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Derivation of explicit equation for product formation in the case of time-dependent covalent 

inhibition: 

If a continuous assay is available, time-dependent (covalent) inhibition can be monitored 

conveniently, by incubating the enzyme in the presence of the inhibitor and the substrate of the 

continuous assay. The equilibria of the inhibition mechanism are illustrated in the following 

scheme:

E  +  S E•S E  +  P

E•I E-I Ki *=

Ki =
[E][I]

[E•I]

I
k3k4

k1

k2

kcat

k5

k6

=
k4

k3
Ki

1 + (k5/k6)

The rate of the uninhibited reaction (v0) is described by the Michaelis-Menten equation:

(Eqn. S1)
𝑣0 =

𝑑
𝑑𝑡

[𝑃] =
𝑉𝑚𝑎𝑥 ∙ [S]
[S] + 𝐾M

In the presence of a competitive inhibitor I, the rate of product formation will initially be inhibited 

to vi given by the Michaelis-Menten equation, modified by multiplying KM by the term (1 + [I]/Ki):

(Eqn. S2)

v𝑖 =
𝑑
𝑑𝑡

[𝑃]𝑖 =
𝑉𝑚𝑎𝑥 ∙ [S]

[S] + 𝐾M(1 +
[𝐼]
𝐾𝑖

)
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where (Eqn. S3)
𝐾𝑖 =

𝑘4

𝑘3
=

[𝐸][𝐼]
[𝐸 ∙ 𝐼]

This inhibited rate vi can be normalised against the uninhibited rate v0 (equation (Eqn. S1)) as 

follows:

v𝑖

v0
=

𝑉𝑚𝑎𝑥 ∙ [S]

[S] + 𝐾M(1 +
[𝐼]
𝐾𝑖

)
𝑉𝑚𝑎𝑥 ∙ [S]
[S] + 𝐾M

=
[S] + 𝐾M

[S] + 𝐾M(1 +
[𝐼]
𝐾𝑖

)
=

[S] + 𝐾M

[S] + 𝐾M +
𝐾M

𝐾𝑖
[𝐼]

=
𝐾𝑖([𝑆] + 𝐾𝑀)

𝐾𝑖([𝑆] + 𝐾𝑀) + 𝐾M[𝐼]
=

𝐾𝑖([𝑆]
𝐾𝑀

+ 1)
𝐾𝑖([𝑆]

𝐾𝑀
+ 1) + [𝐼]

=
𝐾𝑎𝑝𝑝

𝑖

𝐾𝑎𝑝𝑝
𝑖 + [𝐼]

where (Eqn. S4)
𝐾𝑎𝑝𝑝

𝑖 = 𝐾𝑖([𝑆]
𝐾𝑀

+ 1)

v𝑖

v0
=

𝐾𝑎𝑝𝑝
𝑖

𝐾𝑎𝑝𝑝
𝑖 + [𝐼]

=
1

1 +
[𝐼]

𝐾𝑎𝑝𝑝
𝑖

(Eqn. S5)

v𝑖 =
v0

1 +
[𝐼]

𝐾𝑎𝑝𝑝
𝑖

After the final equilibrium is established, the more strongly inhibited rate vs can be given by the 

Michaelis-Menten equation, modified by multiplying KM by the term (1 + [I]/Ki
*):
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(Eqn. S6)

v𝑠 =
𝑑
𝑑𝑡

[𝑃]𝑠 =
𝑉𝑚𝑎𝑥 ∙ [S]

[S] + 𝐾M(1 +
[𝐼]

𝐾 ∗
𝑖

)
By analogy with Eqn. S4, 

(Eqn. S7)
𝐾 ∗ 𝑎𝑝𝑝

𝑖 = 𝐾 ∗
𝑖 ([𝑆]

𝐾𝑀
+ 1)

By analogy with Eqn. S5,

(Eqn. S8)

v𝑠 =
v0

1 +
[𝐼]

𝐾 ∗ 𝑎𝑝𝑝
𝑖

In this context, Ki
* can be thought of as an apparent dissociation constant between all inhibitor-

bound species (E∙I and E-I) and the free enzyme and inhibitor:1

(Eqn. S9)
𝐾 ∗

𝑖 =
[𝐸][𝐼]

[𝐸 ∙ 𝐼] + [𝐸 ‒ 𝐼]

From the kinetic scheme above, we see from the final equilibrium that

(Eqn. S10)
[𝐸 ‒ 𝐼] =

[𝐸 ∙ 𝐼] 𝑘5

𝑘6

Substituting equation (Eqn. S10) into equation (Eqn. S9), we can write

𝐾 ∗
𝑖 =

[𝐸][𝐼]

[𝐸 ∙ 𝐼] +
[𝐸 ∙ 𝐼] 𝑘5

𝑘6

=
[𝐸][𝐼]

