Development of small molecule inhibitors of ECM collagen secretion.

Electronic Supplementary Information (ESI)

Ross S. Mancini[a][†], Pierre-Antoine Bissey[b][†], Leonardo Massignan[a], Vaijinath Mane[a], Donald F. Weaver [a,c,d] Kenneth W. Yip[b,e], Fei-Fei Liu[b,f,g,h,i]*, Mark A. Reed[a,c,j]**

[a] Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.

[b] Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.

[c]Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.

[d]Department of Medicine, University of Toronto, Toronto, Ontario, Canada.

[e]Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada

[f]Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.

[g]Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.

[h]Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.

[i]Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.

[j]Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.

† these authors contributed equally

*email: Fei-Fei.Liu@uhn.ca

**email: mark.reed@uhn.ca

Table of Contents

1.0 Chemistry	2
1.1 General methods and procedures	2
1.2 Synthesis and characterization: series 1 compounds	4
1.3 Synthesis and characterization: series 2 compounds	13
1.4 Synthesis and characterization: series 3 compounds	19
1.5 Synthesis and characterization: series 4 compounds	24
2.0 Biology	28
2.1 General methods and procedures	28
2.2 Supplementary <i>in vitro</i> data	30
2.3 CAPE plasma stability and hydrolysis to caffeic acid	35
3.0 References:	35
4.0 NMR spectra (¹ H, ¹³ C, ¹⁹ F) for new compounds	37
4.1 Series 1 compounds.	37
4.2 Series 2 compounds.	66
4.3 Series 3 compounds.	83
4.4 Series 4 compounds	102

1.0 Chemistry

1.1 General methods and procedures.

All solvents and reagents were purchased from commercial sources and used as received. Thin-layer chromatography (TLC) was performed on silica gel 60 F₂₅₄ coated aluminum-backed TLC sheets and visualized using a UV lamp (254 nm) or KMnO₄ staining. Flash column chromatography was carried out using RediSep gold® silica gel columns (400—632 mesh, pore size 60 Å, 20—40 μ m) on a CombiFlash Nextgen 300+ (Teledyne Isco) automated purification system. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on a Bruker 400 MHz spectrometer. ¹H NMR spectra chemical shifts (δ) are reported in parts per million (ppm) referenced to residual protonated solvent peak (chloroform-d δ = 7.26 ppm). Spectral data is reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, app t = apparent triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, m = multiplet, br = broad), coupling constant (J) in Hertz (Hz), and integration. ¹³C NMR spectra chemical shifts (δ) are reported in parts per million (ppm) and were referenced to carbon resonances in the NMR solvent (chloroform-d δ = 77.1 ppm). ¹⁹F NMR spectra chemical

shifts (δ) are reported in parts per million (ppm) and are uncorrected. High resolution mass spectra were obtained on a Waters Xevo G2-XS QToF high resolution mass spectrometer.

General procedure A: alkylation of phenols with benzyl halides. Phenol derivative (1.00 equiv.) was then dissolved in DMF and treated with 60% (*wt*) sodium hydride suspension in mineral oil (1.20 equiv.). The solution was stirred for ten minutes before addition of desired benzyl halide (1.20 equiv.). Once complete, the reaction was diluted with ethyl acetate and washed with a 1 M aqueous solution of hydrochloric acid, water, and brine. The organic phase was dried over anhydrous sodium sulfate, filtered and solvent was removed under reduced pressure. The crude isolate was purified by flash column chromatography on silica gel to afford the desired product.

General procedure B: Knoevenagel-Doebner reaction¹. The benzaldehyde derivative (1.00 equiv.) was dissolved in pyridine, and malonic acid (3.00 equiv.) and piperidine (0.50 equiv.) were added. The solution was heated to 115 °C until the evolution of CO_2 had stopped and then cooled to room temperature. The solvent was removed under reduced pressure and the crude isolate was suspended in a 1.00% (v/v) aqueous solution of hydrochloric acid. The suspension was stored at 4 °C overnight and the precipitate was collected *via* filtration and washed with cyclohexane to yield the desired cinnamic acid derivative, which was used without further purification.

General procedure C: amidation reaction. Method A^2 : The carboxylic acid (1.10 equiv.) was dissolved in dichloromethane and p-toluenesulfonic anhydride (1.2 equiv.) and N,Ndimethylaminopyridine (2.4 equiv.) were added. The mixture was stirred for 10 minutes before addition of the amine (1.00 equiv.). The reaction mixture was stirred at room temperature until complete, then quenched with saturated aqueous sodium bicarbonate. The solution was extracted with ethyl acetate (x3) and the organic layers were combined and washed with saturated aqueous sodium bicarbonate, water, and brine. The organic phase was dried over anhydrous sodium sulfate, filtered and the solvent was removed under reduced pressure. The crude isolate was purified by flash column chromatography on silica gel to afford the desired amide. Method B: The carboxylic acid (1.00 equiv.) and HATU (1.20 equiv.) were dissolved in dichloromethane. N,N-diisopropylethylamine (3.00 equiv.) was added and the solution was stirred for five minutes before addition of the amine (1.20 equiv.). The solution was stirred at room temperature until complete, diluted with dichloromethane and washed with water (x2) and brine. The organic phase was dried over anhydrous sodium sulfate, filtered and solvent was removed under reduced pressure. The crude isolate was purified by flash column chromatography on silica gel to afford the desired amide.

General procedure D: S_NAr reaction of fluoro-substituted benzaldehydes. Amine (1.50 equiv.) was added to a stirred solution of 4-fluoro-3-methoxybenzaldehyde (1.00 equiv.) and potassium carbonate (1.50 equiv.) in DMSO:water (2.5:1 v/v). The solution was heated to 100 °C overnight and then cooled to room temperature. The solution was diluted with water and extracted three times with ethyl acetate. The organic extracts were combined and dried over anhydrous sodium

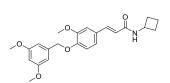
sulfate, filtered and solvent was removed under reduced pressure. The crude isolate was purified by flash column chromatography on silica to afford the desired product.

General procedure E: ester hydrolysis. To a solution of ester (1.00 equiv.) in THF:water 2:1 (v/v) was added lithium hydroxide (5.00 equiv.). The reaction was heated to reflux and stirred until complete, then cooled to room temperature. Solution pH was adjusted to < 4 by addition of hydrochloric acid before extracting with ethyl acetate (x3). The organic extracts were combined and washed with brine, then dried over anhydrous sodium sulfate, filtered and solvent was removed under reduced pressure to afford the desired product, which was used without further purification.

General procedure F: acylation or sulfonylation of anilines. $Method\ A^3$: to a stirred solution of aniline (1.00 equiv.) and sodium carbonate (1.20 equiv.) in dichloromethane was added acyl chloride (1.20 equiv.). The solution was stirred at room temperature until complete, then diluted with water. The solution was extracted with dichloromethane (3x) and the organic extracts were combined and dried over anhydrous sodium sulfate, filtered and solvent was removed under reduced pressure. The crude isolate was purified by flash column chromatography on silica gel to afford the desired product. $Method\ B^4$: to a solution of aniline (0.10 g, 0.36 mmol, 1.00 equiv.) in pyridine (5.00 mL) was added acyl- or sulfonyl chloride (1.20 equiv.). The solution was stirred at room temperature until complete, then diluted with dichloromethane. The solution was washed with a 1.00 M aqueous solution of hydrochloric acid, water, and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and solvent was removed under reduced pressure. The crude isolate was purified by flash column chromatography on silica gel to afford the desired product.

1.2 Synthesis and characterization: series 1 compounds.

A round bottom flask equipped with Teflon-coated stir bar was charged with vanillin (9.89 g, 65.0 mmol, 1.00 equiv.), 3,5-dimethoxybenzyl bromide (18.0 g, 78.0 mmol, 1.20 equiv.), potassium carbonate (2.90 g, 21.0 mmol, 1.20 equiv.) and methanol (50 mL). The solution was stirred at room temperature overnight and then solvent was removed under reduced pressure. The crude material was dissolved in dichloromethane and washed with water (x3). The organic phase was dried over anhydrous sodium sulfate, filtered and solvent was removed under reduced pressure to yield **S1** as a white solid (18.3 g, 93%), which was used without further purification. **S1** was


then used to generate **S2** according to **general procedure B**; **S2** was isolated as a white solid (15.0 g, 72%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.73 (d, J = 15.9 Hz, 1H), 7.12 (d, J = 2.0 Hz, 1H), 7.08 (dd, J = 8.3, 2.0 Hz, 1H), 6.90 (d, J = 8.3 Hz, 1H), 6.61 (d, J = 2.4 Hz, 2H), 6.43 (t, J = 2.3 Hz, 1H), 6.34 (d, J = 15.9 Hz, 1H), 5.18 (s, 2H), 3.96 (s, 3H), 3.82 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.8, 161.1, 150.6, 149.8, 146.8, 139.0, 127.5, 122.9, 115.0, 113.5, 110.4, 105.0, 99.9, 70.9, 56.0, 55.4.

(E)-N-cyclopropyl-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)acrylamide (3a).

Prepared from **S2** (300 mg, 0.88 mmol, 1.10 equiv.) and cyclopropylamine (0.06 mL, 0.80 mmol, 1.00 equiv.) according to **general procedure C** (*method A*). White solid (250 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.57 (d, J = 15.5 Hz, 1H), 7.08–6.95 (m, 2H), 6.87 (d, J = 8.2 Hz, 1H), 6.61 (d, J = 2.3 Hz, 2H), 6.42 (t, J = 2.3 Hz, 1H), 6.22 (d,

J = 15.5 Hz, 1H), 5.72 (s, 1H), 5.15 (s, 2H), 3.93 (s, 3H), 3.81 (s, 6H), 2.85–2.78 (m, 1H), 0.88–0.80 (m, 2H), 0.61–0.49 (m, 2H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 167.4, 161.1, 149.7, 149.7 140.8, 139.2, 128.3, 121.7, 118.4, 113.7, 110.4, 105.0, 99.9, 70.9, 56.0, 55.4, 22.9, 6.7. HRMS (ESI, m/z): calcd for[C₂₂H₂₆NO₅] (M + H)⁺ 384.1805, found 384.1807.

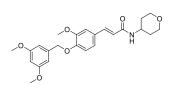
(E)-N-cyclobutyl-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)acrylamide (3b).

Prepared from **S2** (300 mg, 0.88 mmol, 1.10 equiv.) and cyclobutylamine (0.07 mL, 0.80 mmol, 1.00 equiv.) according to **general procedure C** (*method A*). White solid (310 mg, 96% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.51 (d, J = 15.5 Hz, 1H), 7.06–6.94 (m, 2H), 6.83 (d, J = 8.3 Hz,

1H), 6.58 (d, J = 2.3 Hz, 2H), 6.39 (t, J = 2.3 Hz, 1H), 6.22 (d, J = 15.5 Hz, 1H), 5.84–5.77 (m, 1H), 5.11 (s, 2H), 4.60–4.46 (m, 1H), 3.89 (s, 3H), 3.77 (s, 6H), 2.46–2.33 (m, 2H), 1.97–1.82 (m, 2H), 1.78–1.66 (m, 2H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 165.2, 161.2, 149.8, 149.8, 140.9, 139.4, 128.5, 121.7, 118.9, 113.8, 110.5, 105.1, 100.0, 71.0, 56.1, 55.5, 45.0, 31.6, 15.3. HRMS (ESI, m/z): calcd for [C₂₃H₂₈NO₅] (M + H)⁺ 398.1967, found 398.1968.

(E)-N-cyclopentyl-3-(4-((3,5-dimethoxybenzyl) oxy)-3-methoxyphenyl) acrylamide (3c).

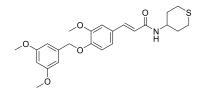
Prepared from **S2** (210 mg, 0.55 mmol, 1.10 equiv.) and cyclopentylamine (0.05 mL, 0.60 mmol, 1.00 equiv.) according to **general procedure C** (*method A*). White solid (180 mg, 88% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.55 (d, J = 15.5 Hz, 1H), 7.05 (d, J = 2.0 Hz, 1H), 7.04–6.98 (m, 1H), 6.86 (d, J = 8.3 Hz, 1H), 6.61 (d, J = 2.3


Hz, 2H), 6.42 (t, J = 2.3 Hz, 1H), 6.25 (d, J = 15.5 Hz, 1H), 5.58 (d, J = 7.4 Hz, 1H), 5.15 (s, 2H), 4.47–4.28 (m, 1H), 3.93 (s, 3H), 3.81 (s, 6H), 2.14–2.02 (m, 2H), 1.77–1.62 (m, 4H), 1.51–1.41 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 165.6, 161.1, 149.7, 149.6, 140.5, 139.3, 128.4, 121.6, 119.0, 113.7, 110.3, 105.0, 100.0, 70.9, 56.0, 55.4, 51.4, 33.3, 23.8. HRMS (ESI, m/z) calcd for [C₂₄H₃₀NO₅] (M + H)⁺ 412.2124, found 412.2120.

(E)-N-cyclohexyl-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)acrylamide (3d).

Prepared from **S2** (70.0 mg, 0.20 mmol, 1.00 equiv.) and cyclohexylamine (20.0 mg, 0.24 mmol, 1.20 equiv.) according to **general procedure C** (*method B*). White solid (60.0 mg, 64% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.52 (d, J = 15.5 Hz, 1H), 7.02 (d, J =

2.0 Hz, 1H), 6.99 (dd, J = 8.4, 2.0 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H), 6.58 (d, J = 2.3 Hz, 2H), 6.39 (t, J = 2.3 Hz, 1H), 6.23 (d, J = 15.5 Hz, 1H), 5.46 (d, J = 8.0 Hz, 1H), 5.11 (s, 2H), 3.90 (s, 3H), 3.90 (1H), 3.79 (s, 6H), 2.00–1.96 (m, 2H), 1.75–1.70 (m, 2H), 1.68–1.62 (m, 1H), 1.46–1.35 (m, 2H), 1.25–1.12 (m, 3H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 165.2, 161.2, 149.8, 149.7, 140.6, 139.4, 128.6, 121.7, 119.4, 113.8, 110.5, 105.1, 100.0, 71.1, 56.1, 55.5, 48.4, 33.4, 25.7, 25.0. HRMS (ESI, m/z) calcd for [C₂₅H₃₂NO₅] (M + H)⁺ 426.2280, found 426.2281.

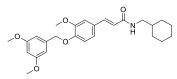

(E)-3-(4-((3,5-dimethoxy9benzyl)oxy)-3-methoxyphenyl)-N-(tetrahydro-2H-pyran-4-yl)acrylamide (3e).

Prepared from **S2** (380 mg, 1.10 mmol, 1.10 equiv.) and 4-aminotetrahydropyran (0.10 mL, 1.00 mmol, 1.00 equiv.) according to **general procedure C** ($method\ A$). White solid (390 mg, 91% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.54 (d, J = 15.5 Hz, 1H), 7.05–6.96 (m, 2H), 6.84 (d, J = 8.3 Hz, 1H), 6.58 (d, J = 2.3 Hz, 2H), 6.39 (t, J = 2.3 Hz,

1H), 6.24 (d, J = 15.5 Hz, 1H), 5.53 (d, J = 8.0 Hz, 1H), 5.11 (s, 2H), 4.19–4.05 (m, 1H), 4.02–3.92 (m, 2H), 3.90 (s, 3H), 3.78 (s, 6H), 3.54–3.47 (m, 2H), 1.98–1.94 (m, 2H), 1.58–1.43 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 165.4, 161.2, 149.9, 149.8, 141.2, 139.3, 128.3, 121.8, 118.8, 113.8, 110.5, 105.1, 100.0, 71.0, 66.9, 56.1, 55.5, 45.9, 33.4. HRMS (ESI, m/z) calcd for [C₂₄H₃₀NO₆] (M + H)⁺ 428.2073, found 428.2074.

(E)-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-N-(tetrahydro-2H-thiopyran-4-yl)acrylamide (3f).

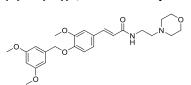
Prepared from **S2** (380 mg, 1.10 mmol, 1.10 equiv.) and 4-aminotetrahydrothiopyran (120 mg, 1.00 mmol, 1.00 equiv.) according to **general procedure C** (*method A*). White solid (430 ,g, 97% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.53 (d, J = 15.5 Hz, 1H), 7.06–6.96 (m, 2H), 6.84 (d, J = 8.3 Hz, 1H), 6.58 (d, J = 2.3 Hz,


2H), 6.39 (t, J = 2.3 Hz, 1H), 6.23 (d, J = 15.5 Hz, 1H), 5.52 (d, J = 8.3 Hz, 1H), 5.12 (s, 2H), 3.99–3.91 (m, 1H), 3.90 (s, 3H), 3.78 (s, 6H), 2.85–2.73 (m, 2H), 2.71–2.61 (m, 2H), 2.33–2.22 (m, 2H), 1.66–1.52 (m, 2H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 165.2, 161.2, 149.9, 149.8, 141.2, 139.3, 128.3, 121.9, 118.8, 113.8, 110.5, 105.1, 100.0, 71.0, 56.1, 55.5, 47.8, 34.4, 28.0. HRMS (ESI, m/z) calcd for [C₂₄H₃₀NO₅S] (M + H)⁺ 444.1845, found 444.1848.

(E)-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-N-(adamantyl)acrylamide (3g).

Prepared from **S2** (340 mg, 1.00 mmol, 1.00 equiv.) and 1-adamantylamine (180 mg, 1.20 mmol, 1.20 equiv.) according to **general procedure C** (*method B*). Brown solid (400 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.45 (d, J = 15.5 Hz, 1H), 7.01 (d, J = 2.0 Hz, 1H), 6.97 (dd, J = 8.4, 2.0 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H),

6.58 (d, J = 2.3 Hz, 2H), 6.39 (t, J = 2.3 Hz, 1H), 6.19 (d, J = 15.5 Hz, 1H), 5.27 (s, 1H), 5.11 (s, 2H), 3.90 (s, 3H), 3.78 (s, 6H), 2.12–2.04 (m, 9H), 1.76–1.65 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 165.1, 161.1, 149.7, 149.5, 140.0, 139.3, 128.5, 121.6, 120.3, 113.7, 110.2, 105.0, 99.9, 70.9, 56.0, 55.4, 52.2, 41.8, 36.4, 29.5. HRMS (ESI, m/z) calcd for [C₂₉H₃₆NO₅] (M + H)⁺ 478.2593, found 478.2598.

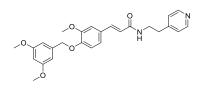

(E)-N-(cyclohexylmethyl)-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)acrylamide (3h).

Prepared from **S2** (380 mg, 1.10 mmol, 1.10 equiv.) and cyclohexanemethylamine (0.13 mL, 1.00 mmol, 1.00 equiv.) according to **general procedure C** (*method A*). White solid (400 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.53 (d, J = 15.5 Hz,

1H), 7.02 (d, J = 2.0 Hz, 1H), 6.99 (dd, J = 8.4, 2.0 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H), 6.58 (d, J = 2.3 Hz, 2H), 6.39 (t, J = 2.3 Hz, 1H), 6.26 (d, J = 15.5 Hz, 1H), 5.69 (t, J = 5.9 Hz, 1H), 5.11 (s, 2H), 3.90 (s, 3H), 3.77 (s, 6H), 3.22 (app t, J = 6.5 Hz, 2H), 1.80–1.70 (m, 4H), 1.69–1.62 (m, 1H), 1.57–1.46 (m, 1H), 1.29–1.13 (m, 3H), 1.01–0.91 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 166.2, 161.2, 149.8, 149.7, 140.7, 139.4, 128.5, 121.7, 119.1, 113.8, 110.5, 105.1, 100.0, 71.7, 56.1, 55.5, 40.1, 38.2, 31.0, 26.5, 26.0. HRMS (ESI, m/z) calcd for [C₂₆H₃₄NO₅] (M + H)⁺ 440.2437, found 440.2440.

(E)-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-N-(2-morpholinoethyl)acrylamide (3i).

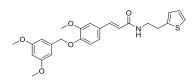
Prepared from **S2** (340 mg, 1.00 mmol, 1.00 equiv.) and 4-(2-aminoethyl)morpholine (0.16 mL, 1.20 mmol, 1.20 equiv.) according to **general procedure C** (*method B*). White solid (440 mg, 97% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.53 (d, J = 15.5 Hz,


1H), 7.06 (d, J = 2.0 Hz, 1H), 7.01 (dd, J = 8.3, 2.0 Hz, 1H), 6.83 (d, J = 8.3 Hz, 1H), 6.58 (d, J = 2.2 Hz, 2H), 6.39 (t, J = 2.2 Hz, 1H), 6.31 (d, J = 15.5 Hz, 1H), 6.29 (1H), 5.11 (s, 2H), 3.91 (s, 3H), 3.77 (s, 6H), 3.75 (app t, J = 4.5 Hz, 4H), 3.52–3.48 (m, 2H), 2.62 (t, J = 5.8 Hz, 2H), 2.56 (app t, J = 4.5 Hz, 4H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 166.7, 161.2, 149.9, 149.9 141.1, 139.3, 128.4, 122.0, 118.6, 113.8, 110.5, 105.1, 100.0, 71.0, 66.8, 57.5, 56.2, 55.5, 53.4, 36.0. HRMS (ESI, m/z) calcd for [C₂₅H₃₃N₂O₆] (M + H)⁺ 457.2339, found 457.2239.

(E)-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-N-(2-thiomorpholinoethyl) acrylamide (3j).

Prepared from **S2** (340 mg, 1.00 mmol, 1.00 equiv.) and 4-(2-aminoethyl)-thiomorpholine (0.19 mL, 1.30 mmol, 1.30 equiv.) according to **general procedure C** (*method A*). White solid (380 mg, 81% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.54 (d, J = 15.5 Hz, 1H), 7.07–6.98 (m, 2H), 6.84 (d, J = 8.3 Hz, 1H), 6.58 (d, J = 2.3 Hz,

2H), 6.39 (t, J = 2.3 Hz, 1H), 6.27 (d, J = 15.5 Hz, 1H), 6.15–6.06 (m, 1H), 5.12 (s, 2H), 3.92 (s, 3H), 3.78 (s, 6H), 3.51–3.42 (m, 2H), 2.79–2.73 (m, 4H), 2.72–2.66 (m, 4H), 2.56 (t, J = 6.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 166.1, 161.2, 149.8, 149.8, 140.9, 139.3, 128.4, 121.9, 118.8, 113.8, 110.5, 105.1, 100.0, 71.1, 57.4, 56.2, 55.5, 55.0, 36.0, 28.0. HRMS (ESI, m/z) calcd for [C₂₅H₃₃N₂O₅S] (M + H)⁺ 473.2110, found 473.2112.

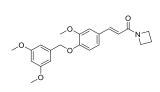

(E)-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-N-(2-(pyridin-4-yl)ethyl)acrylamide (3k).

Prepared from **S2** (340 mg, 1.00 mmol, 1.00 equiv.) and 4-(2-aminoethyl)pyridine (0.14 mL, 1.20 mmol, 1.20 equiv.) according to **general procedure C** (*method B*). White solid (410 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.54–8.47 (m, 2H), 7.64–7.58 (m, 1H), 7.55 (d, J = 15.5 Hz, 1H), 7.33–7.25 (m, 1H), 7.06 (d, J = 2.0

Hz, 1H), 7.00 (dd, J = 8.4, 2.0 Hz, 1H), 6.86 (d, J = 8.3 Hz, 1H), 6.60 (d, J = 2.3 Hz, 2H), 6.42 (t, J = 2.3 Hz, 1H), 6.25 (d, J = 15.5 Hz, 1H), 5.84–5.77 (m, 1H), 5.14 (s, 2H), 3.93 (s, 3H), 3.81 (s, 6H), 3.78–3.63 (m, 2H), 2.93 (t, J = 6.9 Hz, 2H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 166.3, 161.1, 150.0, 149.7, 147.8, 141.1, 139.2, 136.6, 128.2, 123.7, 121.9, 118.4, 113.7, 110.2, 105.0, 99.9, 70.9, 56.0, 55.4, 40.5, 33.0. HRMS (ESI, m/z) calcd for [C₂₆H₂₉N₂O₅] (M + H)⁺ 449.2076, found 449.2081.

