Novel Benzimidazole Hybrids: Design, Synthesis, Mechanistic Antifungal Potential and Molecular Dynamics

Ahmed A. Ibrahim^{a*}, Eman G. Said^b, Asmaa M. AboulMagd^a, Noha H. Amin^b, Hamdy M. Abdel-Rahman^{c,d*}

^a Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef 62513, Egypt.

^b Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.

^c Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.

^d Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut (BUA), Assiut 2014101, Egypt.

**Corresponding authors email:* <u>ahmed.abdelrazik@nub.edu.eg</u> -<u>hamdym@aun.edu.eg</u>

*To whom correspondence should be addressed

Hamdy M. Abdel-Rahman, Professor, Department of Medicinal

Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526,

Egypt. Tel.: (002)-01094374607. E-mail address: hamdym@aun.edu.eg

Ahmed A.Ibrhaim, Department of Pharmaceutical Chemistry, Faculty of

Pharmacy, Nahda University, 62513, Beni-Suef, Egypt. Tel: +201062428023.

E-mail address: ahmed.abdelrazik@nub.edu.eg

Figure No.	Caption	Page
Figure S1	¹ H-NMR Chart of Compound 3a	9
Figure S2	¹³ C-NMR Chart of Compound 3a	9
Figure S3	IR Chart of Compound 3a	10
Figure S4	¹ H-NMR Chart of Compound 3b	10
Figure S5	¹³ C-NMR Chart of Compound 3b	11
Figure S6	IR Chart of Compound 3b	11
Figure S7	¹ H-NMR Chart of Compound 3c	12
Figure S8	¹³ C-NMR Chart of Compound 3c	12
Figure S9	IR Chart of Compound 3c	13
Figure S10	¹ H-NMR Chart of Compound 3d	13
Figure S11	¹ H-NMR Chart D2O of Compound 3d	14
Figure S12	¹³ C-NMR Chart of Compound 3d	14
Figure S13	IR Chart of Compound 3d	15

Figure S14	¹ H-NMR Chart of Compound 5a	15
Figure S15	¹³ C-NMR Chart of Compound 5a	16
Figure S16	IR Chart of Compound 5a	16
Figure S17	¹ H-NMR Chart of Compound 5b	17
Figure S18	¹³ C-NMR Chart of Compound 5b	17
Figure S19	IR Chart of Compound 5b	18
Figure S20	¹ H-NMR Chart of Compound 5c	18
Figure S21	¹ H-NMR D2O Chart of Compound 5c	19
Figure S22	¹³ C-NMR Chart of Compound 5c	19
Figure S23	IR Chart of Compound 5c	20
Figure S24	¹ H-NMR Chart of Compound 8a	20
Figure S25	¹³ C-NMR Chart of Compound 8a	21
Figure S26	IR Chart of Compound 8a	21

Figure S27	¹ H-NMR Chart of Compound 8b	22
Figure S28	¹³ C-NMR Chart of Compound 8b	22
Figure S29	IR Chart of Compound 8b	23
Figure S30	¹ H-NMR Chart of Compound 8c	23
Figure S31	¹³ C-NMR Chart of Compound 8c	24
Figure S32	IR Chart of Compound 8c	24
Figure S33	¹ H-NMR Chart of Compound 8d	25
Figure S34	¹³ C-NMR Chart of Compound 8d	25
Figure S35	IR Chart of Compound 8d	26
Figure S36	¹ H-NMR Chart of Compound 8e	26
Figure S37	¹ H-NMR D2O Chart of Compound 8e	27
Figure S38	¹³ C-NMR Chart of Compound 8e	27
Figure S39	IR Chart of Compound 8e	28
Figure S40	¹ H-NMR Chart of Compound 9a	28

Figure S41	¹³ C-NMR Chart of Compound 9a	29
Figure S42	IR Chart of Compound 9a	29
Figure S43	¹ H-NMR Chart of Compound 9b	30
Figure S44	¹³ C-NMR Chart of Compound 9b	30
Figure S45	IR Chart of Compound 9b	31
Figure S46	¹ H-NMR Chart of Compound 9c	31
Figure S47	¹ H-NMR D2O Chart of Compound 9c	32
Figure S48	¹³ C-NMR Chart of Compound 9c	32
Figure S49	IR Chart of Compound 9c	33
Figure S50	¹ H-NMR Chart of Compound 10a	33
Figure S51	¹ H-NMR D2O Chart of Compound 10a	34
Figure S52	¹³ C-NMR Chart of Compound 10a	34
Figure S53	IR Chart of Compound 10a	35

