Supplementary Information (SI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

.....

Photoresponsive prodrug for regulated inhibition of indoleamine 2,3dioxygenase 1 enzyme activity

Niku Moni Das, Biswa Mohan Prusty, Adyasa Sahoo, Priyanka Mazumder, Suravi chauhan, Gunanka Hazarika, Sachin Kumar, Debdas Dhabal,* Debasis Manna,*

Email: dmanna@iitg.ac.in

Scheme S1: Synthetic routes to various indole derivatives from tryptamine and tryptophan.

Fig. S1. Plots of concentration of *N*-formyl kynurenine in the presence of different concentrations of (A) compound **3a** and (B) epacadostat.

Table S1	. Inhibitory	activity of	of the 3a	against	purified	human	TDO (enzyme.
----------	--------------	-------------	------------------	---------	----------	-------	-------	---------

Compounds	% TDO Inhibition			
	25 μΜ	50 µM	100 µM	
3 a	4 ± 0.5	17 ± 0.4	48 ± 1	

Fig. S2. UV-Vis spectra of the (A) TDO, (B) myoglobin, and (C) hemoglobin proteins (200 nM) in the absence and presence of compound **3a** (5 μ M) in 100 mM KPB buffer at pH 6.5 after 60 min of incubation at 37 °C. (D) UV-Vis spectra of compound **3a**.

Fig. S3. Viability of HEK-293 and HeLa cells in the presence of (A) compound **3a**, (B) epacadostat and (C) indoximod.

Table S2. Characteristic peaks from the UV-Vis measurements of the IDO1 enzyme in the absence and presence of compound **3a**.

Sl. No.	Compound	λ_{max} (nm) Fe ³⁺ state binding	λ_{max} (nm) Fe ²⁺ state binding
1	Only IDO1	410, 527, 557, 568	425, 535, 561
2	IDO1 + 3a	414, 537, 562, 571	421, 539, 573

Enzyme concentration: 650 nM, compound 3a concentration 10 μ M

Fig. S4. The mode of interaction of compound **3a** with the protein 4PK5 in the presence of the heme group after (A) molecular docking and (B) MD simulation, respectively. Root means square displacement (RMSD) of protein (protein ID: 4PK5; purple) and the ligand (compound **3a**; green) at different time frames.

Fig. S5. Variation of %IDO1 inhibition in the presence of different concentrations for (A) compound **3a** and (B) compound **4** in the presence of IDO1 enzyme (650 nM).

Fig. S6. Probable mode of interaction of the compound **4** with the active site of IDO1 enzyme (4PK5).

Fig. S7. HPLC traces of (A) compound 3a and (B) compound 4.

Fig. S8. HPLC analysis to investigate the stability of the prodrug **4** at different time intervals in (A) water, (B) DMEM, and (C) FBS.

Rate of photolysis and apparent quantum yield calculation:

The photolysis rate of the prodrug was observed to be 4.69×10^{-9} mol/s by HPLC analysis. Approximately 90% photolysis was observed by irradiating 18W 400nm light for 30 min to compound **4**. The apparent quantum yield was found to be 7.82×10^{-5} . From the HRMS analysis, we can assume that 4,5-dimethoxy-2-nitrosobenzaldehyde is the potential side product apart from **3a** (HRMS calcd. for C₉H₉NO₄ (M+H)⁺: 196.060, obtained: 196.0598).

Photolysis rate =
$$\frac{Moles \ reacted}{Time}$$

= $4.69 \times 10^{-9} \ mol/s$

The apparent quantum yield (Φ) of a photochemical reaction is defined as the number of molecules reacting per photon absorbed. In this experiment, the photolysis of a compound with a molar mass of 639 g/mol was carried out under 400 nm light with an intensity of 18 W for 30 minutes (1800 seconds). A 90% conversion was observed using a sample mass of 6 mg.

$$\Phi = \frac{moles \ of \ compound \ reacted}{moles \ of \ photons} = 7.82 \times 10^{-5}$$

Fig. S9. (A) ¹H NMR and (B) ¹³C NMR spectra of 1-(2-(1H-indol-3-yl)ethyl)-3-(4-fluorophenyl)urea (**1a**) in DMSO-d₆ solvent.

Fig. S10. (A) ¹H NMR and (B) ¹³C NMR spectra of 1-(2-(1H-indol-3-yl)ethyl)-3-(4-fluorophenyl)thiourea (**1b**) in CDCl₃ solvent.

Fig. S11. (A) ¹H NMR and (B) ¹³C NMR spectra of 1-(2-(1H-indol-3-yl)ethyl)-3-(3,5-bis(trifluoromethyl)phenyl)thiourea (**1c**) in DMSO-d₆ solvent.

Fig. S12. (A) ¹H NMR and (B) ¹³C NMR spectra of 1-(2-(1H-indol-3-yl)ethyl)-3-(4-(trifluoromethyl)phenyl)thiourea (**1d**) in CDCl₃ solvent.

Fig. S13. (A) ¹H NMR and (B) ¹³C NMR spectra of 1-(3,5-bis(trifluoromethyl)phenyl)-3-(2-(1-methyl-1*H*-indol-3-yl)ethyl)thiourea (**2a**) in DMSO-d₆ solvent.

Fig. S14. (A) ¹H NMR and (B) ¹³C NMR spectra of 1-(2-(1-methyl-1*H*-indol-3-yl)ethyl)-3-(4-(trifluoromethyl)phenyl)thiourea (**2b**) in CDCl₃ solvent.

Fig. S16. (A) ¹H NMR and (B) ¹³C NMR spectra of 4-fluoro-N-(2-(1-methyl-1H-indol-3-yl)ethyl)benzamide (**2d**) in CDCl₃ solvent.

Fig. S17. (A) ¹H NMR and (B) ¹³C NMR spectra of 4-methyl-N-(2-(1-methyl-1*H*-indol-3-yl)ethyl)benzenesulfonamide (**2e**) in CDCl₃ solvent.

S17

Fig. S18. (A) ¹H NMR and (B) ¹³C NMR and (C) ¹⁹F NMR spectra of 1-(2-(2-(1H-imidazol-1-yl)-1-methyl-1H-indol-3-yl)ethyl)-3-(4-(trifluoromethyl)phenyl)thiourea (**3a**) in DMSO-d₆ solvent.

Fig. S19. (A) ¹H NMR and (B) ¹³C NMR spectra of 1-(2-(1-methyl-2-(1H-tetrazol-1-yl)-1H-indol-3-yl)ethyl)-3-(4-(trifluoromethyl)phenyl)thiourea (**3b**) in DMSO-d₆ solvent.

nitrobenzyl)-1-(1-methyl-3-(2-(3-(4-(trifluoromethyl)phenyl)thioureido)ethyl)-1*H*-indol-2yl)-1*H*-imidazol-3-ium (**4**) in CDCl₃ solvent.