum of compound LB-8

Figure S96. HRMS of compound LB-9

Figure S97. ¹H NMR Spectrum of compound LB-9

Figure S98. ¹³C NMR Spectrum of compound LB-9

Figure S99. HRMS of compound LB-10

Figure S100. ¹H NMR Spectrum of compound LB-10

Figure S101. ¹³C NMR Spectrum of compound LB-10

Figure S103. ¹H NMR Spectrum of compound LB-11

Figure S104. ¹³C NMR Spectrum of compound LB-11

Figure S106. ¹H NMR Spectrum of compound LB-12

Figure S107. ¹³C NMR Spectrum of compound LB-12

HPLC of compound LA-2

1599763

23.552

4.02

242080

2 W2489 ChA 254nm

---- Channel: W2489 ChA; Channel Desc.: W2489 ChA 254nm; Processing Method: c1

		()	(*)	%	()			
1	W2489 ChA 254nm	2.047	107321	0.33	10928			
2	W2489 ChA 254nm	2.298	70117	0.22	6453			
3	W2489 ChA 254nm	2.668	354608	1.10	33203			
4	W2489 ChA 254nm	2.819	210723	0.66	36321			
5	W2489 ChA 254nm	3.015	31412391	97.69	3407225			

		()	(*)	%	()
1	W2489 ChA 254nm	1.966	100786	1.48	12777
2	W2489 ChA 254nm	2.658	101210	1.48	22050
3	W2489 ChA 254nm	2.807	29113	0.43	8260
4	W2489 ChA 254nm	3.087	6593679	96.61	954292

HPLC of compound LA-4

Channel: W2489 ChA; Channel Desc.: W2489 ChA 254nm; Processing Method: c1

		()	(*)	%	()		
1	W2489 ChA 254nm	2.367	57085	0.18	5404		
2	W2489 ChA 254nm	2.550	71187	0.23	7557		
3	W2489 ChA 254nm	2.665	118098	0.37	13155		
4	W2489 ChA 254nm	2.814	126599	0.40	16036		
5	W2489 ChA 254nm	3.067	31241707	98.82	3342487		

HPLC of compound LA-5

--- Channel: W2489 ChA; Channel Desc.: W2489 ChA 254nm; Processing Method: c17

•						
		()	(*)	%	()	
1	W2489 ChA 254nm	0.779	23280	0.04	3219	
2	W2489 ChA 254nm	1.719	27302	0.05	2803	
3	W2489 ChA 254nm	8.641	922427	1.76	95404	
4	W2489 ChA 254nm	9.166	50019753	95.41	3385088	
5	W2489 ChA 254nm	10.179	563992	1.08	59493	
6	W2489 ChA 254nm	10.702	868078	1.66	80297	

HPLE of compound LA-PI

HPLC of compound LA-13

		()	(*)	%	()
1	W2489 ChA 254nm	1.	950		768	32	0.27		1071
2	W2489 ChA 254nm	2.	816		580	54	2.01		5517
3	W2489 ChA 254nm	3.	128	28	2693	30	97.73	37	4550

HPLC of compound LB-2

---- Channel: W2489 ChA; Channel Desc.: W2489 ChA 254nm; Processing Method: c1

		()	(*)	%	()		
1	W2489 ChA 254nm	2.256	29552	0.01	5039		
2	W2489 ChA 254nm	20.783	218122222	98.69	3316567		
3	W2489 ChA 254nm	23.544	2354464	1.07	262597		
4	W2489 ChA 254nm	24.931	191716	0.09	13662		
5	W2489 ChA 254nm	25.871	248625	0.11	11150		
6	W2489 ChA 254nm	26.967	80315	0.04	3160		

		()	(*)	%	()
1	W/2489 ChA 254pm	1 980	8650	0.07	1107
-	W2409 CHA 254mm	0.050	0030	0.07	7075
2	W2489 ChA 254nm	2.350	99759	0.75	/9/5
3	W2489 ChA 254nm	2.655	95720	0.72	11784
4	W2489 ChA 254nm	2.807	127843	0.96	16314
5	W2489 ChA 254nm	3.132	12948352	97.50	1617524

HPLC of compound LB-4

		()	(*)	%	()
1	W2489 ChA 254nm	1.933	20488	0.33	2547
2	W2489 ChA 254nm	2.249	164994	2.69	9315
3	W2489 ChA 254nm	2.940	5955968	96.98	768711