Figure S54	¹ H-NMR Chart of Compound 10b	35
Figure S55	¹³ C-NMR Chart of Compound 10b	36
Figure S56	IR Chart of Compound 10b	36
Figure S57	¹ H-NMR Chart of Compound 10c	37
Figure S58	¹³ C-NMR Chart of Compound 10c	37
Figure S59	IR Chart of Compound 10c	38
Figure S60	¹ H-NMR Chart of Compound 11	38
Figure S61	¹ H-NMR D2O Chart of Compound 11	39
Figure S62	¹³ C-NMR Chart of Compound 11	39
Figure S63	IR Chart of Compound 11	40
Figure S64	¹ H-NMR Chart of Compound 12	40
Figure S65	¹ H-NMR D2O Chart of Compound 12	41
Figure S66	¹³ C-NMR Chart of Compound 12	41
Figure S67	IR Chart of Compound 12	42

Figure S68	Elemental analysis of synthesized compounds	43
Figure S69	Final results of IC50 of active compounds 11and 12	44
Figure S70	Raw data results of IC50 of active compounds 11and 12	45
Figure S71	MIC results of active compounds	44
Figure S72	Results of biofilm biomass for compound 11	46
Figure S73	Raw data results of biofilm biomass of compounds 11	47
Figure S74	Results of time dependent kill assay of compounds 11	48
Figure S75	Purity of compound 3a	49
Figure S76	Purity of compound 3b	49
Figure S77	Purity of compound 3c	50
Figure S78	Purity of compound 3d	50
Figure S79	Purity of compound 5a	51
Figure S80	Purity of compound 5b	51
Figure S81	Purity of compound 5c	52

Figure S82	Purity of compound 8a	52
Figure S83	Purity of compound 8b	53
Figure S84	Purity of compound 8c	53
Figure S85	Purity of compound 8d	54
Figure S86	Purity of compound 8e	54
Figure S87	Purity of compound 9a	55
Figure S88	Purity of compound 9b	55
Figure S89	Purity of compound 9c	56
Figure S90	Purity of compound 10a	56
Figure S91	Purity of compound 10b	57
Figure S92	Purity of compound 10c	57
Figure S93	Purity of compound 11	58
Figure S94	Purity of compound 12	58