[𝐸 ∙ 𝐼](1 +
𝑘5

𝑘6
)

Recalling equation (Eqn. S3), this can be simplified further:
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(Eqn. S11)

𝐾 ∗
𝑖 =

[𝐸][𝐼]
[𝐸 ∙ 𝐼]

∙
1

(1 +
𝑘5

𝑘6
)

= 𝐾𝑖( 1

1 +
𝑘5

𝑘6

)

The time-dependent change in the rate of product formation, due to the slow establishment of the 

final binding equilibrium, is described by a rate constant that represents the sum of the forward 

and reverse steps for that rate-limiting equilibrium. For the reverse step, the rate constant is given 

by k6.  In the case of the forward step, the fraction of the rate constant k5 that is observed will show 

hyperbolic dependence on inhibitor concentration, reflecting the fraction of enzyme that is in the 

form of E∙I, from the initial rapid binding equilibrium (see Eqn. S3).  Taken together, this leads to 

the following observed rate constant for the establishment of the final binding equilibrium:

(Eqn. S12)
k𝑜𝑏𝑠 = 𝑘6 + ( 𝑘5[𝐼]

[𝐼] + 𝐾𝑎𝑝𝑝
𝑖

)
Considering all these equations, the integrated rate law for product formation by a time-dependent 

inhibitor following a two-step binding mechanism (as shown on the kinetic scheme above) is given 

as: 

(Eqn. S13)
[𝑃]𝐼(𝑡) = 𝑣𝑠𝑡 +

(𝑣𝑖 ‒ 𝑣𝑠)
𝑘𝑜𝑏𝑠

(1 ‒ 𝑒
‒ 𝑘𝑜𝑏𝑠𝑡)
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Derivation of an implicit equation for the time dependence of incubation IC50 values, for 

time-dependent (reversible covalent) inhibition, allowing for fitting of k5, k6 and Ki
app:

When a continuous assay is not available, a discontinuous end-point assay is usually applied.  

According to this approach, typically the concentration of product formed after a defined 

incubation period is measured, as a function of inhibitor concentration. These data are used to 

measure time-dependent IC50 values.  Formally, an IC50 value is determined as the concentration 

of inhibitor that gives 50% inhibition, relative to the reaction performed under the same conditions 

but in the absence of inhibitor.  Functionally, 50% inhibition is defined as the end-point product 

concentration half-way between the upper and lower plateaus of the sigmoidal dose-response 

curve.  If the lower plateau is zero (as is often the case, although not always), the product 

concentration corresponding to 50% inhibition is equal to half the concentration that would be 

observed in the absence of inhibitor.  The rate of the uninhibited enzymatic reaction is given by 

the Michaelis-Menten equation (see Eqn. S1).  Assuming substrate concentration does not vary 

significantly over the time course of the experiment, and that enzyme is stable over the same time 

period, the maximum concentration of product formed from the uninhibited reaction at any time t 

is given by:

(Eqn. S14)[𝑃]𝑚𝑎𝑥(𝑡) = 𝑣0 ∙ 𝑡

From this we can define the product concentration at the IC50 inflection point as half-way between 

the maximum concentration and the lower plateau, which is assumed to be zero: 

(Eqn. S15)
[𝑃]𝐼𝐶50(𝑡) =

1
2

[𝑃]𝑚𝑎𝑥(𝑡) =
1
2

∙ 𝑣0 ∙ 𝑡
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When the inhibitor concentration is equal to IC50, equation (Eqn. S13) can be set equal to equation 

(Eqn. S15):  

(Eqn. S16)
[𝑃]𝐼𝐶50(𝑡) = 𝑣𝑠𝑡 +

(𝑣𝑖 ‒ 𝑣𝑠)
𝑘𝑜𝑏𝑠

(1 ‒ 𝑒
‒ 𝑘𝑜𝑏𝑠𝑡) =

1
2

∙ 𝑣0 ∙ 𝑡

Recalling  Eqn. S5 and Eqn. S8, Eqn. S16 can be expanded, setting [I] = IC50(t), to give:

v0

1 +
𝐼𝐶50(𝑡)

𝐾 ∗ 𝑎𝑝𝑝
𝑖

∙ 𝑡 +

( v0

1 +
𝐼𝐶50(𝑡)

𝐾𝑎𝑝𝑝
𝑖

‒
v0

1 +
𝐼𝐶50(𝑡)

𝐾 ∗ 𝑎𝑝𝑝
𝑖

)
𝑘𝑜𝑏𝑠

∙ (1 ‒ 𝑒
‒ 𝑘𝑜𝑏𝑠𝑡) =

1
2

∙ 𝑣0 ∙ 𝑡

2

1 +
𝐼𝐶50(𝑡)

𝐾 ∗ 𝑎𝑝𝑝
𝑖

∙ 𝑡 +

( 2

1 +
𝐼𝐶50(𝑡)