HPLC of compound LB-5

HPLC of compound LB-6

----- Channel: W2489 ChA; Channel Desc.: W2489 ChA 254nm; Processing Method: c1

	•							
		()	(*)	%	()			
1	W2489 ChA 254nm	2.978	597785	0.70	23849			
2	W2489 ChA 254nm	21.397	82545498	96.07	2893850			
3	W2489 ChA 254nm	23.540	2177330	2.53	265248			
4	W2489 ChA 254nm	24.034	193202	0.22	11604			
5	W2489 ChA 254nm	24.420	119720	0.14	7636			
6	W2489 ChA 254nm	24.922	284704	0.33	15917			

HPLC of compound LB-8

	•						
		()	(*)	%	()		
1	W2489 ChA 254nm	2.376	457925	0.27	16211		
2	W2489 ChA 254nm	22.222	167817751	97.97	3299366		
3	W2489 ChA 254nm	23.717	1020242	0.60	40801		
4	W2489 ChA 254nm	24.912	154757	0.09	12284		
5	W2489 ChA 254nm	25.967	223766	0.13	20890		
6	W2489 ChA 254nm	26.485	276829	0.16	9154		
7	W2489 ChA 254nm	27.218	1182095	0.69	31962		
8	W2489 ChA 254nm	28.367	156130	0.09	3391		
9	W2489 ChA 254nm	29.567	10600	0.01	1061		

HPLC of compound LB-10

	•								
		()	(*)	%	()				
1	W2489 ChA 254nm	2.862	717283	0.47	20740				
2	W2489 ChA 254nm	22.559	152454168	99.04	3261190				
3	W2489 ChA 254nm	24.930	261524	0.17	15340				
4	W2489 ChA 254nm	25.503	60852	0.04	3637				
5	W2489 ChA 254nm	25.872	266997	0.17	13322				
6	W2489 ChA 254nm	26.494	58278	0.04	2149				
7	W2489 ChA 254nm	27.313	110202	0.07	4064				
8	W2489 ChA 254nm	27.417	6498	0.00	2104				

HPLC of compound LB-12

Pharmacological assay

Kinase Assays

The active CDK9/CyclinT1 kinase were purchased from Thermofisher and the kinase inhibition was detected by ADP-Glo Kinase Assay (Promega, Madison, Wisconsin, USA) according to the manufacturer's instructions. CDK9/CyclinT1, the assay was against the PDKtide substrate (KTFCGTPEYLAPEVRREPRILSEEEQEMFRDFDYIADWC) with a final concentration of 0.1 mg/mL. The final ATP concentrations of CDK9/CyclinT1 reactions was 10 μ M. Maximum detection concentrations of tested compounds were 10 μ M, 10 times gradient dilution. The kinase reaction of CDK9 lasted for 60 min in room temperature and finally detected by a microplate reader (PerkinElmer, Waltham, Ma, USA). The positive control AZD5438 (MedChemExpress), was diluted to 50mM in DMSO and stored at -20 °C before use.

Cell Cultures

As for cells used in this work, all the cell lines were purchased from the National Collection of Authenticated Cell Cultures, which were identified by STR. The serial numbers and conditions are as follows:

HCT116 (SCSP-5076, 37°C, 5 % CO₂, RPMI 1640 + 10 % FBS + 1 % P/S); HT-29 (SCSP-5032, 37°C, 5 % CO₂, Mccoy's 5A + 10 % FBS + 1 % P/S);

RKO (TCHu1116, 37°C, 5 % CO₂, MEM + 10 % FBS + 1 % P/S).

Cell cytotoxicity assay

Cytotoxicity of test compounds against different cell lines were evaluated using an CCK8 assay *in vitro*. Cells were seeded into 96-well plates at a density of 5×10^3 Cells per well and stabilized at 37° C with 5% CO₂ for 24 h. Compounds were added to each well at various concentrations and then the cells were incubated for 48 h. The CCK8 solution (10 µL 0.5 mg/mL) was added to each well, and the cells were incubated for another 4 h. Then the absorbance of samples was measured at 450 nm. The GI₅₀ values were calculated according to Logit method after getting the inhibitory rate.

Cell colony formation assay

HCT116 cells were seeded into 6-well plates with 2×10^3 cells/well at 37°C for 24 h and then treated with compounds at various concentrations for 14 d. Then, cells were stained with crystal violet solution and clones' numbers were counted directly with naked eyes.

Annexin V/PI staining assay

Cells apoptosis was assessed using Annexin V/PI staining assay (C1052), which purchased from Beyotime Biotech Inc. HCT116 cells were seeded into 6-well plates for 24 h and then treated with compounds at various concentrations for 48 h. Then, cells were collected, washed with 500 μ L annexin-binding buffer and stained with 5 μ L annexin V-FITC and 5 μ L PI for 15 min at 25°C. After that, the samples were analyzed by flow cytometry (BD Accuri C6 Plus, CA, USA).