1- Chemistry data

Figure S 1. ¹H-NMR Chart of Compound 3a

Figure S 2. ¹³C-NMR Chart of Compound 3a

Figure S 3. IR Chart of Compound 3a

Figure S 4. ¹H-NMR Chart of Compound 3b

Figure S 5. ¹³C-NMR Chart of Compound 3b

Figure S 6. IR Chart of Compound 3b

Figure S 7. ¹H-NMR Chart of Compound 3c

Figure S 8. ¹³C-NMR Chart of Compound 3c

Figure S 9. IR Chart of Compound 3c

Figure S 10. ¹H-NMR Chart of Compound 3d

Figure S 11. ¹H-NMR D2O Chart of Compound 3d

Figure S 12. ¹³C-NMR Chart of Compound 3d

Figure S 13. IR Chart of Compound 3d

Figure S 14. ¹H-NMR Chart of Compound 5a

Figure S 15. ¹³C-NMR Chart of Compound 5a

Figure S 16. IR Chart of Compound 5a

Figure S 17. ¹H-NMR Chart of Compound 5b

Figure S 18. ¹³C-NMR Chart of Compound 5b

Figure S 19. IR Chart of Compound 5b

Figure S 20. ¹H-NMR Chart of Compound 5c

Figure S 21. ¹H-NMR D2O Chart of Compound 5c

Figure S 22. ¹³C-NMR Chart of Compound 5c

Figure S 23. IR Chart of Compound 5c

Figure S 24. ¹H-NMR Chart of Compound 8a

Figure S 25. ¹³C-NMR Chart of Compound 8a

Figure S 26. IR Chart of Compound 8a

Figure S 27. ¹H-NMR Chart of Compound 8b

Figure S 28. ¹³C-NMR Chart of Compound 8b

Figure S 29. IR Chart of Compound 8b

Figure S 30. ¹H-NMR Chart of Compound 8c

Figure S 31. ¹³C-NMR Chart of Compound 8c

Figure S 32. IR Chart of Compound 8c

Figure S 33. ¹H-NMR Chart of Compound 8d

Figure S 34. ¹³C-NMR Chart of Compound 8d

Figure S 35. IR Chart of Compound 8d

Figure S 36. ¹H-NMR Chart of Compound 8e

Figure S 37. ¹H-NMR D2O Chart of Compound 8e

Figure S 38. ¹³C-NMR Chart of Compound 8e

Figure S 39. IR Chart of Compound 8e

Figure S 40. ¹H-NMR Chart of Compound 9a

Figure S 41. ¹³C-NMR Chart of Compound 9a

Figure S 42. IR Chart of Compound 9a

Figure S 43. ¹H-NMR Chart of Compound 9b

Figure S 44. ¹³C-NMR Chart of Compound 9b

Figure S 45. IR Chart of Compound 9b

Figure S 46. ¹H-NMR Chart of Compound 9c

Figure S 47. ¹H-NMR D2O Chart of Compound 9c

Figure S 48. ¹³C-NMR Chart of Compound 9c

Figure S 49. IR Chart of Compound 9c

Figure S 50. ¹H-NMR Chart of Compound 10a

Figure S 51. ¹H-NMR D2O Chart of Compound 10a

Figure S 52. ¹³C-NMR Chart of Compound 10a

Figure S 53. IR Chart of Compound 10a

Figure S 54. ¹H-NMR Chart of Compound 10b

Figure S 55. ¹³C-NMR Chart of Compound 10b

Figure S 56. IR Chart of Compound 10b

Figure S 57. ¹H-NMR Chart of Compound 10c

Figure S 58. ¹³C-NMR Chart of Compound 10c

Figure S 59. IR Chart of Compound 10c

Figure S 60. ¹H-NMR Chart of Compound 11

Figure S 61. ¹H-NMR D2O Chart of Compound 11

Figure S 62. ¹³C-NMR Chart of Compound 11

Figure S 63 . IR Chart of Compound 11

Figure S 64. ¹H-NMR Chart of Compound 12

Figure S 65. ¹H-NMR D2O Chart of Compound 12

Figure S 66. ¹³C-NMR Chart of Compound 12

Figure S 67. IR Chart of Compound 12

1	Name: Dr. Ahmed	Ashraf Ibrahim	h Ahmed		
A Sample	Authority: Faculty of Data:	Pharmacy, Nand	a University		
7	Twenty samples had	been submitted	for elemental	analysis.	
Analys	is Report:			- 	
î l	Sample Code	С%	H%	N%	
- 190 - 1 200 - 1	4a	63.41	3.95	10.79	
	4b	64.62	4.37	10.45	
2	4c	61.08	3.70	10.43	
	4d	61.79	4.27	10.04	
	6a	68.32	4.21	8.15	
	6b	67.15	4.34	7.79	
e	6с	64.39	3.66	7.78	2
	8a	62.69	4.05	13.40	
e R	8b	60.07	3.60	12.98	
	8c	57.69	3.24	12.41	
	8d	62.07	4.70	15.28	
9	8e	58.67	4.54	11.05	
	9a	54.80	3.51	13.69	
	9b	59.43	3.20	12.36	5
	90	57.42	2.89	11.81	
$\omega_{ }$	10a	51.43	4.02	16.79	
	10b	56.40	3.59	15.14	
	100	54.23	3.47	14.50	
	11	51.17	2.85	15.11	
	12	49.25	3.26	21.70	
	12	17.20			
	INVESTIGATO	R		DIRECTOR	0
			11 Mar Sol		

Figure S 68. elemental analysis of synthesized compounds

2- Biological evaluation data

Lab report

Figure S 69. Final results of IC50 of active compounds 11and 12

```
Detailed Results:
```

CYP51ca												
	1/200		log	With the last	72	7.4	47	0010	05111		daga	W. Astrophysics
code	ICSU	-	conc	~~~~	14	11	-01	64.05	APD1	CARE	stope	0000000
511	5	100		60.0	10		30	6185	0	10034	6105.7	4.051951
41 Y- 15 201.		10	1	0.00	10		30	19034		19034	6105.7	12,40900
		1	0	39.6	10		30	30885	0	36556	6105.7	24.16495
		0.1	-1	2.02	10		20	54351	~	54551	6105.7	35.72465
	,	0.01	-2	2.93	10		30	59267		59267	6105.7	38.62/33
EC.				0	10	U	30	61857	0	61057	6105.7	40
			log									
code	ICS0	AMARRAD	conc	stiph.	T2.	Ti	ΔT	RFU2	RFU1	ARFU	slope	KAGERINE
s12		100	2	86.3	10	0	30	8337	0	8337	6105.7	5.461782
··· 5+12.688		10	1	61.5	10	0	30	23513	0	23513	6105.7	15.40397
		1	0	41.4	10	0	30	35752	0	35752	6105.7	23,42205
		0.1	-1	10.5	10	0	30	54663	0	54663	6105.7	35.81113
		0.01	-2	1.03	10	0	30	60427	0	60427	6105.7	39.58727
EC				0	10	0	30	61057	0	61057	6105.7	40
	1250		log	William Res.	70	7.4	47	0010	05114		daga	W. Astrophysics
Code	16.50	100	conc	02.0	10	0	20	2755	0.01	2766	5105 7	2 450000
F INCOMINED IN	-	100	÷.	28.1	10		20	12262	ő	42267	6105.7	0.76600
• :		10		63.6	10		20	13382	~	13382	6105.7	10 05134
- E - E - E - E - E - E - E - E - E - E		-		20.1	10		20	43697	č	43697	6105.7	10.00124
		0.01	-1	0.26	10		20	42007	ő	42007	6105.7	21.90334
50		0.01	-2	9.30	10		20	51057	~	61057	6105.7	30.23390
EC.				0	10	ш	30	01037	0	01031	0103.7	40
s11		y = 23	202x	+ 42.3	8							
s12		v = 22.1	65x +	40.15	6							