(E)-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-N-(2-(thiophen-2-yl)ethyl)acrylamide (3l).

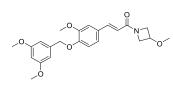
Prepared from **S2** (340 mg, 1.00 mmol, 1.00 equiv.) and 2-thiopheneethylamine (0.14 mL, 1.20 mmol, 1.20 equiv.) according to **general procedure C** (*method B*). White solid (360 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.53 (d, J = 15.5 Hz, 1H), 7.17


(dd, J = 5.1, 1.2 Hz, 1H), 7.07–6.89 (m, 3H), 6.88–6.85 (m, 1H), 6.83 (d, J = 8.3 Hz, 1H), 6.58 (d, J = 2.4 Hz, 2H), 6.39 (t, J = 2.3 Hz, 1H), 6.21 (d, J = 15.5 Hz, 1H), 5.80–5.70 (m, 1H), 5.12 (s, 2H), 3.90 (s, 3H), 3.78 (s, 6H), 3.69–3.64 (m, 2H), 3.10 (t, J = 6.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 166.1, 161.1, 149.7, 149.7, 141.4, 141.0, 139.2, 128.3, 127.1, 125.5, 124.0, 121.8, 118.6, 113.7, 110.3, 105.0, 99.9, 70.9, 56.0, 55.4, 41.0, 30.0. HRMS (ESI, m/z) calcd for [C₂₅H₂₈NO₅S] (M + H)⁺ 454.1688, found 454.1691.

(E)-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-N-propylacrylamide (3m).

Prepared from **S2** (380 mg, 1.10 mmol, 1.10 equiv.) and propylamine (0.08 mL, 1.00 mmol, 1.00 equiv.) according to **general procedure C** (*method A*). White solid (380 mg, 97% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.53 (d, J = 15.5 Hz, 1H), 7.06–6.96 (m, 2H), 6.83 (d, J

= 8.3 Hz, 1H), 6.61–6.55 (m, 2H), 6.39 (t, J = 2.3 Hz, 1H), 6.25 (d, J = 15.5 Hz, 1H), 5.62 (t, J = 5.4 Hz, 1H), 5.11 (s, 2H), 3.90 (s, 3H), 3.78 (s, 6H), 3.41–3.30 (m, 2H), 1.62–1.56 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 166.1, 161.1, 149.7, 149.6, 140.6, 139.3, 128.4, 121.6, 118.9, 113.7, 110.4, 105.0, 99.9, 70.9, 56.0, 55.4, 41.5, 23.0, 11.4. HRMS (ESI, m/z) calcd for [C₂₂H₂₈NO₅] (M + H)⁺ 386.1967, found 386.1966.

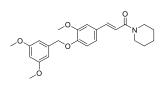

(E)-1-(azetidin-1-yl)-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)prop-2-en-1-one (3n).

Prepared from **\$2** (300 mg, 0.88 mmol, 1.10 equiv.) and azetidine (0.05 mL, 0.80 mmol, 1.00 equiv.) according to **general procedure C** (*method A*). White solid (240 mg, 78% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.59 (d, J = 15.6 Hz, 1H), 7.06–7.00 (m, 2H), 6.87 (d, J = 8.8 Hz, 1H), 6.61 (d, J = 2.3 Hz, 2H), 6.42 (t, J = 2.3 Hz, 1H), 6.33 (d, J = 15.6 Hz, 1H), 5.12 (s,

2H), 4.32 (app t, J = 7.6 Hz, 2H), 4.19–4.08 (m, 2H), 3.92 (s, 3H), 3.78 (s, 6H), 2.35–2.30 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 166.4, 161.2, 149.8, 149.8, 141.3, 139.4, 128.7, 121.8, 113.9, 113.8, 111.0, 105.1, 100.0, 71.1, 56.2, 55.5, 50.2, 48.2, 15.5. HRMS (ESI, m/z) calcd for [C₂₂H₂₆NO₅] (M + H)⁺ 384.1811, found 384.1815.

(E)-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-1-(3-methoxyazetidin-1-yl)prop-2-en-1-one (3o).

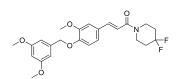
Prepared from **S2** (300 mg, 0.88 mmol, 1.10 equiv.) and 3-methoxyazetidine (0.08 mL, 0.80 mmol, 1.00 equiv.) according to **general procedure C** (*method A*). White solid (160 mg, 48% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.57 (d, J = 15.6 Hz, 1H), 7.07–7.00 (m, 2H), 6.84 (d, J = 8.9 Hz, 1H), 6.58 (t, J = 1.6 Hz, 2H), 6.39 (t, J = 2.3


Hz, 1H), 6.30 (d, J = 15.6 Hz, 1H), 5.12 (s, 2H), 4.46–4.36 (m, 1H), 4.30–4.21 (m, 2H), 4.16–4.09 (m, 1H), 4.02–3.95 (m, 1H), 3.92 (s, 3H), 3.78 (s, 6H), 3.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 166.7, 161.2, 150.0, 149.8, 141.8, 139.3, 128.5, 121.9, 113.9, 113.8, 111.0, 105.1, 100.0, 71.1, 69.1, 56.3, 56.2, 55.5, 55.0. HRMS (ESI, m/z) calcd for [C₂₃H₂₈NO₆] (M + H)⁺ 414.1917, found 414.1920.

(E)-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-1-(2-oxa-6-azaspiro[3.3]heptan-6-yl)prop-2-en-1-one (3p).

Prepared from **S2** (380 mg, 1.10 mmol, 1.10 equiv.) and 2-oxa-6-azaspiro[3.3]heptane (0.09 mL, 1.00 mmol, 1.00 equiv.) according to **general procedure C** (*method A*). White solid (260 mg, 61% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.56 (d, J = 15.6 Hz, 1H), 7.03 (d, J = 7.6 Hz, 2H), 6.88–6.81 (m, 1H), 6.58 (d, J = 2.3 Hz, 2H), 6.39 (t, J = 2.3

Hz, 1H), 6.26 (d, J = 15.6 Hz, 1H), 5.12 (s, 2H), 4.82 (s, 2H), 4.81 (s, 2H), 4.43 (br s, 2H), 4.25 (br s, 2H), 3.92 (s, 3H), 3.78 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 166.4, 161.1, 149.9, 149.7, 142.0, 139.2, 128.2, 121.8, 113.7, 113.2, 110.8, 105.0, 99.8, 80.9, 70.9, 59.8, 57.5, 56.1, 55.4, 37.9. HRMS (ESI, m/z) calcd for [C₂₄H₂₈NO₆] (M + H)⁺ 426.1917, found 426.1913.

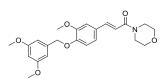

(E)-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-1-(piperidin-1-yl)prop-2-en-1-one (3q).

Prepared from **S2** (300 mg, 0.88 mmol, 1.10 equiv.) and piperidine (0.08 mL, 0.80 mmol, 1.00 equiv.) according to **general procedure C** (*method A*). White solid (300 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.57 (d, J = 15.4 Hz, 1H), 7.06–6.99 (m, 2H), 6.88–6.80 (m, 1H), 6.74 (d, J = 15.4 Hz, 1H), 6.58 (d, J = 2.3 Hz, 2H), 6.39 (t, J = 2.3 Hz, 1H), 5.12 (s, 2H),

3.93 (s, 3H), 3.78 (s, 6H), 3.73–3.45 (m, 4H), 1.73–1.55 (m, 6H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 165.6, 161.2, 149.8, 149.6, 142.2, 139.4, 129.1, 121.5, 115.8, 113.9, 110.7, 105.0, 99.9, 71.0, 56.2, 55.5, 24.8; four piperidine carbon signals not observed due to quadrupolar effects of the nitrogen atom. HRMS (ESI, m/z) calcd for [C₂₄H₃₀NO₅] (M + H)⁺ 412.2124, found 412.2126.

(E)-1-(4,4-difluoropiperidin-1-yl)-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)prop-2-en-1-one (3r).

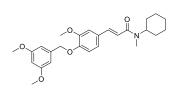
Prepared from **S2** (380 mg, 1.10 mmol, 1.10 equiv.) and 4,4-difluoropiperidine hydrochloride (0.16 g, 1.00 mmol, 1.00 equiv.) according to **general procedure C** (*method A*). White solid (330 mg, 73% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.62 (d, J = 15.3 Hz, 1H),


7.08–7.00 (m, 2H), 6.86 (d, J = 8.9 Hz, 1H), 6.72 (d, J = 15.3 Hz, 1H), 6.58 (d, J = 2.2 Hz, 2H), 6.39 (t, J = 2.3 Hz, 1H), 5.13 (s, 2H), 3.93 (s, 3H), 3.78 (s, 6H), 3.80–3.76 (m, 4H), 2.10–1.95 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 165.9, 161.2, 150.0, 149.9, 143.8, 139.2, 128.6, 121.8, 114.4, 113.9, 110.8, 105.1, 100.0, 77.1, 56.3, 55.5; five piperidine carbon signals not observed due to quadrupolar effects of the nitrogen atom. ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –97.74 (m). HRMS (ESI, m/z) calcd for [C₂₄H₂₈F₂NO₅] (M + H)⁺ 448.1936, found 448.1938.

(E)-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-1-(4-methylpiperazin-1-yl)prop-2-en-1-one (3s).

Prepared from **S2** (300 mg, 0.88 mmol, 1.10 equiv.) and 1-methylpiperazine (0.09 mL, 0.80 mmol, 1.00 equiv.) according to **general procedure C** (*method A*). White solid (290 mg, 84% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.59 (d, J = 15.3 Hz, 1H), 7.07–6.99 (m, 2H), 6.85 (d, J = 8.9 Hz, 1H), 6.71 (d, J = 15.3 Hz, 1H), 6.58 (d, J = 2.3 Hz,

2H), 6.39 (t, J = 2.3 Hz, 1H), 5.12 (s, 2H), 3.92 (s, 3H), 3.78 (s, 6H), 3.76–3.59 (m, 4H), 2.44 (app t, J = 5.1 Hz, 4H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 165.4, 160.9, 149.5, 149.4, 142.5, 139.0, 128.6, 121.5, 114.9, 113.5, 110.4, 104.8, 99.6, 70.7, 55.9, 55.1, 55.1, 54.6, 45.8, 45.5, 41.9. HRMS (ESI, m/z) calcd for [$C_{24}H_{31}N_2O_5$] (M + H)⁺ 427.2233, found 427.2233.

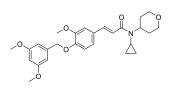

(E)-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-1-morpholinoprop-2-en-1-one (3t).

Prepared from **S2** (300 mg, 0.88 mmol, 1.10 equiv.) and morpholine (0.07 mL, 0.80 mmol, 1.00 equiv.) according to **general procedure C** (*method A*). White solid (300 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.62 (d, J = 15.3 Hz, 1H), 7.07–6.99 (m, 2H), 6.85 (d, J = 8.8 Hz,

1H), 6.68 (d, J = 15.3 Hz, 1H), 6.58 (d, J = 2.3 Hz, 2H), 6.39 (t, J = 2.3 Hz, 1H), 5.12 (s, 2H), 3.92 (s, 3H), 3.78 (s, 6H), 3.75–3.69 (m, 8H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 165.9, 161.2, 149.9, 149.8, 143.3, 139.3, 128.7, 121.8, 114.5, 113.8, 110.7, 105.1, 99.9, 71.0, 67.0, 56.2, 55.5; three morpholine carbon signals not observed due to quadrupolar effects of the nitrogen atom. HRMS (ESI, m/z) calcd for [C₂₃H₂₈NO₆] (M + H)⁺ 414.1917, found 414.1921.

(E)-N-cyclohexyl-3-(4-((3,5-dimethoxybenzyl) oxy)-3-methoxyphenyl)-N-methylacrylamide (3u).

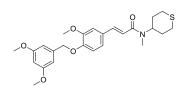
Prepared from **S2** (210 mg, 0.55 mmol, 1.10 equiv.) and *N*-methylcyclohexylamine (0.07 mL, 0.50 mmol, 1.00 equiv.) according to **general procedure C** (*method A*). White solid (180 mg, 83% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.58 (d, J = 15.3 Hz, 1H), 7.04 (d, J = 7.0 Hz, 2H), 6.85 (d, J = 8.4 Hz, 1H), 6.71 (d, J = 15.3 Hz, 1H), 6.59 (d, J = 2.3


Hz, 2H), 6.39 (t, J = 2.3 Hz, 1H), 5.13 (s, 2H), 3.93 (s, 3H), 3.78 (s, 6H), 2.95 (d, J = 26.5 Hz, 3H), 1.92–1.64 (m, 5H), 1.64–1.51 (m, 2H), 1.51–1.28 (m, 3H), 1.24–1.01 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 166.3, 161.2, 149.7, 149.6, 142.2, 139.4, 129.2, 121.5, 116.8, 113.9, 110.9, 105.1, 100.0, 71.1, 56.2, 55.5, 31.3, 30.0, 25.8; two carbon signals not observed due to quadrupolar effects of the nitrogen atom. HRMS (ESI, m/z) calcd for [C₂₆H₃₄NO₅] (M + H)⁺ 440.2437, found 440.2437.

(E)-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-N-methyl-N-(tetrahydro-2H-pyran-4-yl)acrylamide (3v).

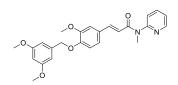
Prepared from **S2** (380 mg, 1.10 mmol, 1.10 equiv.) and *N*-methyloxane-4-amine (120 mg, 1.00 mmol, 1.00 equiv.) according to **general procedure C** (*method A*). White solid (290 mg, 66% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.60 (d, J = 15.3 Hz, 1H), 7.05 (d, J = 7.5 Hz, 2H), 6.85 (d, J = 8.4 Hz, 1H), 6.71 (d, J = 15.3 Hz, 1H), 6.58 (d, J = 2.3

Hz, 2H), 6.39 (t, J = 2.3 Hz, 1H), 5.13 (s, 2H), 4.09–3.99 (m, 2H), 3.93 (s, 3H), 3.78 (s, 6H), 3.62–3.41 (m, 2H), 3.01 (s, 3H), 2.00–1.46 (m, 5H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 166.7, 161.1, 149.8, 149.7, 142.7, 139.3, 128.9, 121.6, 116.2, 113.8, 110.9, 105.2, 99.9, 71.0, 67.4, 56.2, 55.4, 55.4, 49.9, 29.8. HRMS (ESI, m/z) calcd for [C₂₅H₃₂NO₆] (M + H)⁺ 442.2230, found 442.2229.


(E)-N-cyclopropyl-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-N-(tetrahydro-2H-pyran-4-yl)acrylamide (3w).

Prepared from **S2** (380 mg, 1.10 mmol, 1.10 equiv.) and *N*-cyclopropyloxan-4-amine (0.14 mL, 1.00 mmol, 1.00 equiv.) according to **general procedure C** (*method A*). White solid (440 mg, 94% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.54 (d, J = 15.5 Hz, 1H), 7.14–7.02 (m, 3H), 6.89–6.81 (m, 1H), 6.59 (d, J = 2.2 Hz, 2H), 6.39 (t, J = 2.3 Hz,

1H), 5.13 (s, 2H), 4.44–4.38 (m, 1H), 4.07–3.99 (m, 2H), 3.92 (s, 3H), 3.78 (s, 6H), 3.53–3.47 (m, 2H), 2.69–2.59 (m, 1H), 2.17–2.08 (m, 2H), 1.74 (ddd, J = 12.1, 4.1, 1.9 Hz, 2H), 1.01–0.93 (m, 2H), 0.93–0.85 (m, 2H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 168.8, 161.1, 149.7, 149.6, 141.4, 139.3, 129.1, 121.3, 118.2, 113.8, 111.1, 105.0, 99.8, 71.0, 67.9, 56.1, 55.4, 54.8, 31.6, 26.9, 9.4. HRMS (ESI, m/z) calcd for [$C_{27}H_{34}NO_6$] (M + H) $^+$ 468.2386, found 468.2386.


(E)-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-N-methyl-N-(tetrahydro-2H-thiopyran-4-yl)acrylamide (3x).

Prepared from **S2** (380 mg, 1.10 mmol, 1.10 equiv.) and *N*-methylthian-4-amine hydrochloride (170 mg, 1.00 mmol, 1.00 equiv.) according to **general procedure C** (*method A*). White solid (440 mg, 96% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.59 (d, J = 15.3 Hz, 1H), 7.10–7.00 (m, 2H), 6.85 (d, J = 8.6 Hz, 1H), 6.69 (d, J = 15.3 Hz,

1H), 6.58 (d, J = 2.3 Hz, 2H), 6.39 (t, J = 2.3 Hz, 1H), 5.13 (s, 2H), 4.64–4.52 (m, 1H), 3.93 (s, 3H), 3.78 (s, 6H), 3.17–2.58 (m, 7H), 2.12–1.94 (m, 2H), 1.90–1.76 (m, 1H), 1.70–1.61 (m, 1H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 166.4, 161.2, 149.8, 149.8, 142.8, 139.3, 128.9, 121.6, 116.1, 113.9, 110.8, 105.1, 99.9, 71.0, 56.2, 55.5, 55.5, 52.1, 31.6, 28.9. HRMS (ESI, m/z) calcd for [C₂₅H₃₂NO₅S] (M + H)⁺ 458.2001, found 458.2005.

(E)-3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-N-methyl-N-(pyridin-2-yl)acrylamide (3y).

Prepared from **S2** (380 mg, 1.10 mmol, 1.10 equiv.) and 2-methylaminopyridine (0.10 mL, 1.00 mmol, 1.00 equiv.) according to **general procedure C** (*method A*). White solid (420 mg, 97% yield). *H-bonding between one N-CH₃ proton and the pyridine nitrogen is observed, causing a downfield shift for one N-CH₃ proton signal;*

assignment is supported by 2D COSY and HSQC NMR experiments. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.55 (ddd, J = 4.9, 1.8, 1.0 Hz, 1H), 7.67 (td, J = 7.8, 1.8 Hz, 1H), 7.58 (d, J = 15.6 Hz, 1H), 7.30 (dt, J = 7.8, 1.0 Hz, 1H), 7.24–7.18 (m, 1H), 7.05 (d, J = 2.0 Hz, 1H), 7.01 (dd, J = 8.4, 2.0 Hz, 1H), 6.95 (t, J = 5.0 Hz, 1H, one of N-CH₃ H-bonding to pyridine), 6.84 (d, J = 8.3 Hz, 1H), 6.58 (d, J = 2.3 Hz, 2H), 6.44–6.36 (m, 2H), 5.12 (s, 2H), 4.70 (d, J = 4.9 Hz, 2H, two of N-CH₃), 3.91 (s, 3H), 3.78 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 166.1, 161.1, 156.4, 149.7, 149.7, 149.0, 140.9, 139.3, 136.8, 128.4, 122.4, 122.2, 121.8, 118.7, 113.7, 110.3, 105.0, 99.9, 70.9, 56.0, 55.4, 44.6. HRMS (ESI, m/z) calcd for [C₂₅H₂₇N₂O₅] (M + H)⁺ 435.1920, found 345.1922.

1.3 Synthesis and characterization: series 2 compounds.

(E)-3-(4-hydroxy-3-methoxyphenyl)-N,N-dipropylacrylamide (8).

Prepared from ferulic acid (4.85 g, 25.00 mmol, 1.00 equiv.) and dipropylamine (4.11 mL, 30.00 mmol, 1.20 equiv.) according to **general procedure C** (*method B*). White solid (6.10 g, 88% yield). Spectral data are in agreement with previous reports⁵. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.59 (d, J = 15.3 Hz, 1H), 7.05–6.80 (m, 3H), 6.71 (d, J = 15.3 Hz, 1H), 3.89 (s, 3H), 3.40–3.32 (m, 4H), 1.96–1.34 (m, 4H), 1.01–0.89 (m, 6H).

(E)-3-(4-fluoro-3-methoxyphenyl)-N,N-dipropylacrylamide (9a).

4-fluoro-3-methoxycinnamic acid was prepared from 4-bromo-3methoxybenzaldehyde (500 mg, 3.24 mmol, 1.00 equiv.) using **general** procedure B. 9a was prepared from 4-fluoro-3-methoxycinnamic acid (390 mg, 2.00 mmol, 1.00 equiv.) and dipropylamine (0.33 mL, 2.40 mmol, 1.20 equiv.) according to general procedure C (method B). White solid (460 mg, 83% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.65 (d, J = 15.3 Hz, 1H), 7.14–7.05 (m, 3H), 6.76 (dd, J = 15.3, 0.6 Hz, 1H), 3.95 (s, 3H), 3.47-3.33 (m, 4H), 1.80-1.56 (m, 4H), 0.98 (t, J = 7.4 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H). 13 C NMR (100) MHz, CDCl₃): δ (ppm) 166.1, 153.3 (d, J = 249.6 Hz), 148.0, 141.2 (d, J = 1.6 Hz), 132.4 (d, J = 4.0 Hz), 120.5 (d, J = 7.2 Hz), 118.0 (d, J = 2.5 Hz), 116.5 (d, J = 18.9 Hz), 113.2 (d, J = 2.2 Hz), 56.4, 49.9, 48.6, 23.1, 21.1, 11.5, 11.4. ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –132.81 (m). HRMS (ESI, $[C_{16}H_{23}FNO_2]$ calcd m/z) for (M + H)⁺ 280.1713, found 280.1711.

(E)-3-(4-bromo-3-methoxyphenyl)-N,N-dipropylacrylamide (9b).

4-Bromo-3-methoxycinnamic acid was prepared from 4-bromo-3-methoxybenzaldehyde (4.95 g, 23.00 mmol, 1.00 equiv.) according to general procedure B. 9b was prepared from 4-bromo-3-methoxycinnamic acid (1.54 g, 6.00 mmol, 1.00 equiv.) and dipropylamine (0.99 mL, 7.20 mmol, 1.20 equiv.) according to general procedure C ($method\ B$). White solid (1.91 g, 94% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.64 (d, J = 15.3 Hz, 1H), 7.55 (d, J = 8.1 Hz, 1H), 7.05 (dd, J = 8.1, 1.9 Hz, 1H), 6.99 (d, J = 1.9 Hz, 1H), 6.84 (d, J = 15.3 Hz, 1H), 3.95 (s, 3H), 3.49–3.33 (m, 4H), 1.76–1.56 (m, 4H), 1.03–0.91 (m, 6H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 165.8, 156.1, 141.2, 136.3, 133.5, 120.5, 118.8, 112.9, 111.5, 56.3, 49.9, 48.6, 23.1, 21.1, 11.5, 11.4. HRMS (ESI, m/z) calcd for [C₁₆H₂₃BrNO₂] (M + H)+ 340.0912, found 340.0914.

(E)-3-(benzo[d][1,3]dioxol-5-yl)-N,N-dipropylacrylamide (10a).