ROS level assay

HCT116 cells were inoculated into 6-well plates with 3×10^5 cells/well, and then cultured for 24 h with 1.0 mL cell fluid per well. The cells were divided at various concentrations and treated with LB-1 for 48 h. Then, cells were collected, washed with 1.0 mL PBS each time, and the residual serum was washed. Dilute DCFH-DA with serum-free 1640 medium at a ratio of 1: 1000 to a final concentration of 10 μ M for later use. Avoid light and add 1.0 mL DCFH-DA diluent to each well. Keep away from light and incubate in a 37 °C cell incubator for 20 min.

Serum-free 1640 culture medium was washed with 1 mL each time for three times to completely remove DCFH-DA that did not enter the cells. Add 1.0 mL of 0.25% trypsin without EDTA to each well to digest the cells in each well, stop the digestion, collect the cells in each well in an EP tube filled with corresponding culture solution, centrifuge at 2000 rpm for 5 min, discard the supernatant, and resuspend the cells with 0.5 mL PBS. After that, the samples were analyzed by flow cytometry (BD Accuri C6 Plus, CA, USA).

GreenNuc living cell Caspase 3 activity assay

HCT116 cells were seeded at a density of 3×10^5 cells per well and treated with various concentrations of compounds for 48 h. Subsequently, the cells were incubated with GreenNucTM Caspase 3 substrate and finally analyzed by flow cytometry (BD Accuri C6 Plus, CA, USA).

Liver microsomal stability assay

The empty 'Incubation' plates T60 and NCF60 were pre-warmed for 10 min. The liver microsome (Human, Corning, Lot No.38295)) was diluted to 0.59 mg/mL as working solutions in 100 mM potassium phosphate buffer. The working solutions (445 μ L) were transferred into pre-warmed 'Incubation' plates T60 and NCF60. Then, the two plates were shaken at 37°C for 10 min. After liver microsomes (54 μ L) were transferred to another black plate, the compound working solution (5 μ L) with a concentration of 100 μ M was added and mixed three times thoroughly. To the black plate, NADPH solution (6 µL) (NADPH powder which purchased from Chem-Impex International) and quenching solution (180 µL) which contained 200 ng/mL tolbutamide and 200 ng/mL labetalol in acetonitrile were added sequentially. The buffer (50 μ L) was added to the NCF60 plate. The mixture was mixed three times thoroughly, and then the plate was incubated at 37 °C for 60 min. 44 µL of NADPH cofactor was added to the T60 plate, and then the plate was incubated at 37 °C for 60 min as well. At 5, 15, 30, 45, and 60 min, 180 µL quenching solution was added to 'Quenching' plates, mixed once, and serially transferred 60 µL sample from T60 plate per time point to 'Quenching' plates. All sampling plates were shaken for 10 min, then centrifuged at 4000 rpm for 20 min, and supernatant (80 μ L) was removed into pure water (240 μ L) and mixed for 10 min by plate shaker. Each bioanalysis plate was sealed and shaken for 10 min prior to LC-MS/MS analysis.

Plasma protein binding assay

The pooled frozen human plasma was thawed in a water bath at 37 °C prior to the experiment. LB-1 to be tested was diluted into plasma preheated to 37° C, and the final concentration was 1 μ M and the final concentration of warfarin in plasma was 2 μ M. Assemble the pretreated dialysis membrane into a dialysis plate, and add 120 μ L of the compound to be tested prepared by plasma to the administration surface of the osmotic membrane in each dialysis hole (warfarin prepared by 120 μ L of plasma to the control group), and add 120 μ L of 0.002% Tween -PB to the receiving surface (120 μ L of 0.002% Tween -PB to the control group), and take 20 μ L of the final concentration samples of the compound to be tested and the control compound to 96-hole sample plates. The remaining samples were incubated for 6 h at 37°C with constant temperature oscillation. After 6 h incubation, 20 μ L of dialysis receiving surface, administration surface and stability sample were taken to obtain sample B, sample A and 6 h stability sample. Add corresponding blank plasma or 0.002% Tween -PB into sample B, sample A, sample T0 and 6

h stable sample respectively, so that the volume ratio of plasma to buffer in each sample hole is 1:1. Add 300 μ L precipitant containing internal standard into the sample hole, mix well and centrifuge. Add 150 μ L of ultrapure water into the corresponding sample wells of a 96-well sample plate, take 150 μ L of supernatant into the sample wells, mix well, and then conduct LC-MS(LC-MS-005) sample analysis.