𝐾𝑎𝑝𝑝
𝑖

‒
2

1 +
𝐼𝐶50(𝑡)

𝐾 ∗ 𝑎𝑝𝑝
𝑖

)
𝑘𝑜𝑏𝑠

∙ (1 ‒ 𝑒
‒ 𝑘𝑜𝑏𝑠𝑡) = 𝑡

2

1 +
𝐼𝐶50(𝑡)

𝐾 ∗ 𝑎𝑝𝑝
𝑖

∙ 𝑡 + ( 2

1 +
𝐼𝐶50(𝑡)

𝐾𝑎𝑝𝑝
𝑖

‒
2

1 +
𝐼𝐶50(𝑡)

𝐾 ∗ 𝑎𝑝𝑝
𝑖

) ∙
(1 ‒ 𝑒

‒ 𝑘𝑜𝑏𝑠𝑡)
𝑘𝑜𝑏𝑠

= 𝑡

2 ∙ 𝑡 + (2(1 +
𝐼𝐶50(𝑡)

𝐾 ∗ 𝑎𝑝𝑝
𝑖

)
1 +

𝐼𝐶50(𝑡)

𝐾𝑎𝑝𝑝
𝑖

‒ 2) ∙
(1 ‒ 𝑒

‒ 𝑘𝑜𝑏𝑠𝑡)
𝑘𝑜𝑏𝑠

= 𝑡(1 +
𝐼𝐶50(𝑡)

𝐾 ∗ 𝑎𝑝𝑝
𝑖

)

S8



2 + (2(1 +
𝐼𝐶50(𝑡)

𝐾 ∗ 𝑎𝑝𝑝
𝑖

)
1 +

𝐼𝐶50(𝑡)

𝐾𝑎𝑝𝑝
𝑖

‒ 2) ∙
(1 ‒ 𝑒

‒ 𝑘𝑜𝑏𝑠𝑡)
𝑘𝑜𝑏𝑠 ∙ 𝑡

= (1 +
𝐼𝐶50(𝑡)

𝐾 ∗ 𝑎𝑝𝑝
𝑖

)

1 + (2(1 +
𝐼𝐶50(𝑡)

𝐾 ∗ 𝑎𝑝𝑝
𝑖

)
1 +

𝐼𝐶50(𝑡)

𝐾𝑎𝑝𝑝
𝑖

‒ 2) ∙
(1 ‒ 𝑒

‒ 𝑘𝑜𝑏𝑠𝑡)
𝑘𝑜𝑏𝑠 ∙ 𝑡

=
𝐼𝐶50(𝑡)

𝐾 ∗ 𝑎𝑝𝑝
𝑖

𝐾 ∗ 𝑎𝑝𝑝
𝑖 + 𝐾 ∗ 𝑎𝑝𝑝

𝑖 (2(1 +
𝐼𝐶50(𝑡)

𝐾 ∗ 𝑎𝑝𝑝
𝑖

)
1 +

𝐼𝐶50(𝑡)

𝐾𝑎𝑝𝑝
𝑖

‒ 2) ∙
(1 ‒ 𝑒

‒ 𝑘𝑜𝑏𝑠𝑡)
𝑘𝑜𝑏𝑠 ∙ 𝑡

= 𝐼𝐶50(𝑡)

𝐾 ∗ 𝑎𝑝𝑝
𝑖 + (2𝐾 ∗ 𝑎𝑝𝑝

𝑖 (1 +
𝐼𝐶50(𝑡)

𝐾 ∗ 𝑎𝑝𝑝
𝑖

)
1 +

𝐼𝐶50(𝑡)

𝐾𝑎𝑝𝑝
𝑖

‒ 2𝐾 ∗ 𝑎𝑝𝑝
𝑖 ) ∙

(1 ‒ 𝑒
‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡
= 𝐼𝐶50(𝑡)

𝐾 ∗ 𝑎𝑝𝑝
𝑖 + (2(𝐾 ∗ 𝑎𝑝𝑝

𝑖 + 𝐼𝐶50(𝑡))

1 +
𝐼𝐶50(𝑡)

𝐾𝑎𝑝𝑝
𝑖

‒ 2𝐾 ∗ 𝑎𝑝𝑝
𝑖 ) ∙

(1 ‒ 𝑒
‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡
= 𝐼𝐶50(𝑡)

𝐾 ∗ 𝑎𝑝𝑝
𝑖 + (2𝐾𝑎𝑝𝑝

𝑖 (𝐾 ∗ 𝑎𝑝𝑝
𝑖 + 𝐼𝐶50(𝑡))

𝐾𝑎𝑝𝑝
𝑖 + 𝐼𝐶50(𝑡)

‒ 2𝐾 ∗ 𝑎𝑝𝑝
𝑖 ) ∙

(1 ‒ 𝑒
‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡
= 𝐼𝐶50(𝑡)