Prepared from 3,4-(methylenedioxy)cinnamic acid (380 mg, 2.00 mmol, 1.00 equiv.) and dipropylamine (0.33 mL, 2.40 mmol, 1.20 equiv.) according to **general procedure C** (*method B*). White solid (500 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.64 (d, J = 15.3 Hz, 1H), 7.05 (d, J = 1.7 Hz, 1H), 7.02 (dd, J = 7.9, 1.7 Hz, 1H), 6.83 (d, J = 7.9 Hz, 1H), 6.69 (d, J = 15.3 Hz, 1H), 6.01 (d, J = 2.6 Hz, 2H), 3.52–3.27 (m, 4H), 1.81–1.54 (m, 4H), 0.98 (t, J = 7.4 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 166.2, 148.8, 148.2, 141.9, 130.0, 123.7, 115.9, 108.5, 106.4, 101.4, 49.9, 48.6, 23.1, 21.2, 11.5, 11.4. HRMS (ESI, m/z) calcd for [C₁₆H₂₂NO₃] (M + H)⁺ 276.1600, found 276.1601.

(E)-3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-N,N-dipropylacrylamide (10b).

Prepared from 3-(2,3-dihydro-1,4-benzodioxin-6-yl)prop-2-enoic acid (410 mg, 2.00 mmol, 1.00 equiv.) and dipropylamine (0.33 mL, 2.40 mmol, 1.20 equiv.) according to **general procedure C** (*method B*). White solid (520 mg, 90% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.61 (d, J = 15.3 Hz, 1H), 7.08 (d, J = 2.1 Hz, 1H), 7.04 (dd, J = 8.4, 2.1 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 6.70 (d, J = 15.3 Hz, 1H), 4.39–4.23 (m, 4H), 3.53–3.29 (m, 4H), 1.77–1.58 (m, 4H), 0.96 (t, J = 7.3 Hz, 3H), 0.93 (t, J = 7.3 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 166.3, 144.9, 143.6, 141.7, 129.3, 121.8, 117.6, 116.1, 64.5, 64.3, 49.9, 48.6, 23.1, 21.2, 11.5, 11.4. HRMS (ESI, m/z) calcd for [C₁₇H₂₄NO₃] (M + H)⁺ 290.1756, found 290.1757.

(E)-3-(1H-indol-5-yl)-N,N-dipropylacrylamide (11).

(brs, 1H), 7.89 (d, J = 15.2 Hz, 1H), 7.85–7.80 (m, 1H), 7.47–7.37 (m, 2H), 7.26 (dd, J = 3.1, 2.5 Hz, 1H), 6.85 (d, J = 15.2 Hz, 1H), 6.62–6.57 (m, 1H), 3.55–3.33 (m, 4H), 1.79–1.59 (m, 4H), 0.98 (t, J = 7.3 Hz, 3H), 0.95 (t, J = 7.3 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 166.8, 144.0, 136.7, 128.2, 127.6, 125.2, 121.5, 121.5, 114.8, 111.5, 103.2, 50.0, 48.7, 23.1, 21.3, 11.5, 11.4. HRMS (ESI, m/z) calcd for [C₁₇H₂₃N₂O] (M + H)⁺ 271.1805, found 271.1813.

(E)-3-(3-methoxy-4-nitrophenyl)-N,N-dipropylacrylamide (12).

3-hydroxy-4-nitrobenzaldehyde (12.0 g, 72.00 mmol, 1.00 equiv.) and anhydrous potassium carbonate (11.0 g, 79.20 mmol, 1.10 equiv.) were dissolved in anhydrous acetone (100 mL) with stirring. Dimethyl sulfate (7.51 mL, 79.20 mmol, 1.10 equiv.) was added slowly at room temperature and the solution was stirred overnight. The solvent removed under reduced pressure and the crude isolate was purified by flash column chromatography on silica gel to give 3-methoxy-4-nitrobenzaldehyde **S3** (12.8 g, 98% yield). **S4** was prepared from **S3** (12.7 g, 70.00 mmol, 1.00 equiv.) according to **general procedure B** (13.9 g, 89% yield).

12 was prepared from **S4** (10.0 g, 45.0 mmol, 1.00 equiv.) and dipropylamine (7.40 mL, 54.0 mmol, 1.20 equiv.) according to **general procedure C** (*method B*). White solid (12.9 g, 96% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.90 (d, J = 8.4 Hz, 1H), 7.67 (d, J = 15.4 Hz, 1H), 7.21 (dd, J = 8.4, 1.7 Hz, 1H), 7.14 (d, J = 1.7 Hz, 1H), 6.93 (d, J = 15.4 Hz, 1H), 4.02 (s, 3H), 3.49–3.33 (m, 4H), 1.77–1.58 (m, 4H), 0.98 (t, J = 7.4 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 165.2, 153.4, 141.7, 139.8, 139.4, 126.3, 122.0, 118.5, 113.3, 56.6, 50.0, 48.7, 23.1, 21.1, 11.5, 11.3. HRMS (ESI, m/z) calcd for [C₁₆H₂₃N₂O₄] (M + H)⁺ 307.1658, found 307.1658.

Prepared according to literature procedure⁶. SnCl₂·2H₂O (26.0 g, 0.14 mol, 3.00 equiv.) was added to a solution of **12** (14.0 g, 45.7 mmol, 1.00 equiv.) in ethanol (120 mL). The mixture was stirred at reflux for three hours, cooled to room temperature and solvent was removed under reduced pressure. The residue was taken up with a saturated aqueous solution of sodium bicarbonate and a saturated aqueous solution of Rochelle's salt (1:1 v/v). The aqueous phase was extracted with ethyl acetate (x3) and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and solvent was removed under reduced pressure. The crude isolate was purified by flash column chromatography on silica gel to afford **\$5** (11.1 g, 88% yield). ¹H NMR (400 MHz, CHCl₃) δ 7.61 (d, J = 15.2 Hz, 1H), 7.02 (d, J = 7.9 Hz, 1H), 6.91 (s, 1H), 6.67 (d, J = 7.9

Hz, 1H), 6.62 (d, J = 15.2 Hz, 1H), 4.02 (br s, 2H), 3.88 (s, 3H), 3.36 (d, J = 5.6 Hz, 4H), 1.81-1.54 (m, 4H), 1.03-0.86 (m, 6H).

(E)-3-(16zetidinedin-1-yl)-3-methoxyphenyl)-N,N-dipropylacrylamide (13a).

S6 was prepared from 4-fluoro-3-methoxybenzaldehyde (2.66 g, 17.3 mmol, 1.00 equiv.) and azetidine (1.48 mL, 26.0 mmol, 1.50 equiv.) according to **general procedure D**. White solid (2.85 g, 86% yield). **S7** was prepared from **S6** (1.10 g, 5.75 mmol, 1.00 equiv.) according to **general procedure B**.

13a was prepared from **\$7** (350 mg, 1.50 mmol, 1.00 equiv.) and dipropylamine (0.25 mL, 1.80 mmol, 1.20 equiv.) according to **general procedure C** (*method B*). White solid (450 mg, 95%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.61 (d, J = 15.2 Hz, 1H), 7.06 (d, J = 7.8 Hz, 1H), 6.89 (s, 1H), 6.61 (d, J = 15.2 Hz, 1H), 6.37 (d, J = 7.8 Hz, 1H), 3.97 (t, J = 6.6 Hz, 4H), 3.80 (s, 3H), 3.44–3.28 (m, 4H), 2.32–2.25 (m, 2H), 1.68–1.49 (m, 4H), 0.94 (t, J = 7.4 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 166.7, 152.8, 149.0, 142.7, 126.3, 121.8, 113.6, 112.5, 110.5, 55.6, 54.1, 49.9, 48.6, 23.1, 21.2, 17.8, 11.5, 11.4. HRMS (ESI, m/z) calcd for [C₁₉H₂₉N₂O₂] (M + H)⁺ 317.2229, found 317.2231.

(E)-3-(3-methoxy-4-morpholinophenyl)-N,N-dipropylacrylamide (13b).

S8 was prepared from 4-fluoro-3-methoxybenzaldehyde (2.00 g, 13.0 mmol, 1.00 equiv.) and morpholine (1.68 mL, 19.5 mmol, 1.50 equiv.) according to **general procedure D**. White solid (2.60 g, 90% yield).

To a stirred solution of ethyl dimethylphosphonoacetate (0.81 mL, 4.92 mmol, 1.20 equiv.) in tetrahydrofuran (20.0 mL) at 0 °C was added potassium *tert*-butoxide (550 mg, 4.92 mmol, 1.20 equiv.). The mixture was stirred for 30 minutes before addition of **\$8** (910 mg, 4.10 mmol, 1.00 equiv.) and the solution was allowed to warm to room temperature and stirred for an additional four hours. The reaction was quenched by addition of a saturated aqueous solution of ammonium chloride and extracted with ethyl acetate (3x). The organic extracts were combined and dried over anhydrous sodium sulfate, filtered and solvent was removed under reduced pressure. The crude isolate was purified by flash column chromatography on silica gel to yield **\$9** as a white solid (810

mg, 68% yield). **S9** was then dissolved in a 10% solution of sodium hydroxide in ethanol to obtain **S10**, which was used without further purification.

13b was prepared from **S10** (320 mg, 1.20 mmol, 1.00 equiv.) and dipropylamine (0.20 mL, 1.44 mmol, 1.20 equiv.) according to **general procedure C** (*method B*). White solid (400 mg, 97% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.64 (d, J = 15.3 Hz, 1H), 7.13 (dd, J = 8.2, 1.9 Hz, 1H), 6.98 (d, J = 1.9 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 6.71 (d, J = 15.3 Hz, 1H), 3.89 (s, 3H), 3.89–3.87 (m, 4H), 3.41–3.34 (m, 4H), 3.12–3.09 (m, 4H), 1.70–1.59 (m, 4H), 0.95 (t, J = 7.2 Hz, 3H), 0.92 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 166.3, 152.1, 142.5, 142.1, 130.4, 121.0, 117.9, 116.1, 110.8, 67.1, 55.5, 50.9, 49.9, 48.6, 23.1, 21.2, 11.5, 11.4. HRMS (ESI, m/z) calcd for [C₂₀H₃₁N₂O₃] (M + H)⁺ 347.2335, found 347.2334.

(E)-3-(3-methoxy-4-(4-cyclopropylpiperizin-1-yl)phenyl)-N,N-dipropylacrylamide (13c).

S11 was prepared from 4-fluoro-3-methoxybenzaldehyde (3.01 g, 20.0 mmol, 1.00 equiv.) and 1-cyclopropylpiperazine (4.01 mL, 30.0 mmol, 1.50 equiv.) according to **general procedure D**. White solid (4.53 g, 87% yield). **S12** was prepared from **S11** (2.60 g, 10.0 mmol, 1.00 equiv.) according to **general procedure B**.

13c was prepared from **S12** (420 mg, 1.40 mmol, 1.00 equiv.) and dipropylamine (0.23 mL, 1.68 mmol, 1.20 equiv.) according to **general procedure C** (*method B*). White solid (450 mg, 83%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.66 (d, J = 15.3 Hz, 1H), 7.14 (dd, J = 8.2, 1.9 Hz, 1H), 6.99 (d, J = 1.9 Hz, 1H), 6.92 (d, J = 8.2 Hz, 1H), 6.73 (d, J = 15.3 Hz, 1H), 3.93 (s, 3H), 3.46–3.33 (m, 4H), 3.15–3.10 (m, 4H), 2.84 (app t, J = 4.9 Hz, 4H), 1.77–1.59 (m, 5H), 0.98 (t, J = 7.2 Hz, 3H), 0.95 (t, J = 7.2 Hz, 3H), 0.56–0.46 (m, 4H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 166.4, 152.1, 143.0, 142.2, 130.1, 121.0, 118.1, 115.8, 110.8, 55.5, 53.4, 50.4, 49.9, 48.6, 38.5, 23.1, 21.2, 11.5, 11.4, 5.8. HRMS (ESI, m/z) calcd for [C_{23} H₃₆N₃O₂] (M + H)⁺ 386.2808, found 386.2808.

(E)-3-(4-(1H-imidazol-1-yl)-3-methoxyphenyl)-N,N-dipropylacrylamide (13d).

$$\begin{array}{c} \text{O} \\ \text{F} \end{array} \begin{array}{c} \text{Imidazole} \\ \text{K}_2\text{CO}_3 \\ \text{DMSO} \, / \, \text{H}_2\text{O} \\ \text{100 °C} \end{array} \begin{array}{c} \text{CHO} \\ \text{N} \\ \text{S13} \end{array} \begin{array}{c} \text{CHO} \\ \text{Ho} \\ \text{O} \\$$

S13 was prepared from 4-fluoro-3-methoxybenzaldehyde (2.00 g, 13.0 mmol, 1.00 equiv.) and imidazole (1.33 g, 19.5 mmol, 1.50 equiv.) according to **general procedure D**. White solid (2.23 g, 85% yield). **S14** was prepared from **S13** (1.49 g, 7.40 mmol, 1.00 equiv.) according to **general procedure B**.

13d was prepared from **S14** (0.49 g, 2.00 mmol, 1.00 equiv.) and dipropylamine (0.33 mL, 2.40 mmol, 1.20 equiv.) according to **general procedure C** (*method B*). White solid (450 mg, 69%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.91 (t, J = 1.2 Hz, 1H), 7.70 (d, J = 15.4 Hz, 1H), 7.33 (d, J = 8.1 Hz, 1H), 7.28–7.23 (m, 2H), 7.21 (t, J = 1.2 Hz, 1H), 7.16 (d, J = 1.7 Hz, 1H), 6.88 (d, J = 15.4 Hz, 1H), 3.92 (s, 3H), 3.48 – 3.37 (m, 4H), 1.78 – 1.59 (m, 4H), 0.97 (t, J = 7.4 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 165.7, 152.5, 140.9, 137.7, 136.6, 128.5, 127.0, 125.5, 120.2, 120.0, 119.4, 112.0, 56.0, 50.0, 48.6, 23.1, 21.1, 11.5, 11.4. HRMS (ESI, m/z) calcd for [C₁₉H₂₆N₃O₂] (M + H)⁺ 328.2025, found 328.2024.

(E)-3-(4-acetamido-3-methoxyphenyl)-N,N-dipropylacrylamide (14a).

Prepared from **S5** (100 mg, 0.38 mmol, 1.00 equiv.) and acetyl chloride (0.03 mL, 0.46 mmol, 1.20 equiv.) according to **general procedure F** (method A). White solid (110 mg, 94% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.38 (d, J = 8.4 Hz, 1H), 7.80 (br s, 1H), 7.62 (d, J = 15.3 Hz, 1H), 7.21 (dd, J = 8.4, 1.7 Hz, 1H), 6.95 (d, J = 1.7 Hz, 1H), 6.75 (d, J = 15.3 Hz, 1H), 3.85 (s, 3H), 3.37–3.24 (m, 4H), 2.14 (s, 3H), 1.67–1.47 (m, 4H), 0.97 (t, J = 7.4 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 168. 3, 166.3, 147.7, 142.1, 131.2, 129.0, 120.5, 119.7, 117.0, 109.8, 55.9, 50.0, 48.7, 25.1, 23.2, 21.3, 11.6, 11.5. HRMS (ESI, m/z) calcd for [C₁₈H₂₇N₂O₃] (M + H)⁺ 319.2022, found 319.2024.

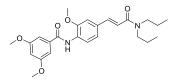
(E)-3-(4-cyclopropanamido-3-methoxyphenyl)-N,N-dipropylacrylamide (14b).

Prepared from **S5** (60.0 mg, 0.21 mmol, 1.00 equiv.) and cyclopropanecarbonyl chloride (0.02 mL, 0.25 mmol, 1.20 equiv.) according to **general procedure F** (method A). White solid (70.0 mg, 90% yield). 1 H NMR (400 MHz, CDCl₃) δ (ppm) 8.37 (d, J = 8.5 Hz, 1H), 8.04 (s, 1H), 7.62 (d, J = 15.4 Hz, 1H), 7.17 (dd, J = 8.5, 1.9 Hz, 1H), 6.95 (d, J = 1.9 Hz, 1H), 6.74 (d, J = 15.4 Hz, 1H), 3.93 (s, 3H), 3.41–3.35 (m, 4H), 1.70–1.54 (m, 5H), 1.11–1.06 (m, 2H), 0.98–0.90 (m, 5H), 0.89–0.82 (m, 2H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 171.7, 166.2, 147.51, 142.0, 130.8, 129.2, 120.5, 119.5, 116.7, 109.7, 55.8, 49.9, 48.6, 23.1, 21.2, 16.1, 11.5, 11.4, 8.1. HRMS (ESI, m/z) calcd for [C₂₀H₂₉N₂O₃] (M + H) $^{+}$ 345.2178, found 345.2179.

(E)-3-(3-methoxy-4-(methylsulfonamido)phenyl)-N,N-dipropylacrylamide (15a).

Prepared from **S5** (100 mg 0.36 mmol, 1.00 equiv.) and methane sulfonyl chloride (0.03 mL, 0.46 mmol, 1.20 equiv.) according to **general procedure F** (method A). White solid (110 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.65 (d, J = 15.3 Hz, 1H), 7.28–7.26 (m, 2H), 7.18 (dd, J = 8.3, 1.9 Hz, 1H), 7.07 (d, J = 1.9 Hz, 1H), 6.82 (d, J = 15.3 Hz, 1H), 3.95 (s, 3H), 3.44 (s, 3H), 3.44–3.34 (m, 4H), 1.69–1.58 (m, 4H), 0.96 (t, J = 7.4 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 165.5, 157.42, 140.7, 139.8, 132.5,

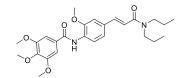
123.3, 120.6, 120.0, 112.1, 56.2, 50.0, 48.6, 43.6, 23.1, 21.1, 11.5, 11.3. HRMS (ESI, m/z) calcd for $[C_{17}H_{27}N_2O_4S]$ (M + H)⁺ 355.1692, found 355.1696.


1.4 Synthesis and characterization: series 3 compounds.

(E)-N-(4-(3-(dipropylamino)-3-oxoprop-1-en-1-yl)-2-methoxyphenyl)benzamide (14c).

Prepared from **\$5** (100 mg, 0.36 mmol, 1.00 equiv.) and benzoyl chloride (0.05 mL, 0.43 mmol, 1.20 equiv.) according to **general procedure F** (*method B*). White solid (130 mg, 93% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.64 (s, 1H), 8.59 (d, J = 8.4 Hz, 1H), 7.97–7.89 (m, 2H), 7.69 (d, J

= 15.3 Hz, 1H), 7.61–7.50 (m, 3H), 7.32–7.25 (m, 1H), 7.03 (d, J = 1.8 Hz, 1H), 6.81 (d, J = 15.3 Hz, 1H), 4.00 (s, 3H), 3.51–3.37 (m, 4H), 1.77–1.59 (m, 4H), 0.97 (t, J = 7.4 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 166.2, 165.2, 148.1, 141.9, 135.1, 131.9, 131.4, 129.0, 128.8, 127.1, 120.5, 119.7, 117.0, 109.7, 56.0, 49.9, 48.6, 23.1, 21.2, 11.5, 11.4. HRMS (ESI, m/z) calcd for [C₂₃H₂₉N₂O₃] (M + H)⁺ 381.2178, found 381.2177.


(E)-N-(4-(3-(dipropylamino)-3-oxoprop-1-en-1-yl)-2-methoxyphenyl)-3,5-dimethoxybenzamide (14d).

Prepared from **S5** (100 mg, 0.36 mmol, 1.00 equiv.) and 3,5-dimethoxybenzoyl chloride (90.0 mg, 0.43 mmol, 1.20 equiv.) according to **general procedure F** (*method B*). White solid (150 mg, 94% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.56 (d, J = 8.7 Hz, 2H), 7.68 (d, J = 15.3

Hz, 1H), 7.27 (dd, J = 8.4, 1.8 Hz, 1H), 7.04 (dd, J = 5.9, 2.2 Hz, 3H), 6.81 (d, J = 15.3 Hz, 1H), 6.66 (t, J = 2.2 Hz, 1H), 3.99 (s, 3H), 3.89 (s, 6H), 3.48–3.37 (m, 4H), 1.69 (m, 4H), 0.97 (t, J = 7.4 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 166.2, 165.0, 161.1, 148.2, 141.9, 137.3, 131.4, 128.9, 120.5, 119.7, 117.0, 109.7, 105.2, 103.7, 55.9, 55.7, 49.9, 48. 6, 23.1, 21.2, 11.5, 11.4. HRMS (ESI, m/z) calcd for [C₂₅H₃₃N₂O₅] (M + H)⁺ 441.2389, found 441.2384.

(E)-N-(4-(3-(dipropylamino)-3-oxoprop-1-en-1-yl)-2-methoxyphenyl)-3,4,5-trimethoxybenzamide (14e).

Prepared from **S5** (100 mg, 0.36 mmol, 1.00 equiv.) and 3,4,5-trimethoxybenzoyl chloride (100 mg, 0.43 mmol, 1.20 equiv.) according to **general procedure F** (*method B*). White solid (150 mg, 91% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.47–8.39 (m, 2H),

7.59 (d, J = 15.3 Hz, 1H), 7.22–7.15 (m, 1H), 7.04 (s, 2H), 6.94 (d, J = 1.8 Hz, 1H), 6.72 (d, J = 15.3 Hz, 1H), 3.89 (s, 3H), 3.88 (s, 6H), 3.85 (s, 3H), 3.38–3.27 (m, 4H), 1.67–1.49 (m, 4H), 0.94 (t, J = 7.4 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 166.2, 165.0, 153.4, 148.1, 141.9, 141.5, 131.4, 130.6, 128.9, 120.5, 119.7, 117.0, 109.8, 104.7, 61.0, 56.5, 56.0, 49.9, 48.6, 23.1, 21.2, 11.5, 11.4. HRMS (ESI, m/z) calcd for [C₂₆H₃₅N₂O₆] (M + H)⁺ 471.2495, found 471.2493.

(E)-N-(4-(3-(dipropylamino)-3-oxoprop-1-en-1-yl)-2-methoxyphenyl)-4-(trifluoromethyl)benzamide (14f).

Prepared from **S5** (100 mg, 0.36 mmol, 1.00 equiv.) and 4-(trifluoromethyl)benzoyl chloride (0.07 mL, 0.43 mmol, 1.20 equiv.) according to **general procedure F** (*method B*). White solid (140 mg, 90% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.60 (brs, 1H), 8.53 (d,

J = 8.3 Hz, 1H), 8.04–7.97 (m, 2H), 7.77 (d, J = 8.3 Hz, 2H), 7.66 (d, J = 15.3 Hz, 1H), 7.29–7.22 (m, 1H), 7.01 (d, J = 1.8 Hz, 1H), 6.79 (d, J = 15.3 Hz, 1H), 3.97 (s, 3H), 3.45–3.34 (m, 4H), 1.76–1.56 (m, 4H), 0.94 (t, J = 7.4 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 166.2, 164.0, 148.3, 141.9, 138.5, 133.7 (q, J = 32.5 Hz), 132.0, 128.6, 127.7, 126.0 (q, J = 3.8 Hz), 123.8 (q, J = 273.1), 120.6, 119.9, 117.4, 109.9, 56.1, 50.0, 48.7, 23.2, 21.3, 11.6, 11.5. ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –62.98. HRMS (ESI, m/z) calcd for [C₂₄H₂₈F₃N₂O₃] (M + H)⁺ 449.2052, found 449.2049.

(1s,3s)-N-(4-((E)-3-(dipropylamino)-3-oxoprop-1-en-1-yl)-2-methoxyphenyl)adamantane-1-ocarboxamide (14g).