Figure S 70. raw data results of IC50 of active compounds 11and 12

	compou	nd	Antim	icrobial		
5		MIC ug/ml				
	code	mw	c.albicans	c.neoformans		
1	s11		3	1.5		
2	s12		12	6		
***	Fluconazole		0.75	3		

Figure S 71. MIC results of active compounds

Lab Report

				Biofilm inhibition Cryptococcus Neoformans				
ser	com	pound						
	code	M.W	Treatment		Biofilm Biomas	s		
		g/mol	conc uM	XCR	BSA	BMV		
1	s11			3.546	19.578	8.045		
2	Fluconazole			2.469	18.749	7.662		
3	Mix			1.206	1.498	0.597		

Figure S 72. MIC results of biofilm biomass for compound 11

	1	2	3	4	5	6	7	8	9	10
com ug/	ni o	1000	500	250	125	62.5	31.2	15.6	7.8	3.9
A	c	511	s11	s11	s11	s11	\$11	s11	\$11	s11
в	C	Flu	Flu	Flu	Flu	Flu	Flu	Flu	Flu	Flu
c	c	Mix	Mix	Mix	Mix	Mix	Mix	Mix	Mix	Mix
	XXT									
	0	1000	500	250	125	62.5	31.Z	15.6	7.8	3.9
A	0.025	0.043	0.067	1.311	1.386	1.555	1.584	1.661	1,739	1.76
8	0.019	0.055	0.046	0.048	0.049	1.287	1.431	1.543	1.696	1.81
C	0.022	0.038	0.051	0.042	0.037	1.303	1.539	1.584	1.765	1.80
Δ		1 3				6				<u> </u>
	crystal CV	violet								
	0	1000	500	250	125	62.5	31.2	15.6	7.8	3.9
A	0.057	0.061	0.084	1.272	1.565	1,941	2.218	2.376	2.551	2.58
В	0.062	0.059	0.051	0.061	0.067	0.081	2.044	2.303	2.547	2.58
C	0.059	0.048	0.066	0.058	0.064	0.077	1.849	2.297	2.492	2.70
- 4	1000	(())	Southered	1.111.111	10000000		0.0.000	1.000	1.	100000

XTTN = (XTT - ContXTT)/ContXTT CVN = (CV - ContCV)/ContCV	s11 1.68 0.473684	Flu 1.578947368 0.080645161	Mix 0.6818182 0.0847458
XCR = XTTN/CVN BSA = (XTTN/CVN) _ [(CVN + XTTN)/2] BMV = XTTN _ CVN			
	s11	Flu	Mix

•

Figure S 73. Raw data results of biofilm biomass for compound 11

Lab Report

Assay : Time dependant killing Organism : Cryptococcus Neoformans

-

CFU/ml=(No.of colonies*Total dilution factor)/Vol.of culture plated in ml Start = 5600000 CFU/ml

Figure S 74. Time dependent kill assay for compound 11

UPLC results of the synthesized compounds

Compound **3a** purity (99.7%)

Figure S 75. Compound 3a purity

Compound **3b** purity (98.4%)

Figure S 76. Compound 3b purity

Compound **3c** purity (99.2%)

Figure S 77. Compound 3c purity

Compound 3d purity (99.3%)

Figure S 78. Compound 3d purity

Compound **5a** purity (97.1%)

Figure S 79. Compound 5a purity

Figure S 80. Compound 5b purity

Compound **5c** purity (97.8%)

Figure S 81. Compound 5c purity

Compound 8a purity (99.1%)

Figure S 82. Compound 8a purity

Compound **8b** purity (99.6%)

Figure S 83. Compound 8b purity

Compound **8c** purity (99.8%)

Figure S 84. Compound 8c purity

Compound **8d** purity (99.7%)

Figure S 85. Compound 8d purity

Compound **8e** purity (99.5%)

Figure S 86. Compound 8e purity

Compound **9a** purity (99.7%)

Figure S 87. Compound 9a purity

Compound **9b** purity (98.8%)

Figure S 88. Compound 9b purity

Compound **9c** purity (98.9%)

Figure S 89. Compound 9c purity

Compound **10a** purity (99.6%)

Figure S 90. Compound 10a purity

Compound **10b** purity (99.9%)

Figure S 91. Compound 10b purity

Figure S 92. Compound 10c purity

Compound **11** purity (99.7%)

Figure S 93. Compound 11 purity

Compound **12** purity (99.6%)

Figure S 94. Compound 12 purity