(Eqn. S17)
𝐾 ∗ 𝑎𝑝𝑝

𝑖 + ((2𝐾𝑎𝑝𝑝
𝑖 𝐾 ∗ 𝑎𝑝𝑝

𝑖 + 2𝐾𝑎𝑝𝑝
𝑖 𝐼𝐶50(𝑡))

𝐾𝑎𝑝𝑝
𝑖 + 𝐼𝐶50(𝑡)

‒ 2𝐾 ∗ 𝑎𝑝𝑝
𝑖 ) ∙

(1 ‒ 𝑒
‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡
= 𝐼𝐶50(𝑡)

Now recalling Eqn. S11, Ki
*app can be written in terms of Ki

app, reducing the number of parameters 

to be fitted:
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𝐾𝑎𝑝𝑝
𝑖 ( 𝑘6

𝑘6 + 𝑘5
) + ((( 2𝑘6

𝑘6 + 𝑘5
)(𝐾𝑎𝑝𝑝

𝑖 )2 + 2𝐾𝑎𝑝𝑝
𝑖 𝐼𝐶50(𝑡))

𝐾𝑎𝑝𝑝
𝑖 + 𝐼𝐶50(𝑡)

‒ 2𝐾𝑎𝑝𝑝
𝑖 ( 𝑘6

𝑘6 + 𝑘5
)) ∙

(1 ‒ 𝑒
‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡
= 𝐼𝐶50(𝑡)

(Eqn. S18)

where kobs is defined as per Eqn. S12, but in this case [I] = IC50(t), so

(Eqn. S19)
k𝑜𝑏𝑠 = 𝑘6 + ( 𝑘5𝐼𝐶50(𝑡)

𝐼𝐶50(𝑡) + 𝐾𝑎𝑝𝑝
𝑖

)
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Plain text version:

Note that Eqn. S18 is an implicit equation, since IC50(t) appears on both sides of the equation, but 

it can be solved by least squares regression and can be used to fit experimental values of IC50(t).  

The following plain text version of Eqn. S18 can be entered as a user-defined implicit equation 

into any fitting software (e.g. GraphPad Prism), to allow regression fitting of IC50 values (Y) versus 

the time of their measurement (X) to provide the kinetic parameters Ki
app, k5 and k6:

Y = Kiapp*(k6/(k5 + k6)) + ((((2*k6/(k5 + k6))*(Kiapp^2)+(2*Kiapp*Y))/(Kiapp + Y)) – 

(2*Kiapp*(k6/(k5 + k6))))*(1 - EXP(-(k6 + (k5*Y/(Y + Kiapp)))*X))/((k6 + (k5*Y/(Y + 

Kiapp)))*X) 

where Kiapp = Ki*(1 + [S]/Km)

and Ki
*app can be subsequently calculated as Kiapp*(k6/(k6 + k5)).
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Limits of implicit equation

Recall the implicit equation Eqn. S17:

(Eqn. S17)
𝐾 ∗ 𝑎𝑝𝑝

𝑖 + ((2𝐾𝑎𝑝𝑝
𝑖 𝐾 ∗ 𝑎𝑝𝑝

𝑖 + 2𝐾𝑎𝑝𝑝
𝑖 𝐼𝐶50(𝑡))

𝐾𝑎𝑝𝑝
𝑖 + 𝐼𝐶50(𝑡)

‒ 2𝐾 ∗ 𝑎𝑝𝑝
𝑖 ) ∙

(1 ‒ 𝑒
‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡
= 𝐼𝐶50(𝑡)

Zero time limit:

As t0, only the term  is affected, but  is indeterminate.  So applying 

(1 ‒ 𝑒
‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡
lim
𝑡⟶0

(1 ‒ 𝑒
‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡

L’Hôpital’s rule, we replace the numerator of this term with its derivative and the denominator 

with its derivative:

For the numerator, .
𝑑
𝑑𝑡(1 ‒ 𝑒

‒ 𝑘𝑜𝑏𝑠𝑡) = 𝑘𝑜𝑏𝑠 ∙ 𝑒
‒ 𝑘𝑜𝑏𝑠𝑡

For the denominator, 
𝑑
𝑑𝑡

(𝑘𝑜𝑏𝑠𝑡) = 𝑘𝑜𝑏𝑠

This gives a new fraction whose limit can be calculated:

lim
𝑡⟶0 (𝑘𝑜𝑏𝑠 ∙ 𝑒

‒ 𝑘𝑜𝑏𝑠𝑡

𝑘𝑜𝑏𝑠 ) = lim
𝑡⟶0

(𝑒
‒ 𝑘𝑜𝑏𝑠𝑡) = 1

Substituting this value for the limiting term into Eqn. S17 gives a new equation (Eqn. S20):