Prepared from **\$5** (100 mg, 0.360 mmol, 1.00 equiv.) and 1-adamantanecarbonyl chloride (90.0 mg, 0.43 mmol, 1.20 equiv.)

according to **general procedure F** (*method A*). White solid (150 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.45 (d, J = 8.4 Hz, 1H), 8.15 (s, 1H), 7.62 (d, J = 15.3 Hz, 1H), 7.18 (dd, J = 8.4, 1.9 Hz, 1H), 6.95 (d, J = 1.9 Hz, 1H), 6.74 (d, J = 15.3 Hz, 1H), 3.94 (s, 3H), 3.44–3.32 (m, 4H), 2.13–2.06 (m, 3H), 1.97 (d, J = 3.0 Hz, 6H), 1.82–1.74 (m, 6H), 1.65 (m, 4H), 0.96 (t, J = 7.4 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 176.1, 166.3, 148.0, 142.0, 130.8, 129.2, 120.5, 119.5, 116.6, 109.6, 55.9, 49.9, 48.6, 42.0, 39.3, 36.5, 28.2, 23.1, 21.2, 11.5, 11.4. HRMS (ESI, m/z) calcd for [C₂₇H₃₉N₂O₃] (M + H)⁺ 439.2961, found 439.2957.

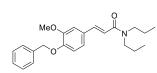
(E)-3-(3-methoxy-4-((4-methoxyphenyl)sulfonamido)phenyl)-N,N-dipropylacrylamide (15b).

Prepared from **S5** (100 mg, 0.36 mmol, 1.00 equiv.) and 4-methoxybenzenesulfonyl chloride (90.0 mg, 0.43 mmol, 1.20 equiv.) according to **general procedure F** (*method B*). White solid (130 mg, 81% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.77–7.66 (m, 2H),

7.55 (d, J = 15.3 Hz, 1H), 7.50 (d, J = 8.3 Hz, 1H), 7.13–7.06 (m, 2H), 6.92–6.84 (m, 2H), 6.82 (d, J = 1.8 Hz, 1H), 6.70 (d, J = 15.3 Hz, 1H), 3.81 (s, 3H), 3.72 (s, 3H), 3.42–3.30 (m, 4H), 1.70–1.54 (m, 4H), 0.96 (t, J = 7.4 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 166.0, 163.2, 149.1, 141.6, 132.4, 130.8, 129.4, 127.4, 120.4, 120.1, 117.4, 114.1, 110.2, 55.8, 55.6, 49.9, 48.6, 23.1, 21.1, 11.5, 11.4. HRMS (ESI, m/z) calcd for [C₂₃H₃₁N₂O₅S] (M + H)⁺ 447.1954, found 447.1956.

(E)-3-(4-((3-fluoro-4-methoxyphenyl)sulfonamido)-3-methoxyphenyl)-N,N-dipropylacrylamide (15c).

Prepared from **S5** (100 mg, 0.36 mmol, 1.00 equiv.) and 3-fluoro-4-methoxybenzenesulfonyl chloride (100 mg, 0.43 mmol, 1.20 equiv.) according to **general procedure F** (*method B*). White solid (150 mg,


92% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.60–7.45 (m, 4H), 7.14–7.07 (m, 2H), 6.97–6.88 (m, 1H), 6.83 (d, J = 1.8 Hz, 1H), 6.72 (d, J = 15.3 Hz, 1H), 3.90 (s, 3H), 3.75 (s, 3H), 3.46–3.30 (m, 4H), 1.71–1.54 (m, 4H), 0.94 (t, J = 7.4 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl131.2₃): δ (ppm) 166.1, 151.6 (d, J = 251.4 Hz), 151.8 (d, J = 10.6 Hz), 149.4, 141.4, 132.9, 131.2 (d, J = 5.8 Hz), 126.9, 124.8 (d, J = 3.8 Hz), 120.4, 120.4, 117.8, 115.4 (d, J = 20.3 Hz), 112.7 (d, J = 2.0 Hz), 110.3, 56.5, 55.9, 50.0, 48.7, 23.2, 21.2, 11.5, 11.4. ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –131.90 9 (m). HRMS (ESI, m/z) calcd for [C₂₃H₃₀FN₂O₅S] (M + H)⁺ 465.1859, found 465.1860.

(E)-3-(3-methoxy-4-((4-methylphenyl)sulfonamido)phenyl)-N,N-dipropylacrylamide (15d).

Prepared from **S5** (100 mg, 0.36 mmol, 1.00 equiv.) and 4-toluenesulfonyl chloride (80.0 mg, 0.43 mmol, 1.20 equiv.) according to **general procedure F** (*method B*). White solid (150 mg, 96% yield). ¹H

NMR (400 MHz, CDCl₃): δ (ppm) 7.71–7.61 (m, 2H), 7.55 (d, J = 15.3 Hz, 1H), 7.50 (d, J = 8.3 Hz, 1H), 7.25–7.14 (m, 2H), 7.13–7.05 (m, 2H), 6.81 (d, J = 1.8 Hz, 1H), 6.70 (d, J = 15.3 Hz, 1H), 3.70 (s, 3H), 3.36 (dt, J = 15.8, 7.5 Hz, 4H), 2.35 (s, 3H), 1.62 (dq, J = 15.8, 7.5 Hz, 4H), 0.97 (t, J = 7.4 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 166.0, 149.1, 143.9, 141.5, 136.3, 132.5, 129.5, 127.3, 127.2, 120.3, 120.0, 117.5, 110.3, 55.8, 49.9, 48.6, 23.1, 21.5, 21.1, 11.5, 11.4. HRMS (ESI, m/z) calcd for [C₂₃H₃₁N₂O₄S] (M + H)⁺ 431.2005, found 431.2003.

(E)-3-(4-(benzyloxy)-3-methoxyphenyl)-N,N-dipropylacrylamide (16a).

Prepared from **8** (80.0 mg, 0.27 mmol, 1.00 equiv.) and benzyl bromide (0.04 mL, 0.32 mmol, 1.20 equiv.) according to **general procedure A**. White solid (20.0 mg, 21%). Spectral data are in agreement with previous reports⁵. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.64 (d, J = 15.3 Hz, 1H), 7.49–

7.30 (m, 5H), 7.11–7.01 (m, 2H), 6.88 (d, J = 8.2 Hz, 1H), 6.70 (d, J = 15.3 Hz, 1H), 5.21 (s, 2H), 3.94 (s, 3H), 3.49–3.28 (m, 4H), 1.74–1.53 (m, 4H), 0.96 (t, J = 7.4 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H).

(E)-3-(4-((2-fluorobenzyl)oxy)-3-methoxyphenyl)-N,N-dipropylacrylamide (16b).

Prepared from **8** (80.0 mg, 0.27 mmol, 1.00 equiv.) and 2-fluorobenzyl bromide (0.04 mL, 0.32 mmol, 1.20 equiv.) according to **general procedure A**. White solid (60.0 mg, 54%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.65 (d, J = 15.3 Hz, 1H), 7.55 (td, J = 7.5, 1.8 Hz, 1H), 7.36–7.30

(m, 1H), 7.18 (td, J = 7.5, 1.2 Hz, 1H), 7.13–7.08 (m, 2H), 7.06 (d, J = 2.0 Hz, 1H), 6.93 (d, J = 8.3

Hz, 1H), 6.72 (d, J = 15.3 Hz, 1H), 5.27 (s, 2H), 3.95 (s, 3H), 3.47–3.35 (m, 4H), 1.75–1.58 (m, 4H), 0.98 (t, J = 7.4 Hz, 3H), 0.96 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 166.3, 160.5 (d, J = 246.4) 149.8, 149.3, 142.0, 129.7 (d, J = 8.3 Hz), 129.6, 129.6 (d, J = 8.5 Hz), 129.5 (d, J = 18.5 Hz), 124.4 (d, J = 3.7 Hz), 121.1, 116.2, 115.3 (d, J = 21.4 Hz), 113.8, 111.3, 64.7 (d, J = 4.5 Hz), 56.2, 49.9, 48.6, 23.1, 21.2, 11.5, 11.4. ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –118.67 (m). HRMS (ESI, m/z) calcd for [C₂₃H₂₉FNO₃] (M + H)⁺ 386.2131, found 386.2136.

(E)-3-(4-((3-fluorobenzyl)oxy)-3-methoxyphenyl)-N,N-dipropylacrylamide (16c).

Prepared from **8** (100 mg, 0.36 mmol, 1.00 equiv.) and 3-fluorobenzyl bromide (0.05 mL, 0.43 mmol, 1.20 equiv.) according to **general procedure A**. Clear oil (60.0 mg, 40%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.65 (d, J = 15.3 Hz, 1H), 7.36 (td, J = 8.1, 5.8 Hz, 1H), 7.26–7.15

(m, 2H), 7.10–7.05 (m, 2H), 7.05–6.99 (m, 1H), 6.87 (d, J = 8.1 Hz, 1H), 6.72 (d, J = 15.3 Hz, 1H), 5.19 (s, 2H), 3.96 (s, 3H), 3.47–3.35 (m, 4H), 1.75–1.58 (m, 4H), 0.98 (t, J = 7.3 Hz, 3H), 0.96 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 166.4, 163.2 (d, J = 246.4), 149.9, 149.3, 142.1, 139.6 (d, J = 7.3 Hz), 130.3 (d, J = 8.2 Hz), 129.5, 122.7 (d, J = 2.9 Hz), 121.2, 116.3, 115.0 (d, J = 21.0 Hz), 114.2 (d, J = 22.1 Hz), 114.0, 111.3, 70.3 (d, J = 2.0 Hz), 56.2, 50.1, 48.7, 23.2, 21.3, 11.6, 11.5. ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –112.72 (m). HRMS (ESI, m/z) calcd for [C₂₃H₂₉FNO₃] (M + H)⁺ 386.2131, found 386.2130.

(E)-3-(4-((3,5-difluorobenzyl)oxy)-3-methoxyphenyl)-N,N-dipropylacrylamide (16d).

Prepared from **8** (80.0 mg, 0.27 mmol, 1.00 equiv.) and 3,5-difluorobenzyl bromide (0.04 mL, 0.32 mmol, 1.20 equiv.) according to **general procedure A**. White solid (38.0 mg, 35%). Spectral data are in agreement with previous reports⁵. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.65 (d, J = 15.3 Hz, 1H), 7.12–7.05 (m, 2H), 7.04–6.97 (m, 2H), 6.85 (d,

J = 8.1 Hz, 1H), 6.81-6.76 (m, 1H), 6.73 (d, J = 15.3 Hz, 1H), 5.17 (s, 2H), 3.96 (s, 3H), 3.47-3.35 (m, 4H), 1.75-1.60 (m, 4H), 0.98 (t, J = 7.3 Hz, 3H), 0.96 (t, J = 7.3 Hz, 3H).

(E)-3-(4-((4-fluorobenzyl)oxy)-3-methoxyphenyl)-N,N-dipropylacrylamide (16e).

Prepared from **8** (80.0 mg, 0.27 mmol, 1.00 equiv.) and 4-fluorobenzyl bromide (0.04 mL, 0.32 mmol, 1.20 equiv.) according to **general procedure A**. White solid (50.0 mg, 47%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.65 (d, J = 15.3 Hz, 1H), 7.49–7.39 (m, 2H), 7.14–7.03 (m, 4H),

6.89 (d, J = 8.3 Hz, 1H), 6.72 (d, J = 15.3 Hz, 1H), 5.16 (s, 2H), 3.94 (s, 3H), 3.47–3.35 (m, 4H), 1.75–1.62 (m, 4H), 0.98 (t, J = 7.3 Hz, 3H), 0.96 (t, J = 7.3 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 166.4, 162.6 (d, J = 246.6 Hz), 149.9, 149.4, 142.1, 132.6 (d, J = 3.1 Hz), 129.4, 129.3 (d, J = 8.1 Hz), 121.2, 116.3, 115.6 (d, J = 21.6 Hz), 114.0, 111.2, 70.5, 56.2, 50.0, 48.7, 23.2, 21.3, 11.6, 11.5.

¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –114.26 (m). HRMS (ESI, m/z) calcd for [C₂₃H₂₉FNO₃] (M + H)⁺ 386.2131, found 386.2126.

(E)-3-(3-methoxy-4-((4-methoxybenzyl)oxy)phenyl)-N,N-dipropylacrylamide (16f).

Prepared from **8** (80.0 mg, 0.27 mmol, 1.00 equiv.) and 4-methoxybenzyl chloride (0.04 mL, 0.32 mmol, 1.20 equiv.) according to **general procedure A**. White solid (30.0 mg, 28%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.55 (d, J = 15.3 Hz, 1H), 7.33–7.24 (m, 2H),

6.98 (dd, J = 8.4, 2.0 Hz, 1H), 6.95 (d, J = 2.0 Hz, 1H), 6.88–6.76 (m, 3H), 6.60 (d, J = 15.3 Hz, 1H), 5.04 (s, 2H), 3.83 (s, 3H), 3.73 (s, 3H), 3.37–3.25 (m, 4H), 1.65–1.49 (m, 4H), 0.88 (t, J = 7.3 Hz, 3H), 0.86 (t, J = 7.3 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 166.6, 159.5, 149.8, 149.7, 142.4, 129.0, 128.9, 128.8, 121.2, 115.7, 114.0, 113.9, 111.2, 70.8, 56.1, 55.3, 50.0, 48.7, 23.0, 21.2, 11.4. HRMS (ESI, m/z) calcd for [C₂₄H₃₂NO₄] (M + H)⁺ 386.2131, found 386.2136.

(E)-3-(3-methoxy-4-((4-methylbenzyl)oxy)phenyl)-N,N-dipropylacrylamide (16g).

Prepared from **8** (80.0 mg, 0.27 mmol, 1.00 equiv.) and 4-methylbenzyl bromide (0.04 mL, 0.32 mmol, 1.20 equiv.) according to **general procedure A**. White solid (30.0 mg, 28%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.54 (d, J = 15.3 Hz, 1H), 7.28–7.21 (m, 2H), 7.10 (d, J

= 7.9 Hz, 2H), 7.00–6.92 (m, 2H), 6.79 (d, J = 8.2 Hz, 1H), 6.60 (d, J = 15.3 Hz, 1H), 5.07 (s, 2H), 3.84 (s, 3H), 3.36–3.24 (m, 4H), 2.27 (s, 3H), 1.64–1.48 (m, 4H), 0.88 (t, J = 7.3 Hz, 3H), 0.86 (t, J = 7.3 Hz, 3H), 0.86 (t, J = 7.3 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ (ppm) 166.4, 149.7, 149.6, 142.2, 137.7, 133.8, 129.3, 128.9, 127.3, 121.2, 115.9, 113.8, 111.2, 70.9, 56.1, 49.9, 48.6, 23.1, 21.2, 21.2, 11.5, 11.4. HRMS (ESI, m/z) calcd for [C₂₄H₃₂NO₃] (M + H)⁺ 382.2382, found 382.2382.

(E)-3-(4-(adamantan-1-yl)methoxy)-3-methoxyphenyl)-N,N-dipropylacrylamide (16h).

To a stirred solution of **8** (150 mg, 0.53 mmol, 1.00 equiv.) and bromomethyl adamantane (150 mg, 0.64 mmol, 1.20 equiv.) in DMF (5.00 mL) was added cesium carbonate (520 mg, 1.59 mmol, 3.00 equiv.) and potassium iodide (320 mg, 1.91 mmol, 3.60 equiv.). The solution

was heated to 100 °C and stirred overnight before cooling to room temperature. The solution was diluted with water and extracted with ethyl acetate. The organic phase was then washed with water and brine. The organic phase was collected and dried over anhydrous sodium sulfate, filtered and solvent was removed under reduced pressure. The crude isolate was purified by flash column chromatography on silica gel to yield **16h** as a white solid (90.0 mg, 38% yield). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.55 (d, J = 15.3 Hz, 1H), 7.01 (dd, J = 8.3, 2.1 Hz, 1H), 6.95 (d, J = 2.1 Hz, 1H), 6.78 (d, J = 8.3 Hz, 1H), 6.60 (d, J = 15.3 Hz, 1H), 3.81 (s, 3H), 3.49 (s, 2H), 3.40–3.23 (m, 4H), 1.99–1.91 (m, 3H), 1.74–1.50 (m, 16H), 0.88 (t, J = 7.3 Hz, 3H), 0.86 (t, J = 7.3 Hz, 3H).

NMR (100 MHz, CDCl₃): δ (ppm) 166.4, 151.3, 149.8, 142.2, 128.4, 121.8, 115.5, 113.3, 112.2, 79.5, 56.8, 49.9, 48.6, 39.5, 37.1, 34.1, 28.2, 23.1, 21.2, 11.5, 11.4. HRMS (ESI, m/z) calcd for [C₂₇H₄₀NO₃] (M + H)⁺ 426.3008, found 426.3012.

1.5 Synthesis and characterization: series 4 compounds.

3-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-N,N-dipropylpropanamide (18).

3-(4-hydroxy-3-methoxyphenyl)propanoic acid (200 mg, 1.00 mmol, 1.00 equiv.) and HATU (1.2 equiv.) were dissolved in dichloromethane. N,N-diisopropylethylamine (3.00 equiv.) was added and the solution was stirred for five minutes before addition of the dipropylamine (1.20 equiv.). The solution was stirred at room temperature until complete, diluted with dichloromethane and washed with water (x2) and brine. The organic phase was dried over anhydrous sodium sulfate and solvent was removed under reduced pressure. The crude isolate was purified by flash column chromatography on silica gel to afford \$15 (210 mg, 74 % yield), which was then dissolved in DMF and treated with 60% (wt) sodium hydride suspension in mineral oil (40.0 mg, 0.88 mmol, 1.20 equiv.). The solution was stirred for ten minutes before addition of 3,5-dimethoxybenzyl bromide (200 mg, 0.88 mmol, 1.20 equiv). Once complete, the reaction was diluted with ethyl acetate and washed with a 1.00 M aqueous solution of hydrochloric acid, water, and brine. The organic phase was dried over anhydrous sodium sulfate, filtered and solvent was removed under reduced pressure. The crude isolate was purified by flash column chromatography on silica gel to yield 18 as a white solid (290 mg, 92%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 6.82–6.75 (m, 2H), 6.67 (dd, J = 8.2, 2.1 Hz, 1H), 6.59 (d, J = 2.2 Hz, 2H), 6.38 (t, J = 2.3 Hz, 1H), 5.07 (s, 2H), 3.87 (s, 3H), $3.78 \text{ (s, shows the second seco$ 6H), 3.31-3.22 (m, 2H), 3.14-3.06 (m, 2H), 2.90 (dd, J = 8.8, 6.8 Hz, 2H), 2.60-2.52 (m, 2H), 1.63-61.43 (m, 4H), 0.88 (t, J = 7.3 Hz, 3H), 0.86 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.9, 161.1, 149.7, 146.6, 140.1, 135.2, 120.4, 114.6, 112.6, 105.1, 99.9, 71.4, 56.1, 55.5, 49.8, 47.9, 35.4, 31.5, 22.4, 21.1, 11.6, 11.4. HRMS (ESI, m/z) calcd for $[C_{25}H_{36}NO_{5}]$ (M + H)⁺ 430.2593, found 430.2593.

4-((3,5-dimethoxybenzyl)oxy)-3-methoxy-N,N-dipropylbenzamide (20).

S16 was prepared from 4-hydroxy-3-methoxybenzoic acid (80.0 mg, 0.50 mmol, 1.00 equiv.) and dipropylamine (0.08 mL, 0.60 mmol, 1.20 equiv.) according to **general procedure C** (Method B). White solid (70.0 mg, 52% yield). To a stirred solution of **S16** (70.0 mg, 0.26 mmol, 1.00 equiv.) and 3,5-dimethoxybenzyl bromide (70.0 mg, 0.29 mmol, 1.10 equiv.) in acetone (10 mL) was added potassium carbonate (50.0 mg, 0.39 mmol, 1.50 equiv.) and the solution was stirred overnight at room temperature. The solution was then filtered, and solvent was removed under reduced pressure. The crude isolate was purified by flash column chromatography on silica gel to yield **20** as a white solid (30.0 mg, 25%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 6.97 (t, J = 1.1 Hz, 1H), 6.87 (d, J = 1.1 Hz, 2H), 6.61 (d, J = 2.3 Hz, 2H), 6.42 (t, J = 2.3 Hz, 1H), 5.14 (s, 2H), 3.92 (s, 3H), 3.81 (s, 6H), 3.55–3.15 (m, 4H), 1.74–1.55 (m, 4H), 1.05–0.76 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.5, 161.1, 149.5, 148.8, 139.3, 130.4, 119.3, 113.5, 110.9, 104.96, 100.0, 71.1, 56.1, 55.4, 51.0, 46.5, 21.8, 20.9 11.3, 11.3. HRMS (ESI, m/z) calcd for [C₂₃H₃₂NO₅] (M + H)+ 402.2280, found 402.2285.

4-Bromo-1-((3,5-dimethoxybenzyl)oxy)-2-methoxybenzene (S17).

$$_{\rm H_3CO}$$
 $_{\rm H_3CO}$ $_{\rm H_3}$ $_{\rm CCH_3}$ $_{\rm C$

filtered, and solvent was removed under reduced pressure. The crude isolate was purified by flash column chromatography on silica gel to yield **S17** as a white solid (15.1 g, 87%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.03 (d, J = 2.3 Hz, 1H), 6.98 (dd, J = 8.5, 2.3 Hz, 1H), 6.76 (d, J = 8.5 Hz, 1H), 6.60 (d, J = 2.3 Hz, 2H), 6.42 (t, J = 2.3 Hz, 1H), 5.10 (s, 2H), 3.91 (s, 3H), 3.81 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 161.1, 150.5, 147.4, 139.3, 123.4, 115.5, 115.3, 113.5, 105.0, 99.9, 71.3, 56.2, 55.4.

1-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-*N,N*-dipropylpiperidine-4-carboxamide (22a).

In a round bottom flask equipped with Teflon-coated stir bar is placed \$17 (430 mg, 1.20 mmol, 1.00 eq), methyl piperidine-4-carboxylate, hydrochloride (215 mg, 1.20 mmol, 1.00 equiv.), cesium carbonate (1.56 g, 4.80 mmol, 4.00 eq), Pd₂(dba)₃ (55.0 mg, 0.06 mmol, 0.05 equiv.), and XantPhos (104 mg, 0.18 mmol, 0.15 equiv.). The flask was evacuated and backfilled with argon gas (3x) before addition of anhydrous toluene. The solution was heated at 100 °C and stirred overnight. After cooling to room temperature, the solution was diluted with ethyl acetate and washed with water and then brine. The organic phase was dried over anhydrous sodium sulfate, filtered and solvent was removed under reduced pressure. The crude isolate was purified by flash column chromatography on silica gel to yield \$18 as a colorless oil (165 mg, 33% yield). \$18 was hydrolysed following general procedure E to generate \$19 (140 mg, 88% yield), which was then coupled with dipropylamine following general procedure C (Method B) to yield 22a as a white solid (153 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.03 (d, J = 2.3 Hz, 1H), 6.78 (d, J =8.7 Hz, 1H), 6.60 (d, J = 2.3 Hz, 1H), 6.40–6.37 (m, 2H), 5.02 (s, 2H), 3.88 (s, 3H), 3.78 (s, 6H), 3.61– 3.57 (m, 2H), 3.33-3.21 (m, 4H), 2.67-2.64 (m, 2H), 2.54-5.49 (m, 1H), 2.08-1.98 (m, 2H), 1.77 (d, J = 12.5 Hz, 2H), 1.66-1.50 (m, 4H), 0.94 (t, J = 7.4 Hz, 3H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.6, 161.0, 150.4, 147.4, 142.4, 140.26, 115.7, 108.5, 105.0, 103.7, 99.8, 72.0, 56.0, 55.4, 50.9, 49.4, 47.6, 38.8, 29.2, 22.9, 21.0, 11.4, 11.3. HRMS (ESI, m/z) calcd for $[C_{28}H_{41}N_2O_5]$ (M + H)⁺ 485.3010, found 485.3009.

(R)-1-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-N,N-dipropylpyrrolidine-3-carboxamide (22b).