Cytochrome P450 inhibition assay

Cytochrome P450 inhibition was evaluated in human liver microsomes (0.253 mg/mL) using five probe substrates (CYP1A2, CYP2D6, Quinidine; and CYP3A4, Ketoconazole.) in the presence of compounds (10 μ M). After preincubation for 10 min at 37 °C, an NADPH-regenerating system was added. After the mixed system was incubated for 15 min at 37 °C, the reaction was stopped by adding 400 μ L of cold stop solution (200 ng/mL tolbutamide and 200 ng/mL labetalol in acetonitrile). Then, the mixture was centrifuged, and the supernatant was analyzed by LC-MS/MS.

The human liver microsome was purchased from BIOIVT.

In vivo PK Study

The SPF grade SD rats (Six in total, male, three for *p.o.* and three for *i.v.*) were purchased from Changchun Institute of Biological Products Co., Ltd. The animals were housed at a temperature of 20 ± 2 °C with a 12 h light-dark cycle and provided with a standard laboratory chow diet and *ad libitum* access to food and water besides fasted SD rats. The fasted SD rats removed food 10-14 hours before administration but drank freely and resumed feeding 4 hours after administration. All animals were sacrificed by cervical dislocation after isoflurane inhalation anesthesia. All animal experiments involved in this work had been approved by Experimental Animal Ethics Committee of Shenyang Pharmaceutical University. The specific files are presented in the email attachment. We have adhered to the ARRIVE guidelines in this work.

SD rats were received 2 mg/kg via intravenously injection (*i.v.*). The time points for blood sample collection were 0.08 (only for *iv*), 0.25, 0.5, 1, 2, 4, 8, and 24 h post dose (n = 3). For each point, 300 μ L of collected blood was transferred into a new EP tube containing 10 μ L of heparin as an anticoagulant and centrifuged at 4000 rpm for 10 min. Plasma (50 μ L) was separated and transferred to another EP tube, and 200 μ L of methanol containing predetermined IS was added to the plasma to precipitate plasma proteins. After being vortexed for 1 min, the mixture was centrifuged at 12,000 g for 10 min to finally obtain the supernatant for LC-MS/MS analysis.

SD rats were received 10 mg/kg via oral administration(*p.o.*). The time points for blood sample collection were 0.25 (only for *p.o*), 0.5 h, 1 h, 2 h, 4 h, 6 h, 8 h, 24 h post dose (n = 3). For each point, 300 μ L of collected blood was transferred into a new EP tube containing 10 μ L of heparin as an anticoagulant and centrifuged at 4000 rpm for 10 min. Plasma (50 μ L) was separated and transferred to another EP tube, and 200 μ L of methanol containing predetermined IS was added to the plasma to precipitate plasma proteins. After being vortexed for 1 min, the mixture was centrifuged at 12,000g for 10 min to finally obtain the supernatant for LC-MS/MS analysis.

The measures to reduce animal pain and injury were using ketamine or opioid therapy.

Molecular docking study

The CDK9 (PDB code: 4BCF) crystal structure was downloaded from protein data bank (<u>https://www.rcsb.org/</u>) and processed with the Protein Preparation Wizard in the Schrödinger

suite. The protein structures were adjusted and modified, followed by adding hydrogen atoms, deleting solvent water molecules, and defining right bonds orders using Prime. The protonation and tautomeric states of Asp, Lys, and His were assigned at pH 7.4 state. Afterward, all hydrogen atoms of CDK9 complexes were optimized with OPLS_2005 force field, which minimized and converged heavy atoms to an RMSD of 0.3. The selected inhibitors were prepared by using LigPrep from the Schrödinger suite with the OPLS_2005 force field. The structures of inhibitors were also adjusted and modified, followed by adding all hydrogen atoms, checking the bond order and atom types. Receptor grids were generated before docking with the active site determined by literature¹. The prepared protein–ligand complex was imported into Glide 9.7, which was defined as the binding site. The size of the docking grid box was 20 Å \times 20 Å \times 20 Å. Based on the OPLS_2005 force field, the grid of CDK9 crystal structure was generated. The standard precision (SP) mode was set for docking studies without constrained binding to gain results.

Reference

1 Hole AJ, Baumli S, Shao H, et al. Comparative structural and functional studies of 4-(thiazol-5-yl)-2-(phenylamino) pyrimidine-5-carbonitrile CDK9 inhibitors suggest the basis for isotype selectivity. *J Med Chem.* 2013, 56, 3,660-70.