(Eqn. S20)
𝐾 ∗ 𝑎𝑝𝑝

𝑖 + ((2𝐾𝑎𝑝𝑝
𝑖 𝐾 ∗ 𝑎𝑝𝑝

𝑖 + 2𝐾𝑎𝑝𝑝
𝑖 𝐼𝐶50(0))

𝐾𝑎𝑝𝑝
𝑖 + 𝐼𝐶50(0)

‒ 2𝐾 ∗ 𝑎𝑝𝑝
𝑖 ) = 𝐼𝐶50(0)

(2𝐾𝑎𝑝𝑝
𝑖 𝐾 ∗ 𝑎𝑝𝑝

𝑖 + 2𝐾𝑎𝑝𝑝
𝑖 𝐼𝐶50(0))

𝐾𝑎𝑝𝑝
𝑖 + 𝐼𝐶50(0)

‒ 𝐾 ∗ 𝑎𝑝𝑝
𝑖 = 𝐼𝐶50(0)

(2𝐾𝑎𝑝𝑝
𝑖 𝐾 ∗ 𝑎𝑝𝑝

𝑖 + 2𝐾𝑎𝑝𝑝
𝑖 𝐼𝐶50(0))

𝐾𝑎𝑝𝑝
𝑖 + 𝐼𝐶50(0)

= 𝐼𝐶50(0) + 𝐾 ∗ 𝑎𝑝𝑝
𝑖
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(2𝐾𝑎𝑝𝑝
𝑖 𝐾 ∗ 𝑎𝑝𝑝

𝑖 + 2𝐾𝑎𝑝𝑝
𝑖 𝐼𝐶50(0)) = (𝐼𝐶50(0) + 𝐾 ∗ 𝑎𝑝𝑝

𝑖 ) ∙ (𝐾𝑎𝑝𝑝
𝑖 + 𝐼𝐶50(0))

2𝐾𝑎𝑝𝑝
𝑖 𝐾 ∗ 𝑎𝑝𝑝

𝑖 + 2𝐾𝑎𝑝𝑝
𝑖 𝐼𝐶50(0) = 𝐾𝑎𝑝𝑝

𝑖 𝐼𝐶50(0) + 𝐼𝐶50(0)
2 + 𝐾𝑎𝑝𝑝

𝑖 𝐾 ∗ 𝑎𝑝𝑝
𝑖 + 𝐾 ∗ 𝑎𝑝𝑝

𝑖 𝐼𝐶50(0)

0 =‒ 𝐾𝑎𝑝𝑝
𝑖 𝐼𝐶50(0) + 𝐼𝐶50(0)

2 ‒ 𝐾𝑎𝑝𝑝
𝑖 𝐾 ∗ 𝑎𝑝𝑝

𝑖 + 𝐾 ∗ 𝑎𝑝𝑝
𝑖 𝐼𝐶50(0)

𝐼𝐶50(0)
2 + (𝐾 ∗ 𝑎𝑝𝑝

𝑖 ‒ 𝐾𝑎𝑝𝑝
𝑖 ) ∙ 𝐼𝐶50(0) ‒ 𝐾𝑎𝑝𝑝

𝑖 𝐾 ∗ 𝑎𝑝𝑝
𝑖 = 0

(Eqn. S21)(𝐼𝐶50(0) + 𝐾 ∗ 𝑎𝑝𝑝
𝑖 ) ∙ (𝐼𝐶50(0) ‒ 𝐾𝑎𝑝𝑝

𝑖 ) = 0

The two roots for Eqn. S21 are  and , but only the latter makes 𝐼𝐶50(0) =‒ 𝐾 ∗ 𝑎𝑝𝑝
𝑖 𝐼𝐶50(0) =+ 𝐾𝑎𝑝𝑝

𝑖

physical sense.  So, the limit at time zero is:

(Eqn. S22)𝐼𝐶50(0) = 𝐾𝑎𝑝𝑝
𝑖

Infinite time limit:

At infinitely long times, as t∞, only the term  is affected, and

(1 ‒ 𝑒
‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡

lim
𝑡⟶∞ ((1 ‒ 𝑒

‒ 𝑘𝑜𝑏𝑠𝑡)
𝑘𝑜𝑏𝑠 ∙ 𝑡 ) = 0

Substituting this value for the limiting term into Eqn. S17 gives a new equation :

(Eqn. S23)
𝐾 ∗ 𝑎𝑝𝑝

𝑖 + ((2𝐾𝑎𝑝𝑝
𝑖 𝐾 ∗ 𝑎𝑝𝑝

𝑖 + 2𝐾𝑎𝑝𝑝
𝑖 𝐼𝐶50(∞))

𝐾𝑎𝑝𝑝
𝑖 + 𝐼𝐶50(∞)