In a round bottom flask equipped with Teflon-coated stir bar is placed **\$17** (180 mg, 0.50 mmol,1.00 eq), (R)-methyl pyrrolidine-3-carboxylate, hydrochloride (80.0 mg, 0.50 mmol, 1.00 equiv.), cesium carbonate (650 mg, 2.00 mmol, 4.00 eq), $Pd_2(dba)_3$ (30.0 mg, 0.03 mmol, 0.05 equiv.), and XantPhos (40.0 mg, 0.08 mmol, 0.15 equiv.). The flask was evacuated and backfilled with argon gas (3x) before addition of anhydrous toluene. The solution was heated at 100 °C and stirred overnight. After cooling to room temperature, the solution was diluted with ethyl acetate and washed with water and then brine. The organic phase was dried over anhydrous sodium

sulfate, filtered and solvent was removed under reduced pressure. The crude isolate was purified by flash column chromatography on silica gel to yield **S20** as a colorless oil (90.0 mg, 47% yield). **S20** was hydrolysed following **general procedure E** to generate **S21** (90.0 mg, 96% yield), which was then coupled with dipropylamine following **general procedure C** (*Method B*) to yield **22b** as a white solid (20.0 mg, 20% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 6.84 (d, J = 8.6 Hz, 1H), 6.63 (d, J = 2.3 Hz, 2H), 6.40 (t, J = 2.3 Hz, 1H), 6.21 (d, J = 2.7 Hz, 1H), 6.04 (dd, J = 8.7, 2.7 Hz, 1H), 5.01 (s, 2H), 3.90 (s, 3H), 3.81 (s, 6H), 3.56–3.26 (m, 9H), 2.41–2.27 (m, 1H), 2.26–2.14 (m, 1H), 1.72–1.52 (m, 4H), 0.96 (t, J = 7.4 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 172.6, 160.9, 151.1, 144.1, 140.7, 139.6, 117.8, 105.2, 103.4, 99.9, 97.9, 72.9, 56.0, 55.4, 51.9, 49.7, 48.3, 48.0, 40.6, 29.8, 22.9, 22.1, 11.5, 11.3. HRMS (ESI, m/z) calcd for [C₂₇H₃₉N₂O₅] (M + H)⁺ 471.2859, found 471.2859.

(S)-1-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-N,N-dipropylpyrrolidine-3-carboxamide (22c).

In a round bottom flask equipped with Teflon-coated stir bar is placed \$17 (180 mg, 0.50) mmol, 1.00 eq), (S)-methyl pyrrolidine-3-carboxylate, hydrochloride (80.0 mg, 0.50 mmol, 1.00 equiv.), cesium carbonate (650 mg, 2.00 mmol, 4.00 eq), $Pd_2(dba)_3$ (30.0 mg, 0.03 mmol, 0.05 equiv.), and XantPhos (40.0 mg, 0.08 mmol, 0.15 equiv.). The flask was evacuated and backfilled with argon gas (3x) before addition of anhydrous toluene. The solution was heated at 100 °C and stirred overnight. After cooling to room temperature, the solution was diluted with ethyl acetate and washed with water and then brine. The organic phase was dried over anhydrous sodium sulfate, filtered and solvent was removed under reduced pressure. The crude isolate was purified by flash column chromatography on silica gel to yield \$22 as a colorless oil (80.0 mg, 39% yield). S22 was hydrolysed following general procedure E to generate S23 (60.0 mg, 83 % yield), which was then coupled with dipropylamine following general procedure C (Method B) to yield 22c as a white solid (20.0 mg, 29% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) = 6.84 (d, J = 8.7 Hz, 1H), 6.63 (d, J = 2.3 Hz, 2H), 6.40 (t, J = 2.3 Hz, 1H), 6.21 (d, J = 2.7 Hz, 1H), 6.04 (dd, J = 8.7, 2.7 Hz, 1H), 5.01 (s, 2H), 3.90 (s, 3H), 3.81 (s, 6H), 3.55–3.24 (m, 9H), 2.41–2.27 (m, 1H), 2.26–2.14 (m, 1H), 1.72–1.52 (m, 4H), 0.96 (t, J = 7.4 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 172.6, 161.0, 151.1, 144.1, 140.7, 139.6, 117.8, 105.2, 103.4, 99.9, 97.9, 72.9, 56.0, 55.4, 52.0, 49.7, 48.3, 48.0, 40.6, 29.8, 22.9, 22.1, 11.5, 11.3. HRMS (ESI, m/z) calcd for [C₂₇H₃₉N₂O₅] (M + H)⁺ 471.2859, found 471.2859.

2-(4-((3,5-dimethoxybenzyl)oxy)-3-methoxyphenyl)-*N,N*-dipropylcyclopropane-1-carboxamide (23).

To a suspension of anhydrous chromium(II) chloride (230 mg, 1.88 mmol, 4.00 equiv.) and **1** (200 mg, 0.47 mmol, 1.00 equiv.) in tetrahydrofuran was added dropwise chloroiodomethane (0.13 mL, 1.76 mmol, 3.75 equiv.) at room temperature and under argon atmosphere. The solution

was heated to reflux and stirred overnight, then cooled to room temperature and quenched by the addition of a 1 M aqueous solution of hydrochloric acid. The solution was extracted with diethyl ether (x3) and the combined organic extracts were washed with saturated aqueous ammonium chloride solution, dried over anhydrous sodium sulfate, and filtered. Solvent was removed under reduced pressure and the crude isolate was purified flash column chromatography on silica gel to yield **23** as a clear oil (100 mg, 49% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 6.78 (d, J = 8.3 Hz, 1H), 6.72 (d, J = 2.1 Hz, 1H), 6.59 (d, J = 2.3 Hz, 2H), 6.57–6.53 (m, 1H), 6.38 (t, J = 2.3 Hz, 1H), 5.07 (s, 2H), 3.88 (s, 3H), 3.78 (s, 6H), 3.41–3.22 (m, 4H), 2.43 (dd, J = 4.2, 2.7 Hz, 1H), 1.85 (ddd, J = 8.2, 5.3, 4.2 Hz, 1H), 1.68–1.49 (m, 5H), 1.18 (ddd, J = 8.2, 6.3, 4.2 Hz, 1H), 0.88 (t, J = 7.4 Hz, 3H), 0.86 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.6, 161.0, 149.6, 146.7, 139.9, 134.5, 117.7, 114.5, 111.0, 105.0, 99.8, 71.3, 56.1, 55.4, 49.8, 48.5, 25.4, 23.1, 22.8, 21.2, 16.0, 11.4, 11.3. HRMS (ESI, m/z) calcd for [C₂₆H₃₆NO₅] (M + H)⁺ 442.2593, found 442.2596.

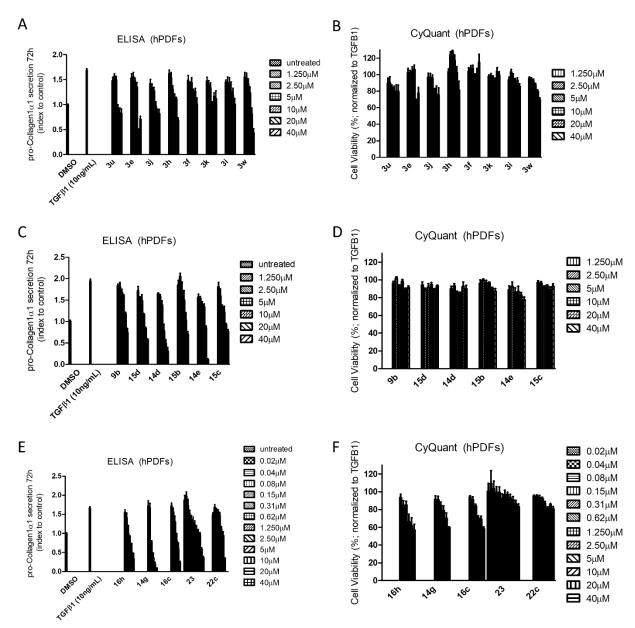
2.0 Biology

2.1 General methods and procedures.

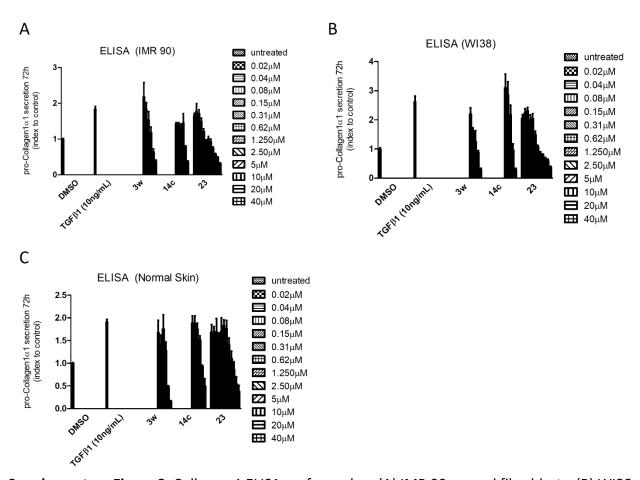
Cell Culture. Human primary dermal fibroblasts (PCS-201-012, ATCC), normal skin fibroblasts (CRL-2524, ATCC), human primary lung fibroblasts (PCS-201-013, ATCC) lot #70041445 (hPFLs #1) and lot #70046876 (hPLFs #2), normal lung fibroblasts IMR90 (CCL-186, ATCC) and WI38 (CCL75, ATCC), and human embryonic kidney 293T were used in this study. The cells were cultured in their respective media according to the suppliers.

Collagen-1 ELISA and Cell Viability Assay. Human primary dermal fibroblasts (hPDFs), normal skin and lung fibroblasts (IMR90, WI38) cells were seeded onto 96-well plates (2000 cells/well) for 24 hours, then starved in MEM 0.5% FBS and treated with the candidate compound (1.25-40 μ M; 6 concentrations) alongside recombinant TGF β 1 (rTGF β 1; 10 ng/mL; used to mimic profibrotic conditions). After 72 hours of treatment, the supernatant is collected and processed for procollagen1 α 1 production using an ELISA assay (ab210966, Abcam). In parallel, toxicity of the compounds was tested using CyQuant NF Cell Proliferation Assay, (Thermo Fisher Scientific). This assay measures cell proliferation based on cellular DNA content and was performed according to the manufacture protocol. The IC50 for each compound was calculated using GraphPad Prism software nonlinear regression analysis. For ELISA IC50 values, the DMSO control was considered as IC100, and rTGF β 1 as IC00. The CyQuant IC50 values were normalized to rTGF β 1.

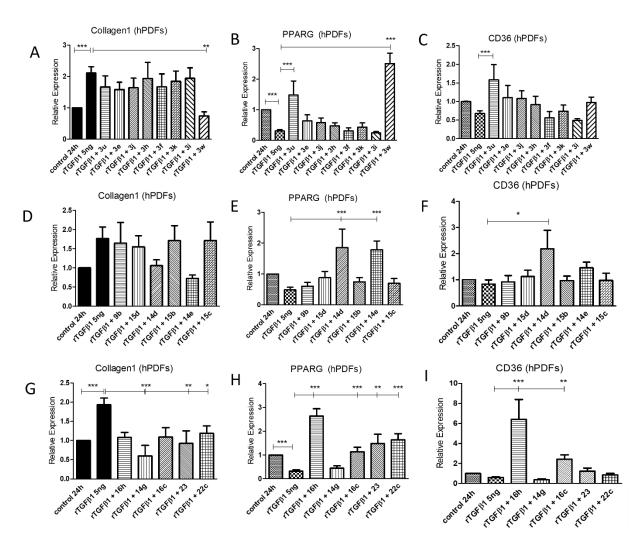
Western Blot. Human primary dermal or lung fibroblasts (hPDFs, hPLF #1, hPLF #2) were seeded onto 6-well plates (200,000 cells/well). Twenty-four hrs later, the cells were starved for 24 h with MEM 0.5% FBS, then treated with the candidate compounds (40 μM for hPDFs; 20 μM for hPLFs #1 and #2), in addition of recombinant TGFβ1 (10 ng/mL). The cells were harvested and lysed 24 h after treatment. Protein was extracted using Immunoprecipitation buffer (150 mM NaCl, 5 mM EDTA, 50 mM Hepes pH 7.6, 1.5% Nonidet P-40); with protease inhibitor cocktail (Roche). Electrophoresis was performed with Bolt 4-20% Gels (Life Technologies, Carlsbad, CA, USA). Detection of all proteins was undertaken with Pierce ECL (#32209). Antibodies used were anticollagen-1 (ab260043, abcam, 1:2000), and anti-β-actin (A1978, Sigma, 1:5000).

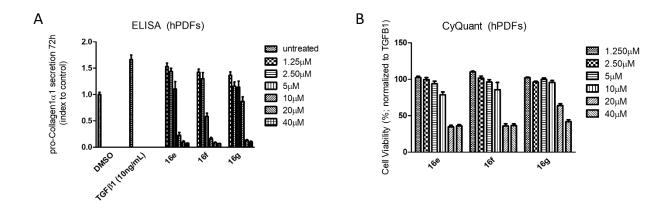

Quantitative Real-Time PCR (qRT-PCR). The hPDFs, the hPLFs #1 and #2 were subjected to similar treatment as for protein extraction, except that 5 ng/mL of rTGF\u00df11 was used. The Total RNA Purification Kit (Norgen Biotek, Thorold, ON, Canada) was used to isolate mRNA. The iScript cDNA Synthesis Kit (BioRad, Hercules, CA, USA) was used to perform the reverse-transcription of 1 µg or 500 ng of total RNA. qRT-PCR was performed using SYBR Green (Roche, Basel, Switzerland) using the following primers: Collagen (Forward: CAGCCGCTTCACCTACAGC, Reverse: TTTTGTATTCAATCACTGTCTTGCC); PPARG (Forward: GGCTTCATGACAAGGGAGTTTC, Reverse: TCTTTCCTGCAGCCCAATG, AACTCAAACTTGGGCTCCATAAAG); CD36 (Forward: Reverse: AGCCTCTGTTCCAACTGATAGTGA); GAPDH (Forward: AGGGCTGCTTTTAACTCTGGT, Reverse: CCCCACTTGATTTTGGAGGGA); 18s rRNA (Forward: GTAACCCGTTGAACCCCATT, Reverse: CCATCCAATCGGTAGTAGCG). mRNA expression was normalized to two housekeeping genes (GAPDH and 18s rRNA) and the relative expression was calculated using the $2^{-\Delta\Delta CT}$ method⁷.

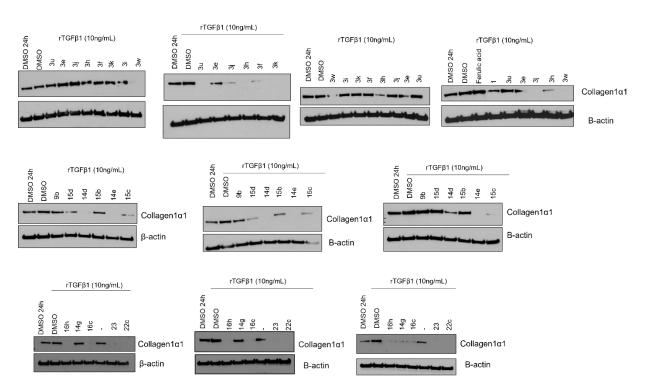
Luciferase Reporter Assay for PPAR activity. HEK293T cells were seeded onto 96-well plates, 24 hours later, the cells were co-transfected with PPRE-Luc and pRL-SV Renilla plasmids using JetPRIME and treated with the desired compounds. The next day, firefly and Renilla activities were measured using the Dual-Luciferase Reporter Assay (Promega).

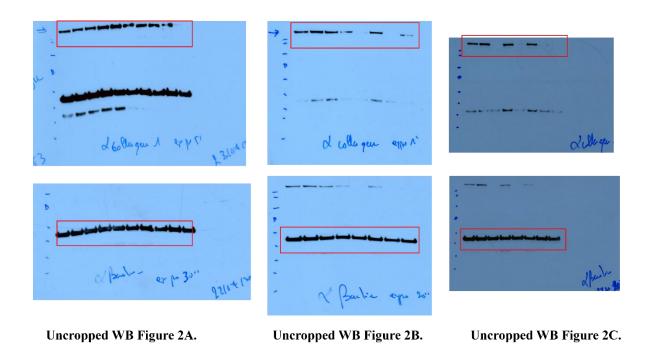

Mouse liver microsomal stability assay. Assay was performed by WuXi AppTec using CD-1 mouse liver microsomes (IPHASE; Cat No. 0121E1.01, Lot 23E005) following the vendor's standard protocol. $T_{1/2}$ was generated from sampling aliquots at T = 0, 5, 15, 30, 25, 60 min.

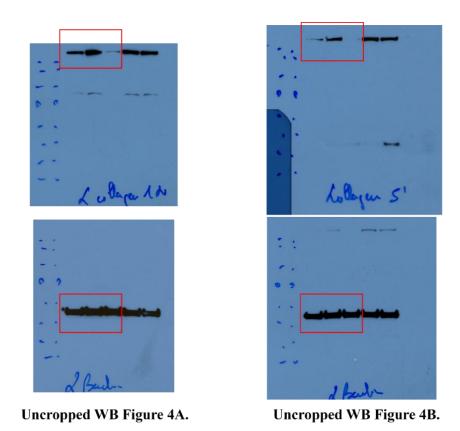
Statistical analysis. The statistical difference between groups was calculated by one-way ANOVA test, followed by the Dunnett's post-test. Data were represented as the mean ± standard error of the mean (SEM) of three independent experiments. Analysis and graphs were generated using GraphPad Prism software.


2.2 Supplementary in vitro data


Supplementary Figure 1. Collagen-1 ELISA performed on hPDFs after 72h of rTGF β 1 (10 ng/mL) incubation in addition of a dose response treatment of (A) series 1 compounds, (C) series 2 and 3 compounds and (E) series 3 and 4 compounds. Cell viability assessed by CyQuant on hPDFs after 72 h of rTGF β 1 (10 ng/mL) incubation in addition of a dose response of (B) series 1 compounds, (D) series 2 and 3 compounds and (F) series 3 and 4 compounds.


Supplementary Figure 2. Collagen-1 ELISA performed on (A) IMR 90 normal fibroblasts, (B) WI38 normal fibroblasts and (C) normal skin fibroblasts after 72 h of rTFG β 1 (1 0ng/mL) incubation in addition of a dose response of compounds **3w**, **14c** and **23**.


Supplementary Figure 3. Relative gene expression was assessed by qRT-PCR after hPDFs were treated for 72 h with rTGF β 1 (10 ng/mL) in addition to 40 μ M of compounds. Collagen-1 expression: (A) series 1 compounds, (D) series 2 and 3 compounds and (G) series 3 and 4 compounds. PPARG expression: (B) series 1 compounds, (E) series 2 and 3 compounds and (H) series 3 and 4 compounds. CD36 expression: (C) series 1 compounds, (F) series 2 and 3 compounds and (I) series 3 and 4 compounds.


Supplementary Figure 4. (A) Collagen-1 ELISA on hPDFs after 72 h of rTGF β 1 (10 ng/mL) incubation in addition of a dose response treatment of compounds **16e**, **16f** and **16g**. (B) Associated cell viability assessed by CyQuant.

Supplementary Figure 5. Replicates of Western blots for series 1—4 compounds in hPDFs.

Supplementary Figure 6. Uncropped Western blots for **Figure 2A—C**.

Supplementary Figure 7. Uncropped Western blots for Figure 4A and B.

2.3 CAPE plasma stability and hydrolysis to caffeic acid.

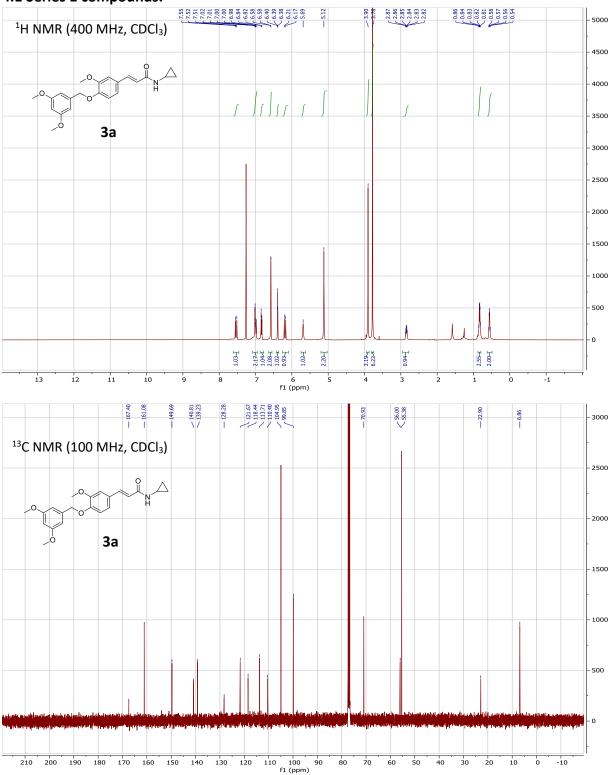
A DMSO solution of CAPE (5 mg/mL) was prepared, and 10 μ l was added to 990 μ l of ice cold blank plasma (male CD-1 mouse K2 EDTA; BioIVT, lot337591); initial concentration of 50 μ g/mL CAPE. A 50 μ l aliquot was immediately transferred to a microcentrifuge tube containing 200 μ l ice cold IS spiking solution (4 μ g/mL in acetonitrile) for T = 0 sample. The plasma sample was incubated at 37 °C or 0 °C and 50 μ l aliquots were transferred to ice cold spinking buffer (200 μ l) at T = 5, 10, 20, and 30 minutes. All sample aliquots were briefly vortexed before centrifugation at 15000 rpm for 15 min at 4 °C. The supernatant was collected and sample aliquots were diluted with two volumes of 0.1% formic acid in water. The concentration of substrates (CAPE and caffeic acid) was determined by LCMS-MS (Waters G2-XS QTOF). The results are summarized in **Supplementary Table 1 and 2**.

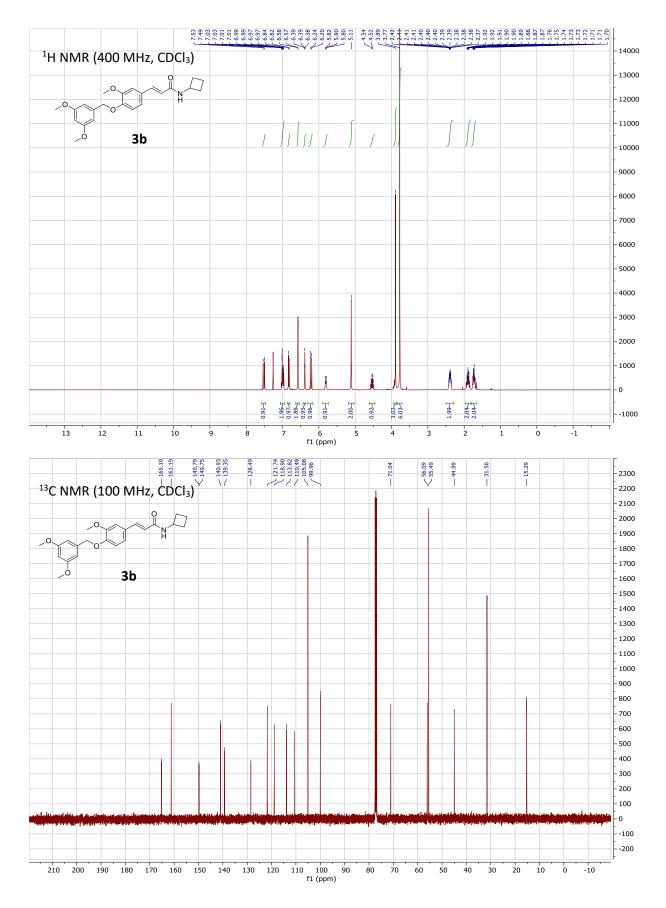
Supplementary Table 1. Stability of CAPE in CD-1 mouse plasma.