‒ 2𝐾 ∗ 𝑎𝑝𝑝
𝑖 ) ∙ 0 = 𝐼𝐶50(∞)

𝐾 ∗ 𝑎𝑝𝑝
𝑖 = 𝐼𝐶50(∞)

So, the limit at infinite time is:

(Eqn. S24)𝐼𝐶50(∞) = 𝐾 ∗ 𝑎𝑝𝑝
𝑖
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Comparison with the “Krippendorff equation”

The equation relating the IC50 values of irreversible inhibitors to the incubation times at which 

they are measured was first published by Krippendorff et al.2  We recently published a derivation 

of this equation (Eqn. S25), according to the approach shown above for equation Eqn. S18.3  

(Eqn. S25)
𝐼𝐶50(𝑡) = 𝐾𝑎𝑝𝑝

𝐼 ((2 ‒ 2𝑒
‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡
‒ 1)

where (Eqn. S26)
k𝑜𝑏𝑠 =

𝑘𝑖𝑛𝑎𝑐𝑡 ∙ 𝐼𝐶50(𝑡)

𝐼𝐶50(𝑡) + 𝐾𝑎𝑝𝑝
𝐼

Irreversible covalent inhibition can be thought of as the ultimate physical limit for covalent 

inhibition, where residence time is infinite, since the rate constant for breaking the E-I covalent 

bond (k6) is zero.  This suggestEqn. S18 may simplify to Eqn. S25, on setting k6 equal to zero.  

Let us first recall Eqn. S18:

𝐾𝑎𝑝𝑝
𝑖 ( 𝑘6

𝑘6 + 𝑘5
) + ((( 2𝑘6

𝑘6 + 𝑘5
)(𝐾𝑎𝑝𝑝

𝑖 )2 + 2𝐾𝑎𝑝𝑝
𝑖 𝐼𝐶50(𝑡))

𝐾𝑎𝑝𝑝
𝑖 + 𝐼𝐶50(𝑡)

‒ 2𝐾𝑎𝑝𝑝
𝑖 ( 𝑘6

𝑘6 + 𝑘5
)) ∙

(1 ‒ 𝑒
‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡
= 𝐼𝐶50(𝑡)

And then replace k6 with zero to give:

(Eqn. S26)
𝐾𝑎𝑝𝑝

𝑖 (0) + (((0)(𝐾𝑎𝑝𝑝
𝑖 )2 + 2𝐾𝑎𝑝𝑝

𝑖 𝐼𝐶50(𝑡))
𝐾𝑎𝑝𝑝

𝑖 + 𝐼𝐶50(𝑡)

‒ 2𝐾𝑎𝑝𝑝
𝑖 (0)) ∙

(1 ‒ 𝑒
‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡
= 𝐼𝐶50(𝑡)

((2𝐾𝑎𝑝𝑝
𝑖 𝐼𝐶50(𝑡))

𝐾𝑎𝑝𝑝
𝑖 + 𝐼𝐶50(𝑡)

) ∙
(1 ‒ 𝑒

‒ 𝑘𝑜𝑏𝑠𝑡)
𝑘𝑜𝑏𝑠 ∙ 𝑡

= 𝐼𝐶50(𝑡)

( 2𝐾𝑎𝑝𝑝
𝑖

𝐾𝑎𝑝𝑝
𝑖 + 𝐼𝐶50(𝑡)

) ∙
(1 ‒ 𝑒

‒ 𝑘𝑜𝑏𝑠𝑡)
𝑘𝑜𝑏𝑠 ∙ 𝑡

= 1
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𝐾𝑎𝑝𝑝
𝑖 ∙

(2 ‒ 2𝑒
‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡
= 𝐾𝑎𝑝𝑝

𝑖 + 𝐼𝐶50(𝑡)

𝐾𝑎𝑝𝑝
𝑖 ∙

(2 ‒ 2𝑒
‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡
‒ 𝐾𝑎𝑝𝑝

𝑖 = 𝐼𝐶50(𝑡)

(Eqn. S27)
𝐾𝑎𝑝𝑝

𝑖 ((2 ‒ 2𝑒
‒ 𝑘𝑜𝑏𝑠𝑡)

𝑘𝑜𝑏𝑠 ∙ 𝑡
‒ 1) = 𝐼𝐶50(𝑡)

Eqn. S27 is identical to Eqn. S25.

Concerning kobs, we can perform a similar simplification of Eqn. S19 to compare it to Eqn. S26.  

For covalent reversible inhibition, we have:

(Eqn. S19)
k𝑜𝑏𝑠 = 𝑘6 + ( 𝑘5𝐼𝐶50(𝑡)

𝐼𝐶50(𝑡) + 𝐾𝑎𝑝𝑝
𝑖

)
Setting k6 to zero, in the case of irreversible inhibition, Eqn. S19 becomes:

(Eqn. S28)
k𝑜𝑏𝑠 = 0 + ( 𝑘5𝐼𝐶50(𝑡)

𝐼𝐶50(𝑡) + 𝐾𝑎𝑝𝑝
𝑖

)
Eqn. S28 is identical to Eqn, S26, where k5 is equivalent to kinact.  

In this sense, the Krippendorff equation (Eqn. S25) can be considered a simplified version of Eqn. 

S18, for the special limiting case where k6 equals zero.
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Table S1:  Differential equations implicated in reversible covalent inhibition and used to develop EPIC-CoRe.

Species Differential equation Note

Pre-incubation phase

E∙I [𝐸 ∙ 𝐼] =
([𝐸]𝑡𝑜𝑡 + [𝐼] + 𝐾𝑖) ‒ ([𝐸]𝑡𝑜𝑡 + [𝐼] + 𝐾𝑖)2 ‒ 4[𝐸]𝑡𝑜𝑡[𝐼]

2

Fraction of unmodified enzyme 

bound by inhibitor; assumes 

rapid equilibrium but accounts 

for tight binding

E-I
𝑑[𝐸 ‒ 𝐼]

𝑑𝑡
= 𝑘5 ⋅ [𝐸 ∙ 𝐼] ‒ 𝑘6[𝐸 ‒ 𝐼]

No competition prior to 

substrate addition

Etot
𝑑[𝐸]𝑡𝑜𝑡

𝑑𝑡
=‒

𝑑[𝐸 ‒ 𝐼]
𝑑𝑡

Total [E] is depleted as E-I is 

formed

I
𝑑[𝐼]
𝑑𝑡

=‒
𝑑[𝐸 ‒ 𝐼]

𝑑𝑡
Total [I] is depleted as E-I is 

formed
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Incubation phase

E∙I
[𝐸 ∙ 𝐼] =

([𝐸]𝑡𝑜𝑡 + [𝐼] + 𝐾𝑖(1 +
[𝑆]
𝐾𝑀

)) ‒ ([𝐸]𝑡𝑜𝑡 + [𝐼] + 𝐾𝑖(1 +
[𝑆]
𝐾𝑀

))2 ‒ 4[𝐸]𝑡𝑜𝑡[𝐼]

2

Fraction of unmodified enzyme 

bound by inhibitor; assumes 

rapid equilibrium in 

competition with substrate but 

accounts for tight binding

E-I
𝑑[𝐸 ‒ 𝐼]

𝑑𝑡
= 𝑘5[𝐸 ∙ 𝐼] ‒ 𝑘6[𝐸 ‒ 𝐼]

Competition accounted for in 

[E∙I]

Etot
𝑑[𝐸]𝑡𝑜𝑡

𝑑𝑡
=‒

𝑑[𝐸 ‒ 𝐼]
𝑑𝑡

Total [E] depleted as E-I is 

formed

I
𝑑[𝐼]
𝑑𝑡

=‒
𝑑[𝐸 ‒ 𝐼]

𝑑𝑡
Total [I] depleted as E-I is 

formed

P
𝑑[𝑃]

𝑑𝑡
=

𝑘𝑐𝑎𝑡 ⋅ [𝑆]

([𝑆] + 𝐾𝑀(1 +
[𝐼]
𝐾𝑖

))
⋅ [𝐸]𝑡𝑜𝑡

Accounts for competitive 

inhibition by inhibitor, as well 

as depletion of [E]tot due to 

covalent modification

S
𝑑[𝑆]
𝑑𝑡

=‒
𝑑[𝑃]

𝑑𝑡 [S] depleted as P is formed
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Code for numerical simulation of product formation

The iterative calculations of the concentration of free enzyme, covalently modified enzyme, inhibitor, substrate and product, over the 

course of the biphasic pre-incubation experiment, are shown below.  The following code was written in Visual Basic, so that it could be 

implemented as the function ‘PreIncRevEndPoint’ in Microsoft Excel, as a broadly available software platform.  This allows the rapid 

calculation of a predicted end-point concentration to be incorporated into a least-squares regression approach, for the fitting of k5, k6 and 

Ki, from which Ki
* can then be calculated. This code, and/or the differential equations of Table S1, could alternatively be implemented 

using more sophisticated fitting software (e.g. KinTek Explorer),4 but these require commercial licenses and/or competency in computer 

language.