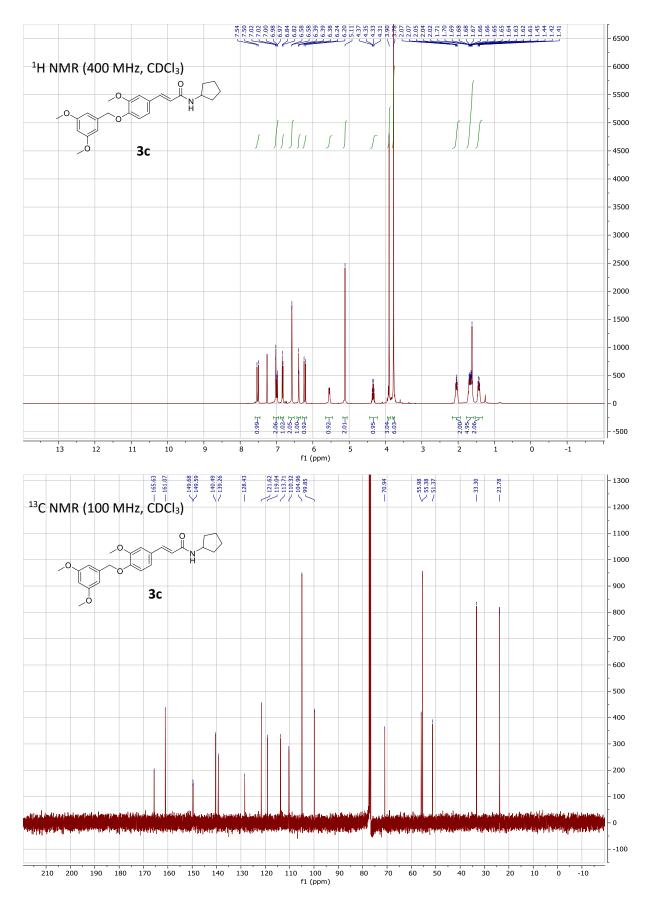
Caffeic Acid Phenethyl Ester													
	AUC		% Remaining		Ln Remaining		\mathbf{R}^2		ke (min ⁻¹)		T _{1/2} (min)		
Time	Ice		37°c	Ice	37°c	Ice	37°c	Ice	37c	Ice	37c	Ice Water	37°c
0	3	33.2	33.2	100%	100%	4.6	4.6	0.99	0.74	0.0126	0.2021	54.9	3.4
5	3	31.0	2.3	93%	7%	4.5	1.9						
10	2	28.7	0.118	86%	0%	4.5	-1.0						
20	2	26.1	0.064	78%	0%	4.4	-1.6						
30	2	22.5	0.046	68%	0%	4.2	-2.0						

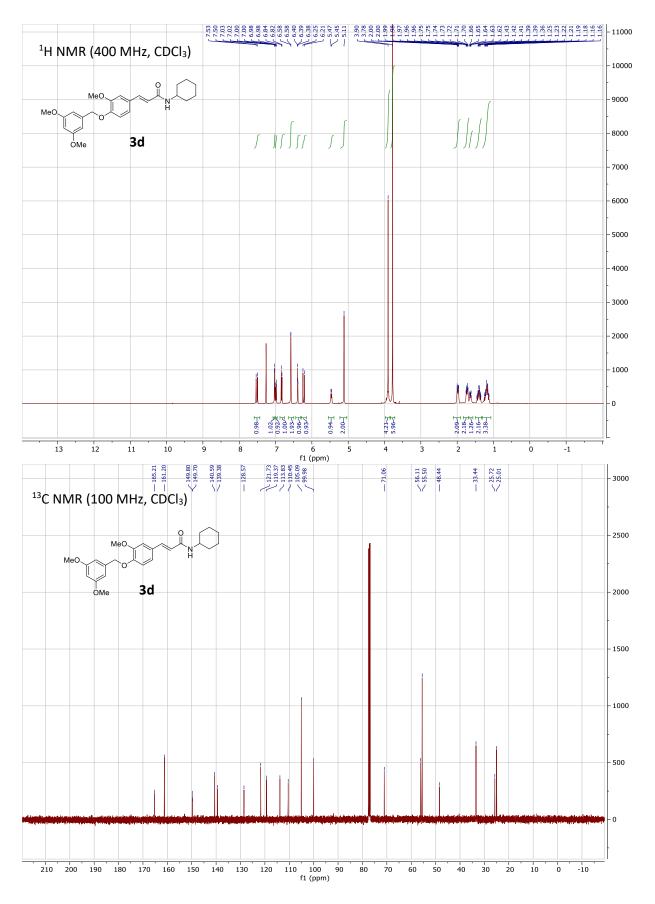
Supplementary Table 2. Increasing concentration of caffeic acid from CAPE hydrolysis during incubation in CD-1 mouse plasma at 0 °C (ice) and 37 °C.

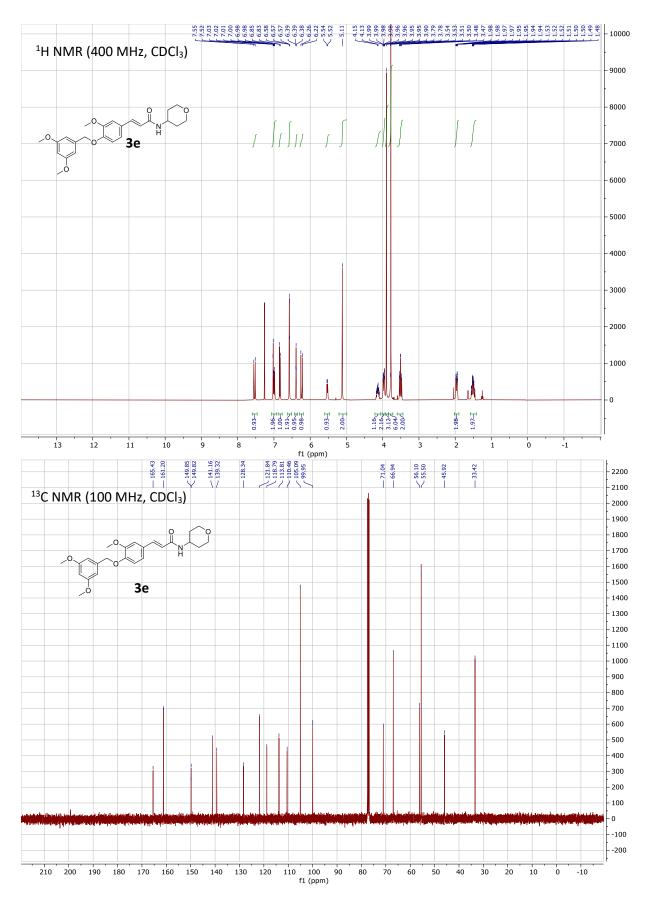
Caffeic A	cid					
	μg/	mL	μΜ			
Time	Ice	37°c	Ice	37°c		
0	1.2	1.2	6.66	6.66		
5	10.7	38.2	59.39	212.03		
10	13.9	37.1	77.15	205.93		
20	18.3	34.7	101.58	192.61		
30	22.6	32.6	125.44	180.95		

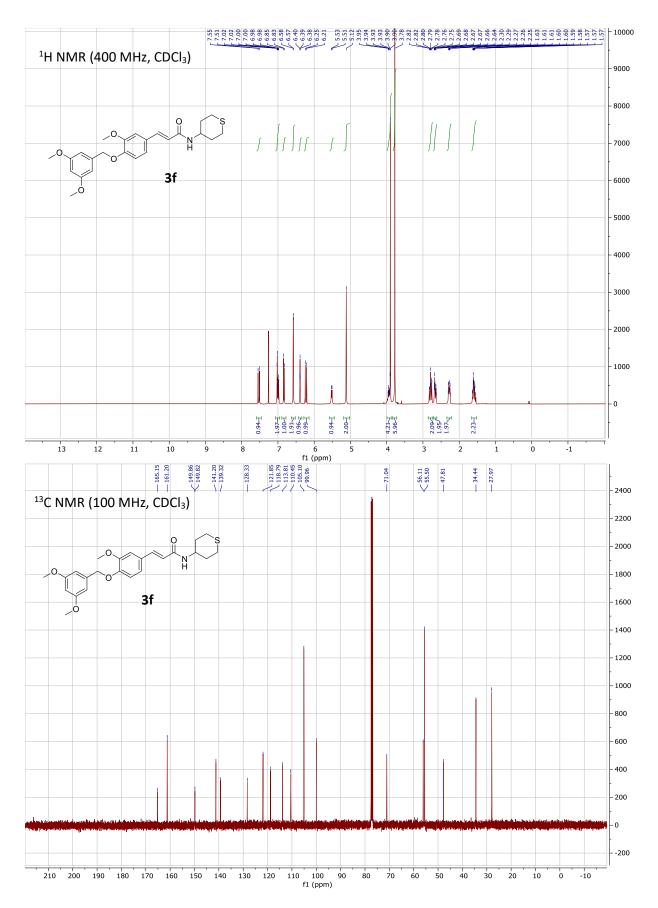

3.0 References:

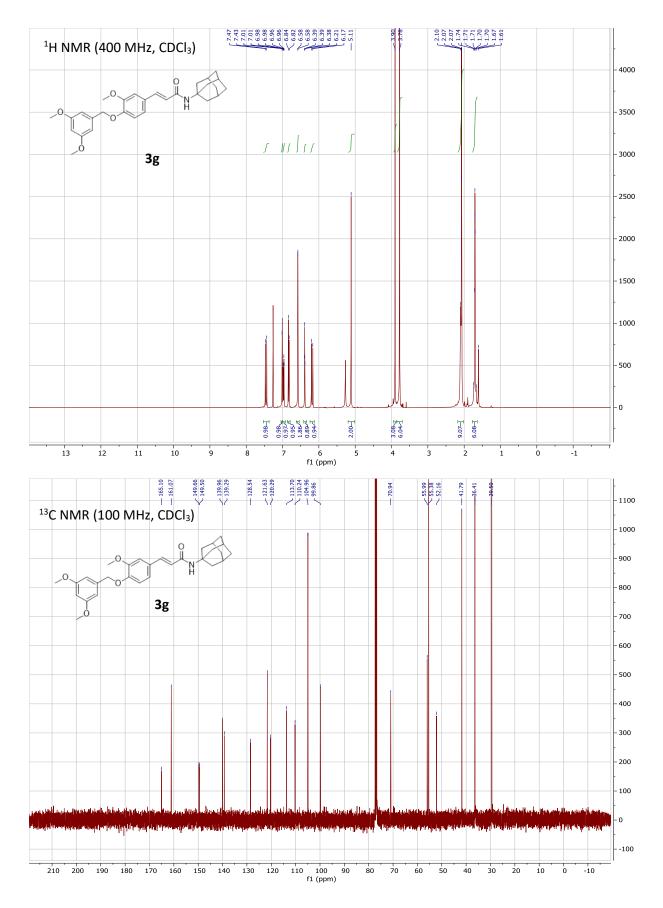

- 1. P. Franzmann, S. Trosien, M. Schubert and S. R. Waldvogel, Modular Approach to 9-Monosubstituted Fluorene Derivatives Using MoV Reagents, *Organic Letters*, 2016, **18**, 1182-1185.
- 2. S. Funasaka, K. Kato and T. Mukaiyama, Highly Efficient Method for the Synthesis of Carboxamides from Carboxylic Acids and Amines Using Benzenesulfonic Anhydride (BSA), *Chemistry Letters*, 2007, **36**, 1456-1457.
- 3. Z. Yan, H.-P. Xie, H.-Q. Shen and Y.-G. Zhou, Ruthenium-Catalyzed Hydrogenation of Carbocyclic Aromatic Amines: Access to Chiral Exocyclic Amines, *Organic Letters*, 2018, **20**, 1094-1097.

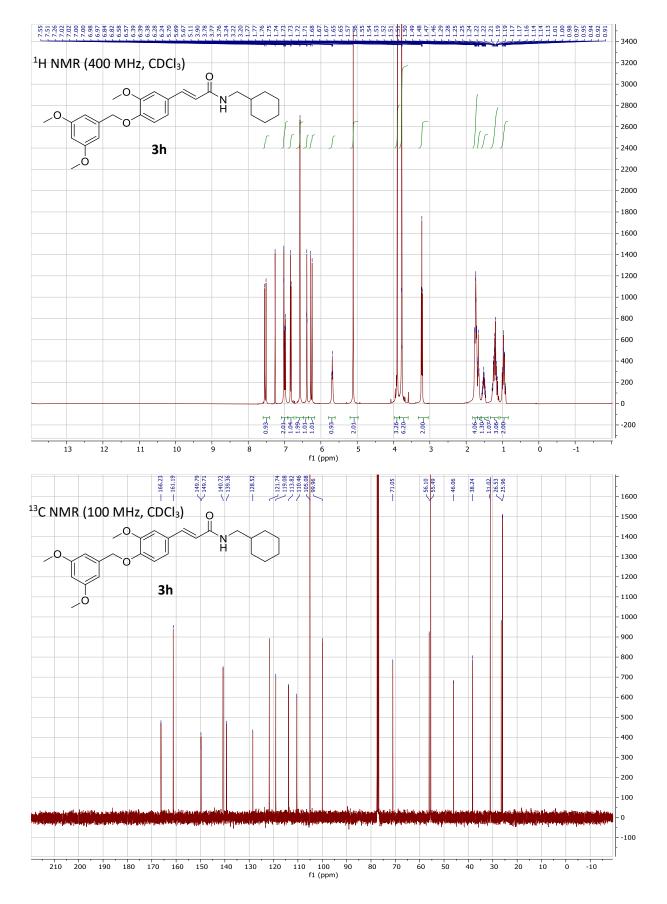

- 4. P. R. Lazzara, A. D. Jain, A. C. Maldonado, B. Richardson, K. J. Skowron, B. P. David, Z. Siddiqui, K. M. Ratia and T. W. Moore, Synthesis and Evaluation of Noncovalent Naphthalene-Based KEAP1-NRF2 Inhibitors, *ACS Medicinal Chemistry Letters*, 2020, **11**, 521-527.
- 5. I. Kolaj, Y. Wang, K. Ye, A. Meek, S. I. Liyanage, C. Santos and D. F. Weaver, Ferulic acid amide derivatives with varying inhibition of amyloid-β oligomerization and fibrillization, *Bioorganic & Medicinal Chemistry*, 2021, **43**, 116247.
- D. Fancelli, A. Abate, R. Amici, P. Bernardi, M. Ballarini, A. Cappa, G. Carenzi, A. Colombo, C. Contursi, F. Di Lisa, G. Dondio, S. Gagliardi, E. Milanesi, S. Minucci, G. Pain, P. G. Pelicci, A. Saccani, M. Storto, F. Thaler, M. Varasi, M. Villa and S. Plyte, Cinnamic Anilides as New Mitochondrial Permeability Transition Pore Inhibitors Endowed with Ischemia-Reperfusion Injury Protective Effect in Vivo, Journal of Medicinal Chemistry, 2014, 57, 5333-5347.
- 7. K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, *Methods (San Diego, Calif.)*, 2001, **25**, 402-408.

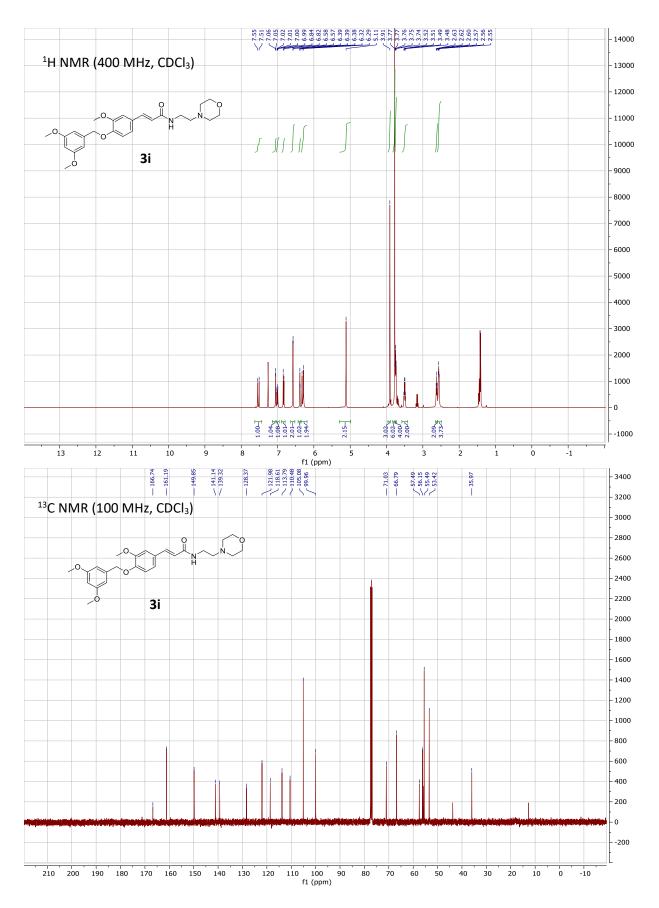

4.0 NMR spectra (¹H, ¹³C, ¹⁹F) for new compounds

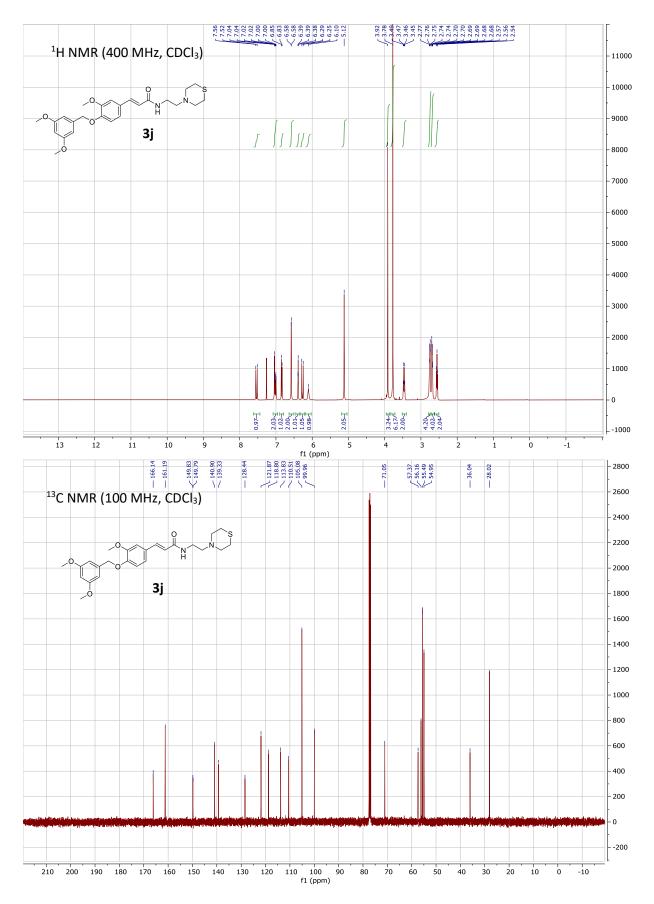

4.1 Series 1 compounds.

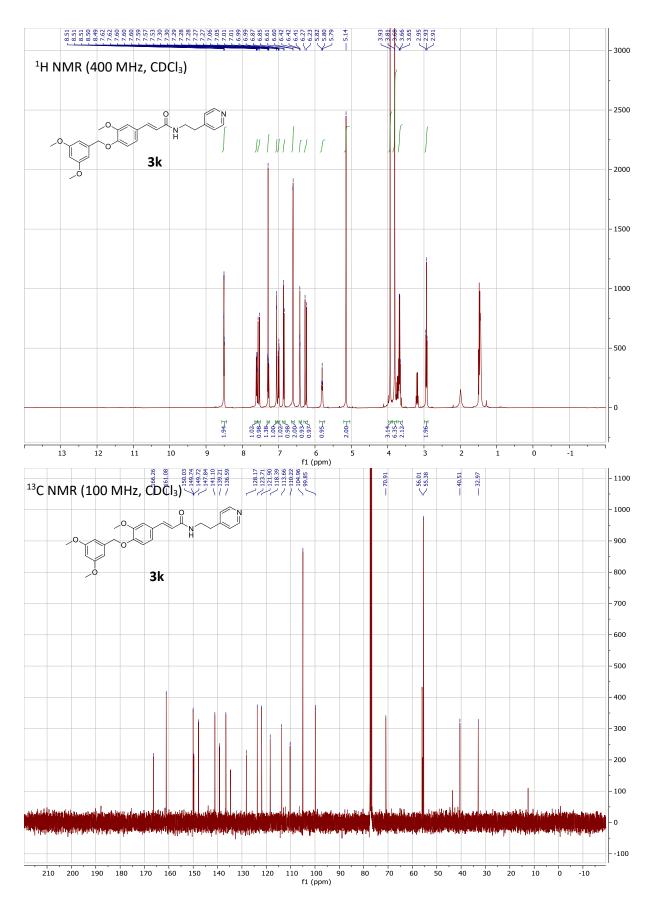


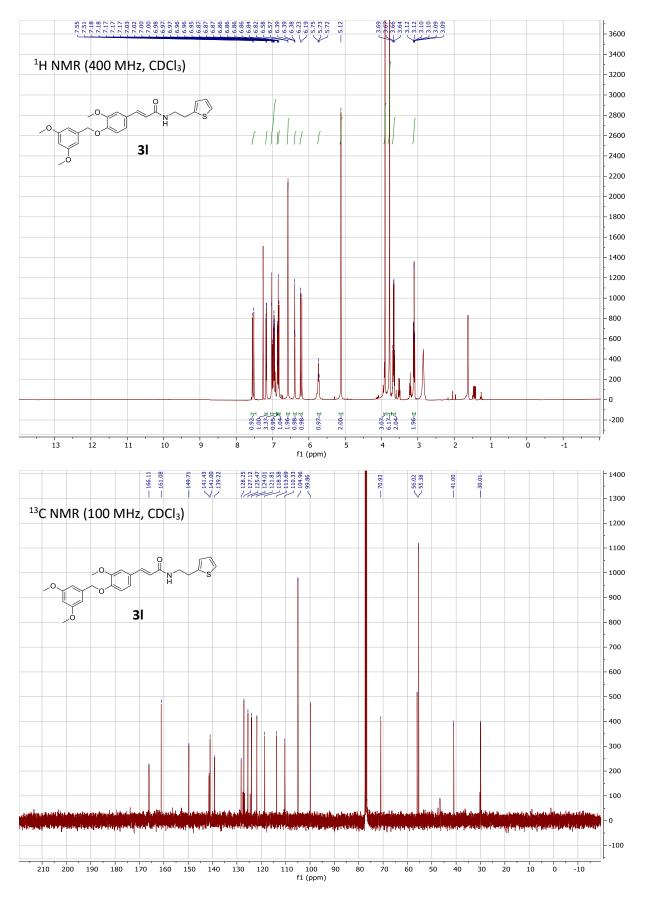


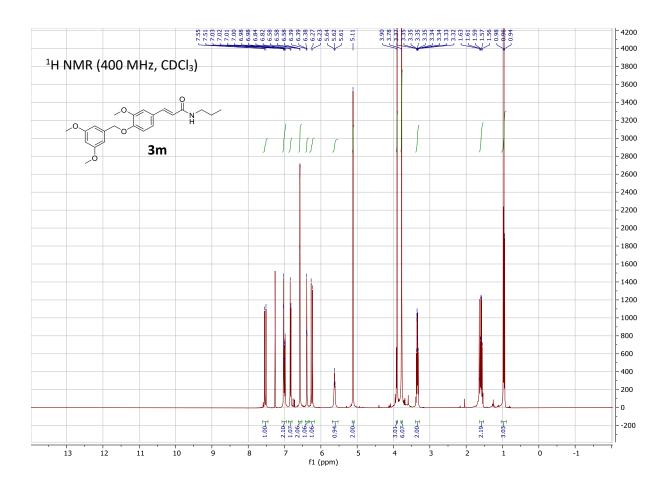


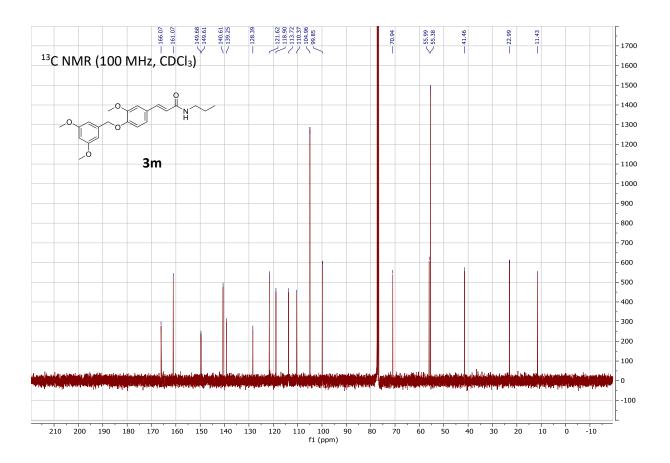


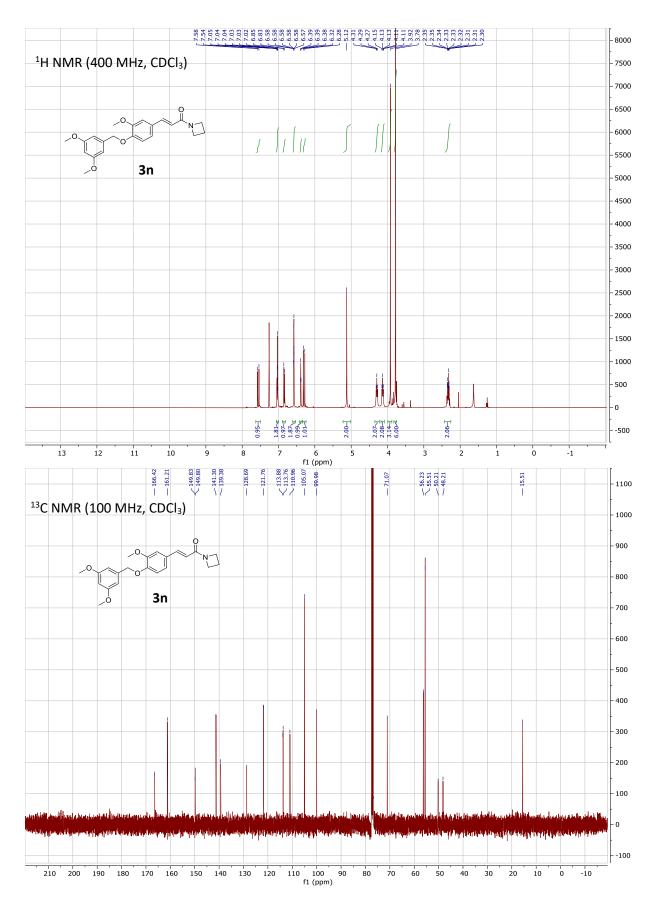


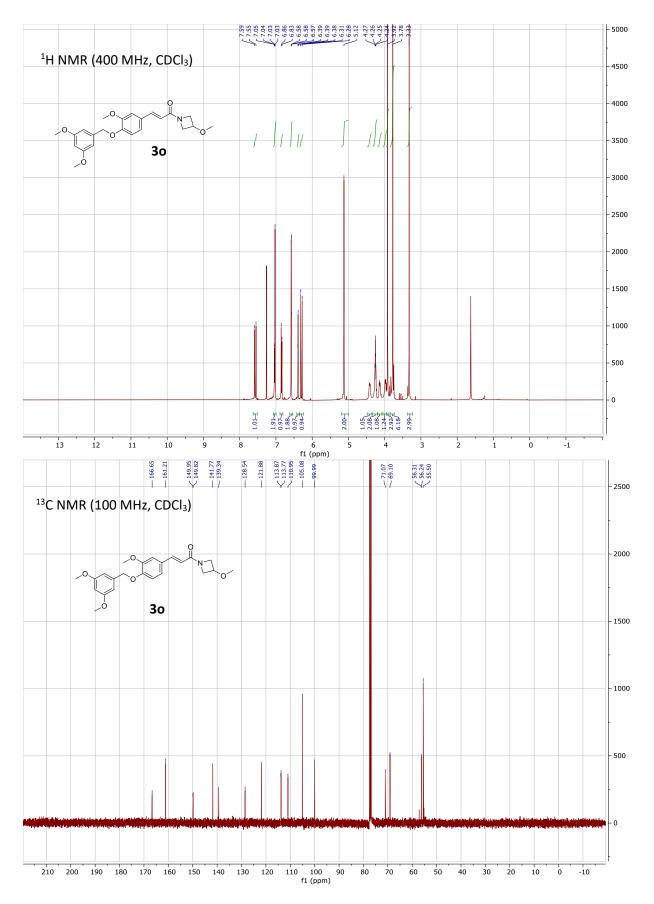


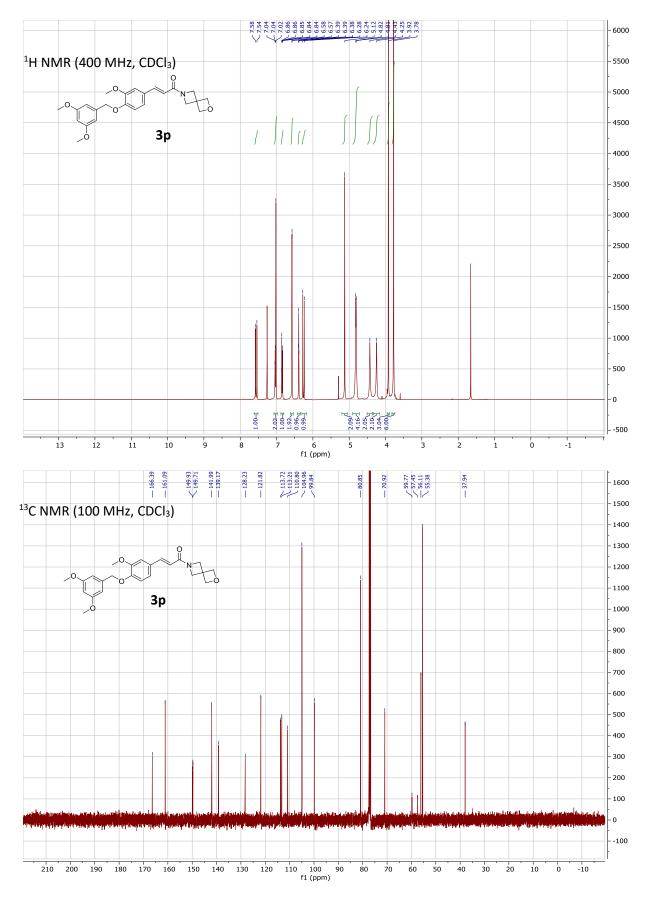


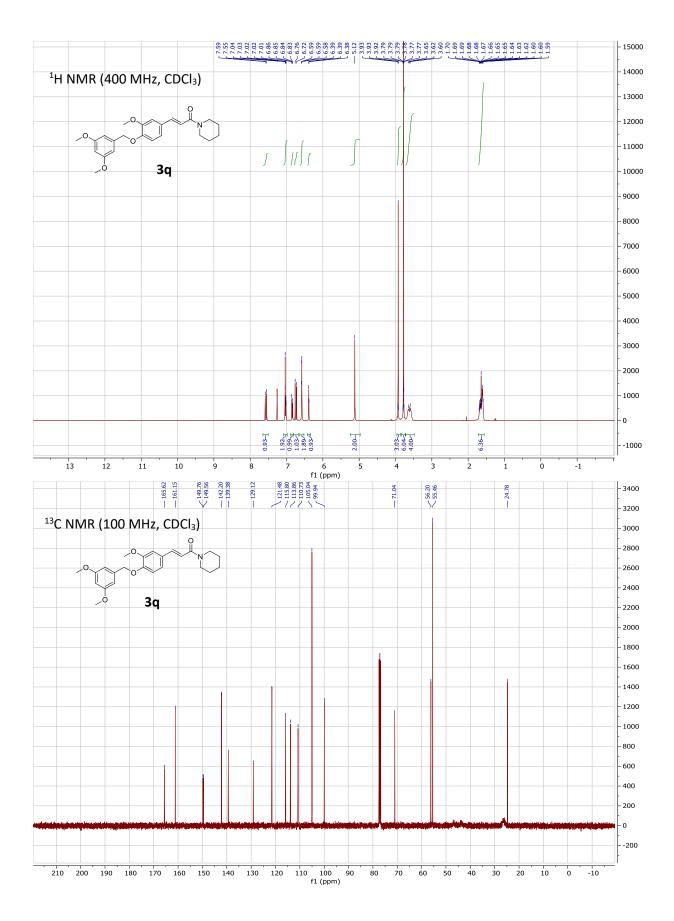


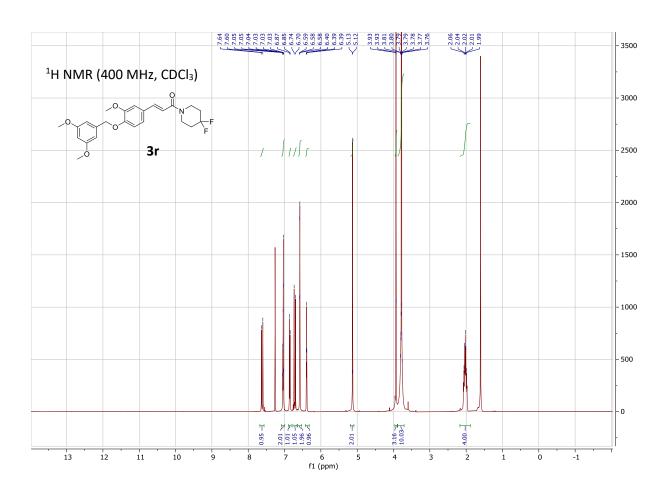


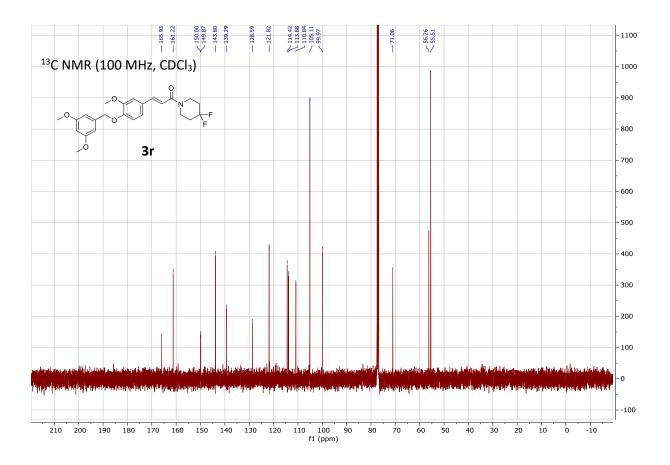


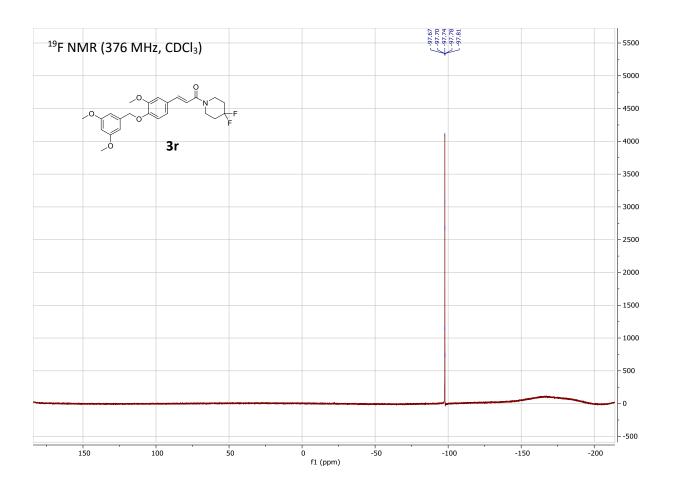


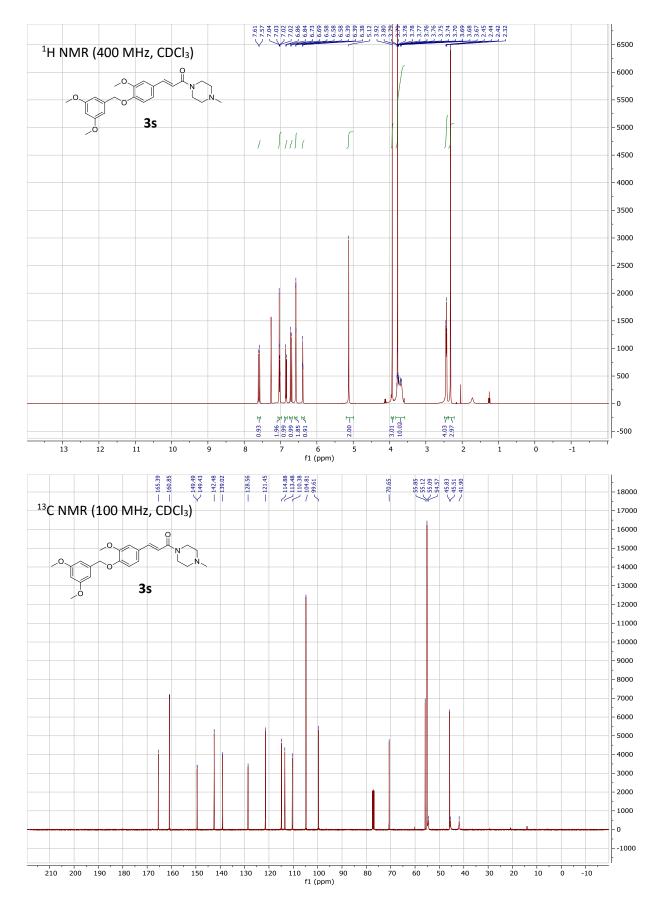


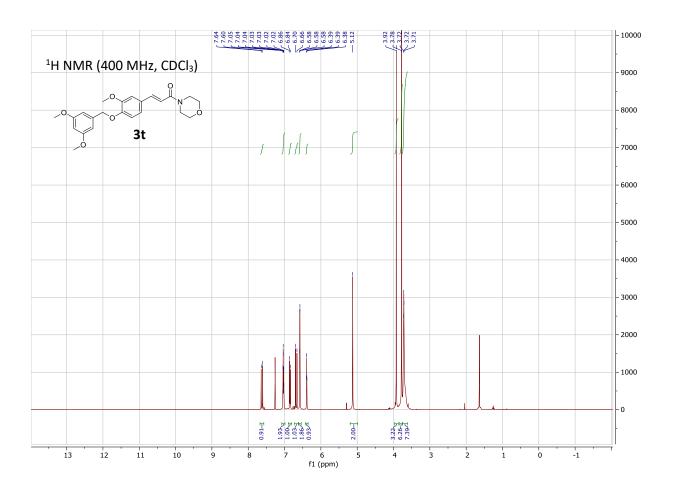


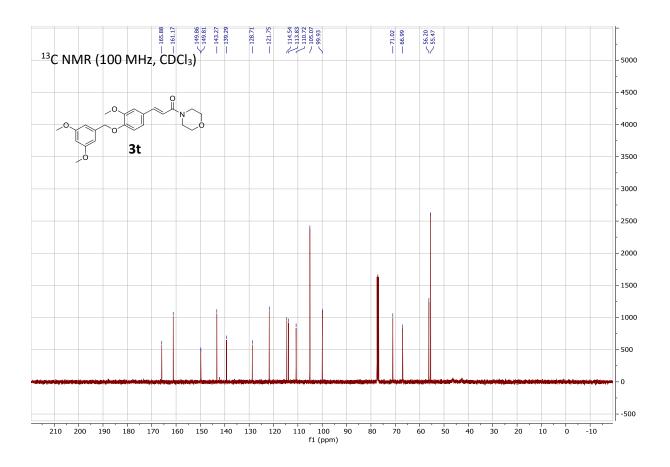


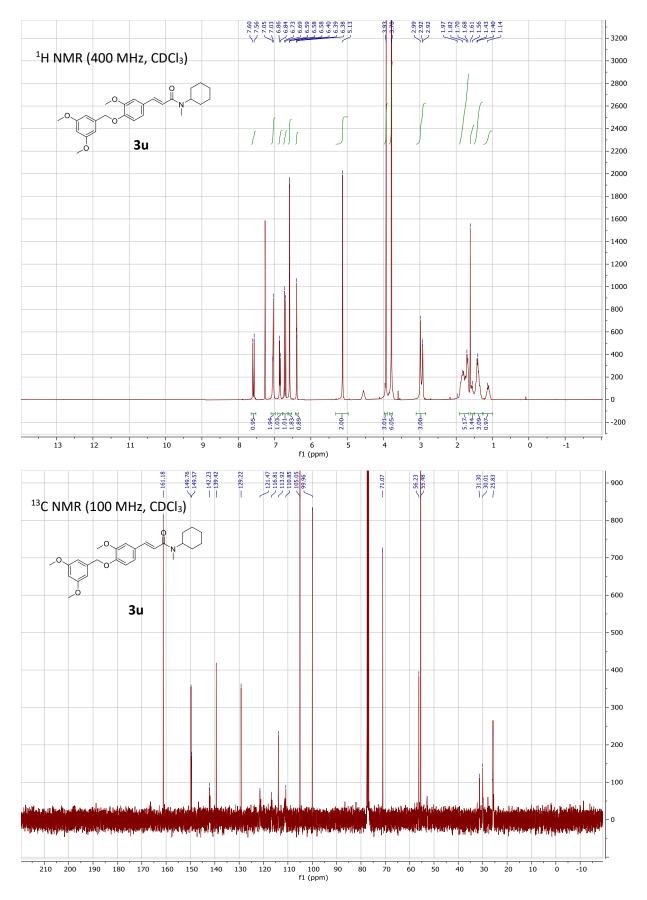


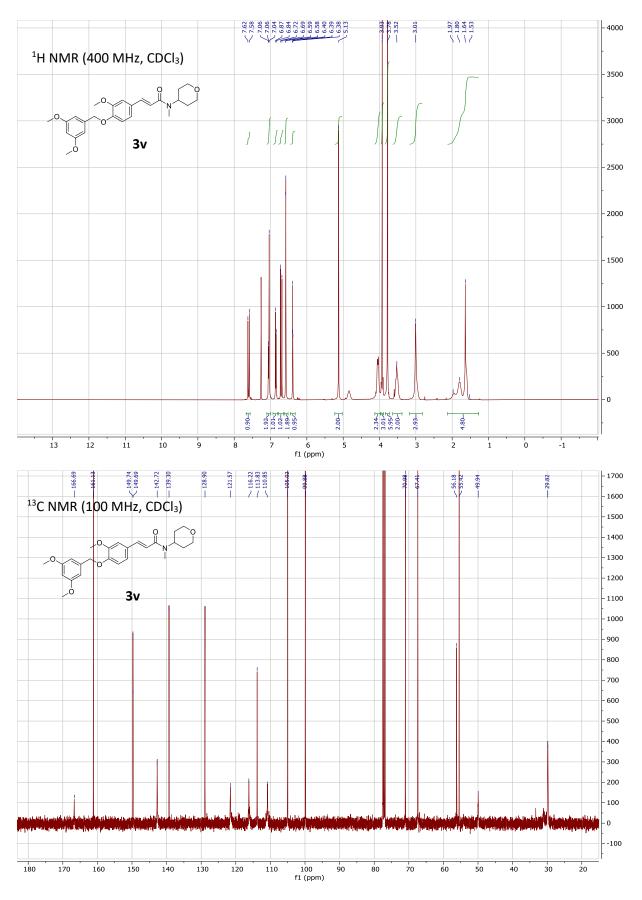