Function PreIncRevEndPoint(PreIncTime, DilFact, IncTime, AddSub, EnzConc, kcat, Km, InhConc, Ki, k5, k6)

Dim i As Integer

Dim j As Integer

dPreTime = PreIncTime / 100    'This sets granularity of each simulation phase to 100 time intervals

dIncTime = IncTime / 100

'Set some values at the beginning of the experiment:

SubConc = 0

ProdConc = 0

EIstarConc = 0

dSPConc = 0

dEIConc = 0
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' ** Note that in this code, the non-covalent inhibitor-bound complex (E.I) is called EI and the covalent 

complex (E-I) is called EIstar **

'Pre-incubation phase

For i = 1 To 100    'Where each iteration i represents a time interval dPreTime

   'First calculate the rapid equilibrium concentration of EI (using quadratic equation to allow for cases 

where EnzConc may be close to value of Ki)

   EIConc = ((EnzConc + InhConc + Ki) - ((EnzConc + InhConc + Ki) ^ 2 - (4 * EnzConc * InhConc)) ^ 0.5) / 2

   'Then calculate instantaneous rate of formation of EIstar

   EIstarRate = (k5 * EIConc) - (k6 * EIstarConc)

      

    'Now calculate incremental changes in concentrations, multiplying rates by time interval (dPreTime)

    dEIstarConc = EIstarRate * dPreTime     'EIstar increases by this amount

    If dEIstarConc > EIConc Then

       dEIstarConc = EIConc      'This protects from EIConc going below zero

    End If

    'Then calculate new concentrations, at the end of this time interval, to account for decrease of free 

enzyme and inhibitor due to covalent modification:

    EnzConc = EnzConc - dEIstarConc  'The change is subtracted as a conc decrease due to formation of the 

covalent E-I complex.

    InhConc = InhConc - dEIstarConc  'The change is subtracted as a conc decrease due to formation of the 

covalent E-I complex.

    EIstarConc = EIstarConc + dEIstarConc  'The change is added as a conc increase due to formation of the 

covalent E-I complex.
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Next i

'Now account for addition of substrate and dilution of all species

SubConc = SubConc + AddSub

EnzConc = EnzConc * DilFact

InhConc = InhConc * DilFact

EIstarConc = EIstarConc * DilFact

'Now Incubation phase

For j = 1 To 100    'Where each iteration j represents a time interval dIncTime

    'First calculate instantaneous rate of product formation, at instantaneous enzyme concentration, 

accounting for competitive inhibition:

    ProdRate = kcat * EnzConc * (SubConc / (SubConc + Km * (1 + InhConc / Ki)))

    'Then calculate the rapid equilibrium concentration of EI, accounting for competition with substrate 

(using quadratic eqn to allow for cases where EnzConc may be close to value of Ki)

    EIConc = ((EnzConc + InhConc + (Ki * (1 + SubConc / Km))) - ((EnzConc + InhConc + (Ki * (1 + SubConc / 

Km))) ^ 2 - (4 * EnzConc * InhConc)) ^ 0.5) / 2

   'Then calculate instantaneous rate of formation of EIstar

   EIstarRate = (k5 * EIConc) - (k6 * EIstarConc)

      

      'Now calculate incremental changes in concentrations, multiplying rates by time interval (dIncTime)

    dSPConc = ProdRate * dIncTime      'Sub and Prod change by the same (absolute) amount

    If dSPConc > SubConc Then

       dSPConc = SubConc    'This protects from SubConc going below zero

    End If

       

    dEIstarConc = EIstarRate * dIncTime    'EIstar increases by this amount
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    If dEIstarConc > EIConc Then

       dEIstarConc = EIConc      'This protects from EIConc going below zero

    End If

    'Then calculate new concentrations, at the end of this time interval:

    SubConc = SubConc - dSPConc      'The change is subtracted as a conc decrease for substrate.

    ProdConc = ProdConc + dSPConc   'The change is added as a conc increase for product.

    EnzConc = EnzConc - dEIstarConc  'The change is subtracted as a conc decrease due to formation of the 

covalent E-I complex.

    InhConc = InhConc - dEIstarConc  'The change is subtracted as a conc decrease due to formation of the 

covalent E-I complex.

    EIstarConc = EIstarConc + dEIstarConc  'The change is added as a conc increase due to formation of the 

covalent E-I complex.

Next j

PreIncRevEndPoint = ProdConc              'Return final product concentration

End Function
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Gly-Pro-pNA Kinetics with DDPIV
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Figure S1. Initial rate data for reaction between DPPIV and Gly-Pro-pNA.
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Figure S2. Standard absorbance vs. concentration curve for product pNA. 
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Figure S3.  Michaelis-Menten plot for determination of KM and Vmax.  Rates were measured 

using 2.5 nM of DPPIV.
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Fitting of incubation time-dependent IC50 datasets with EPIC-CoRe

Figure S4. Global fitting of incubation time-dependent IC50 datasets obtained for saxagliptin, 

using EPIC-CoRe.
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EPIC-CoRe Fitting Results with Fewer and Shorter Time Points

Figure S5. Average fitting results of incubation time-dependent IC50 datasets using only 4 time-

points, up to only 40 minutes.

S26



Figure S6. Average fitting results of pre-incubation time-dependent IC50 datasets using 4 time-

points up to 5 minutes.
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