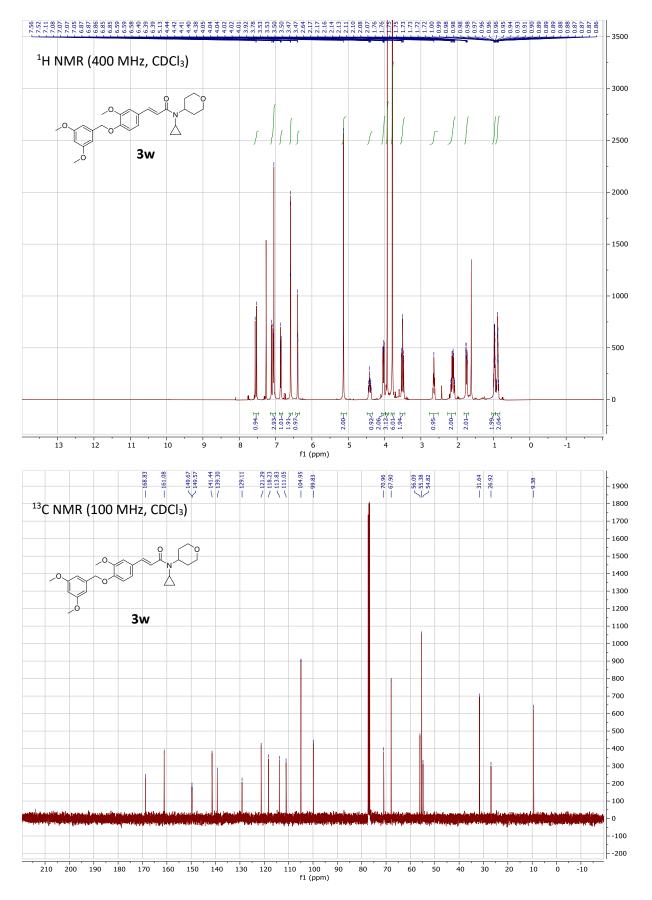


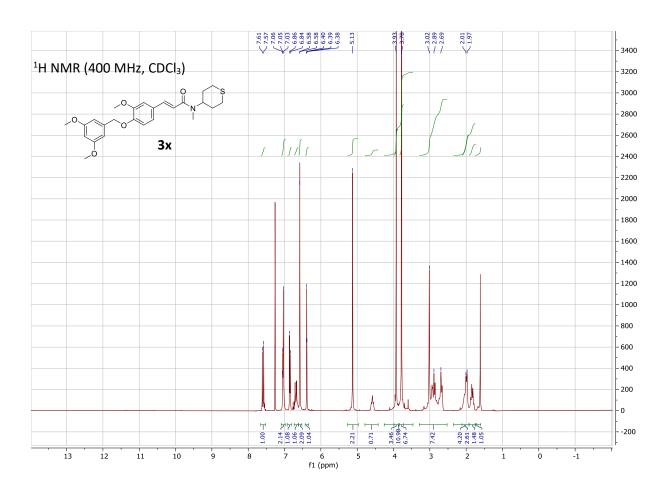


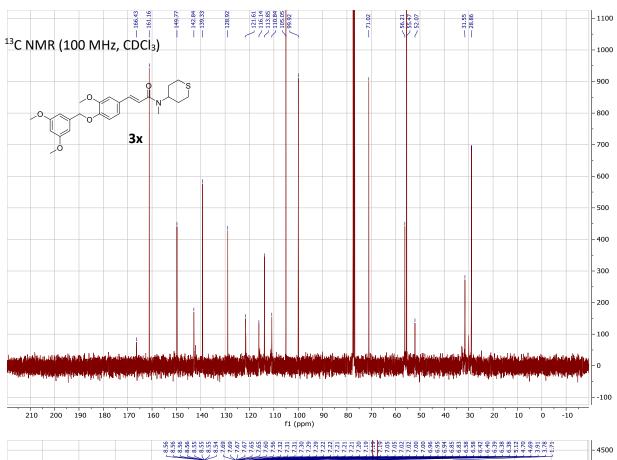


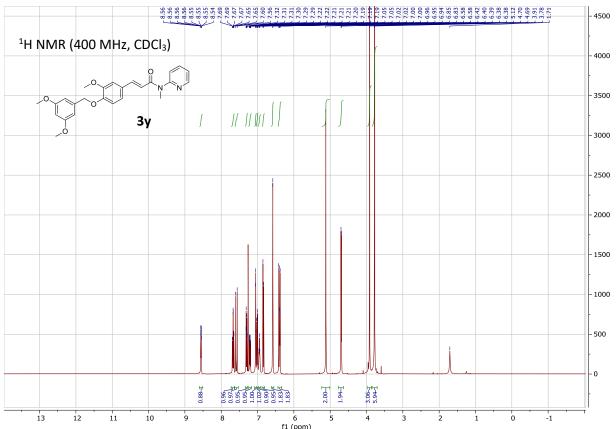


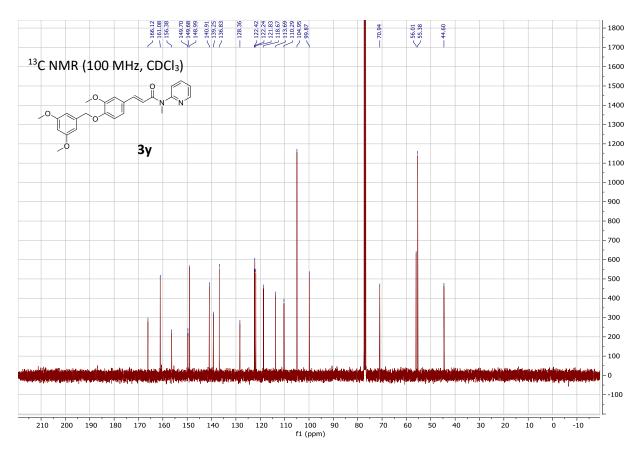


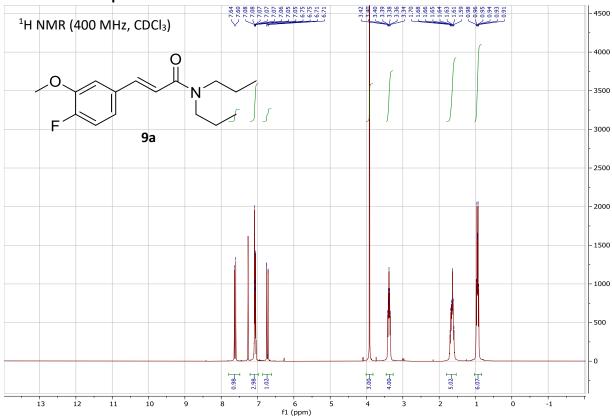


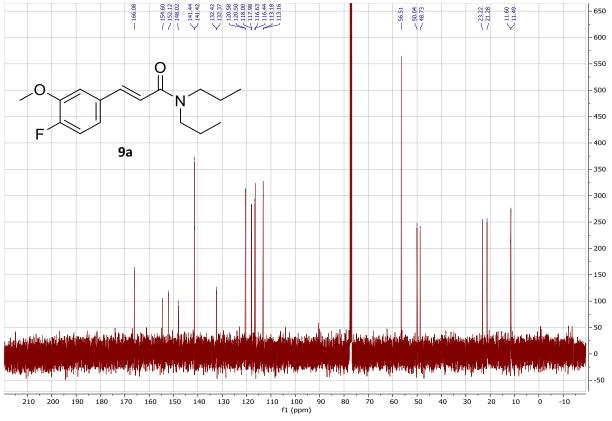


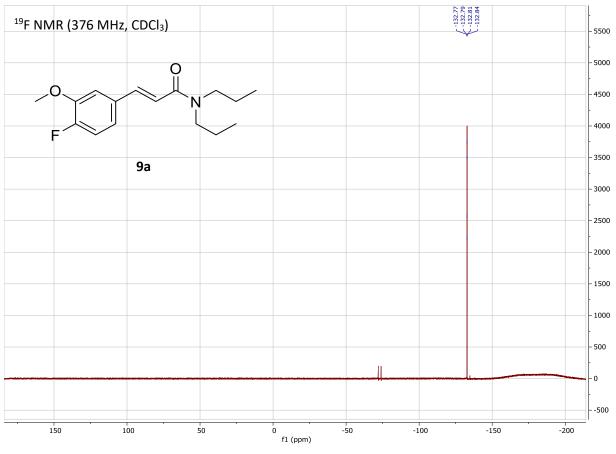


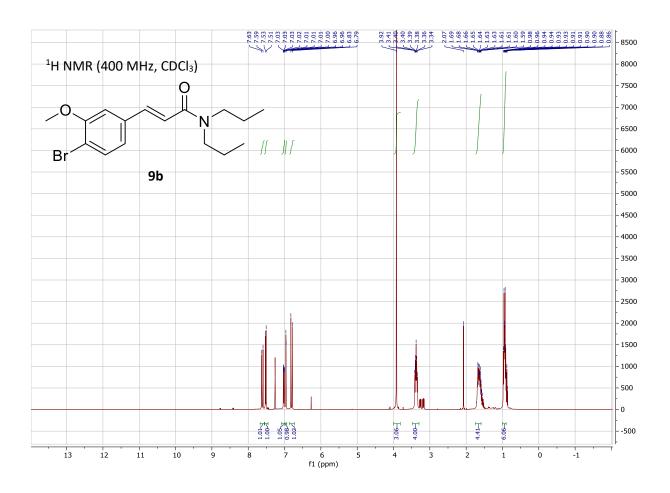


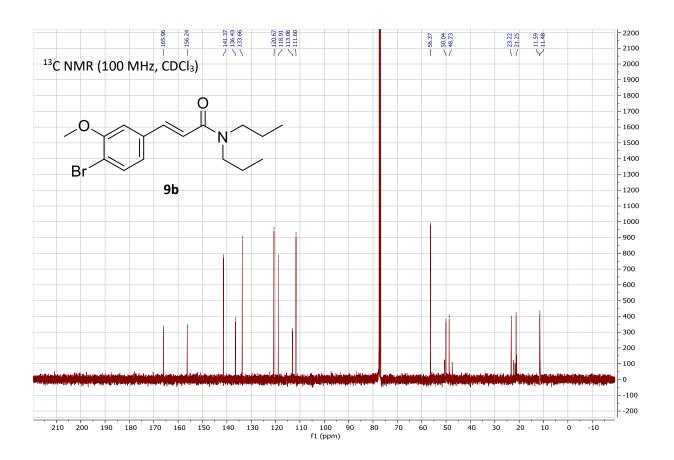


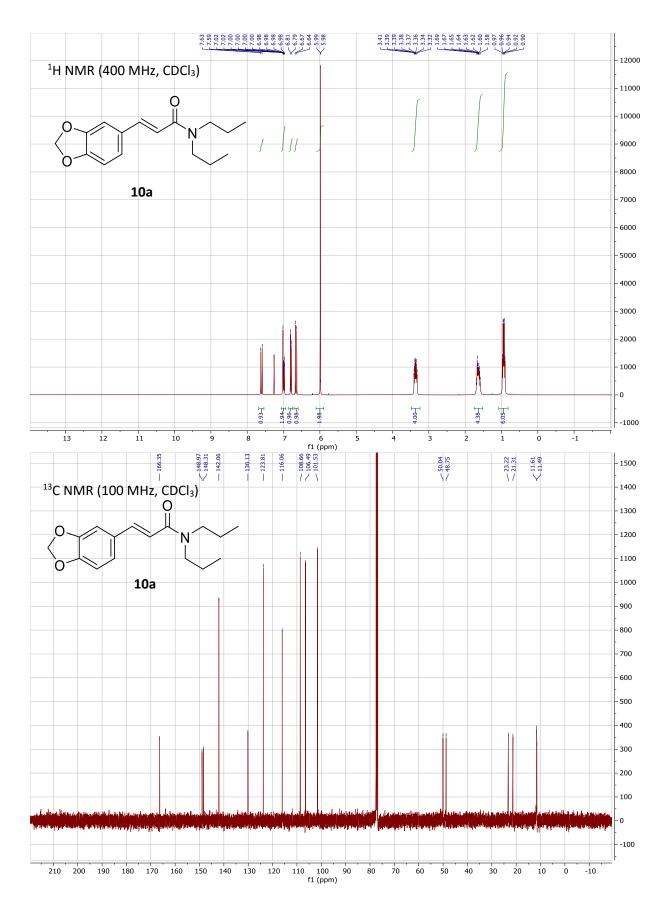


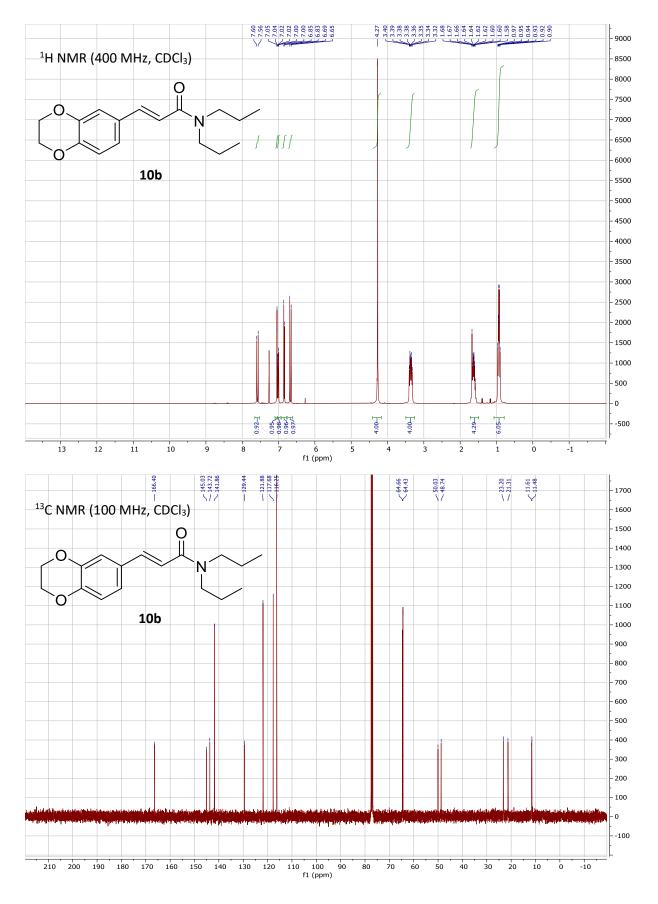




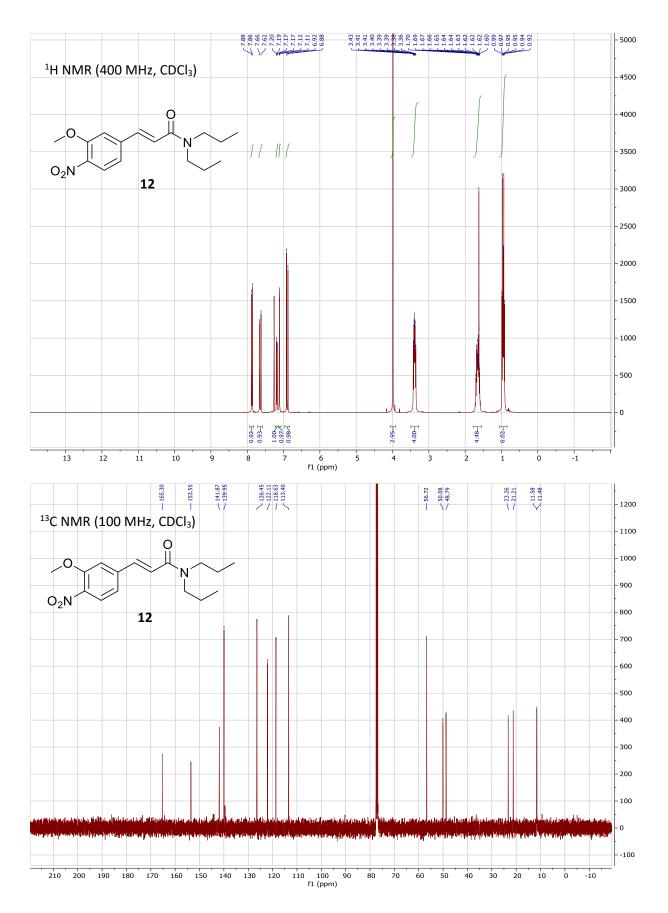


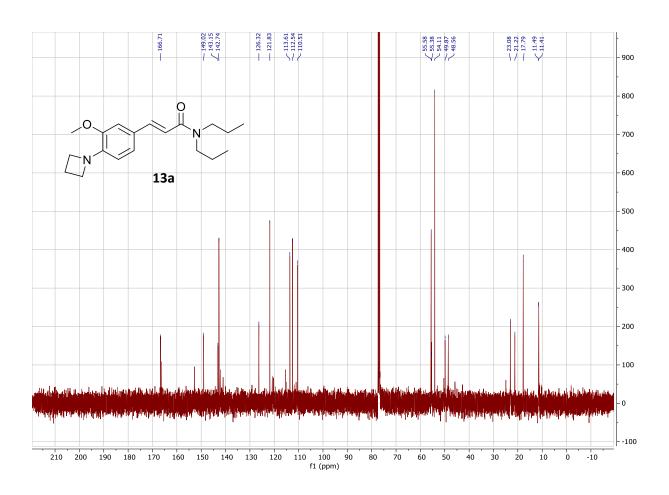

4.2 Series 2 compounds.

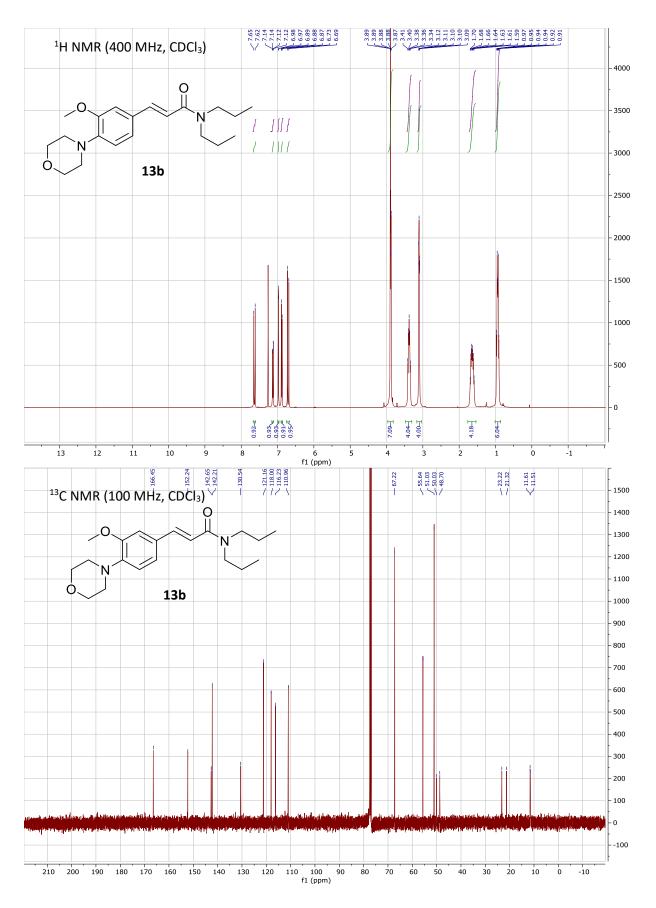


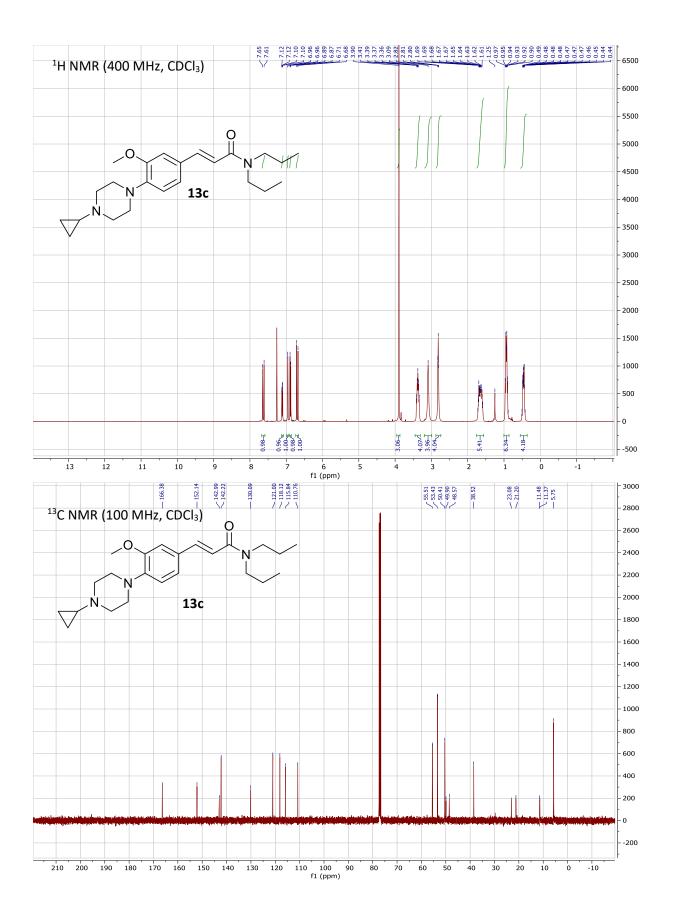


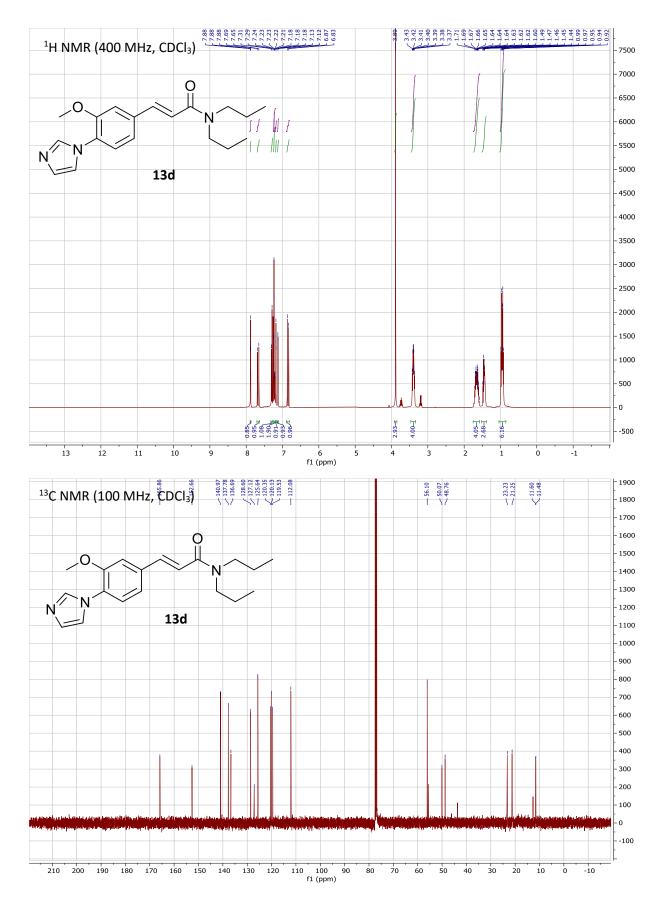


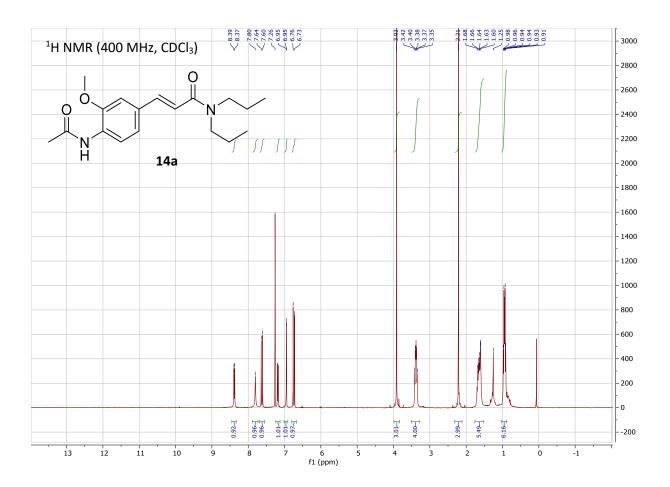


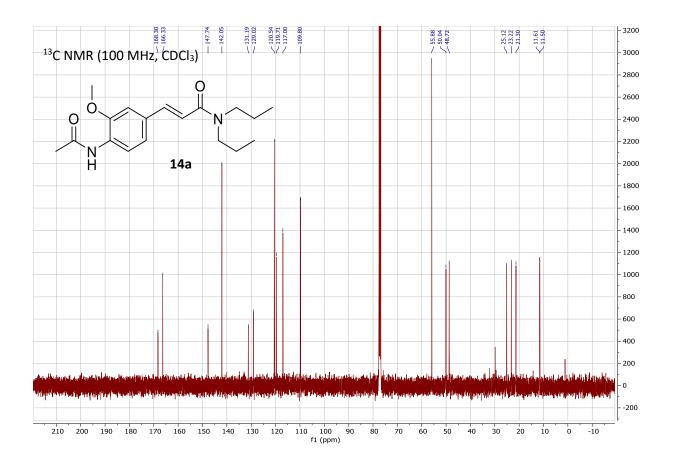


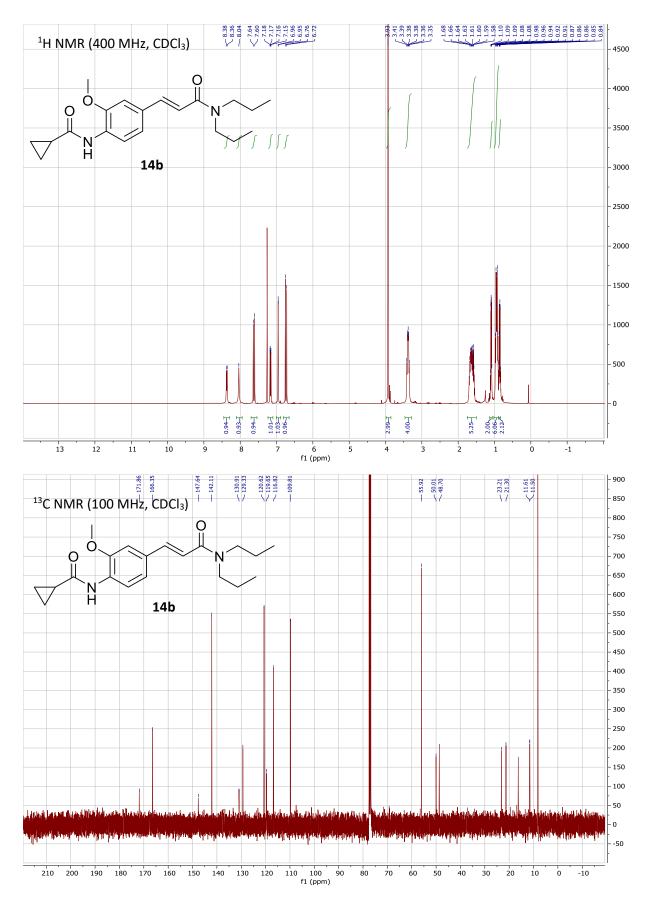


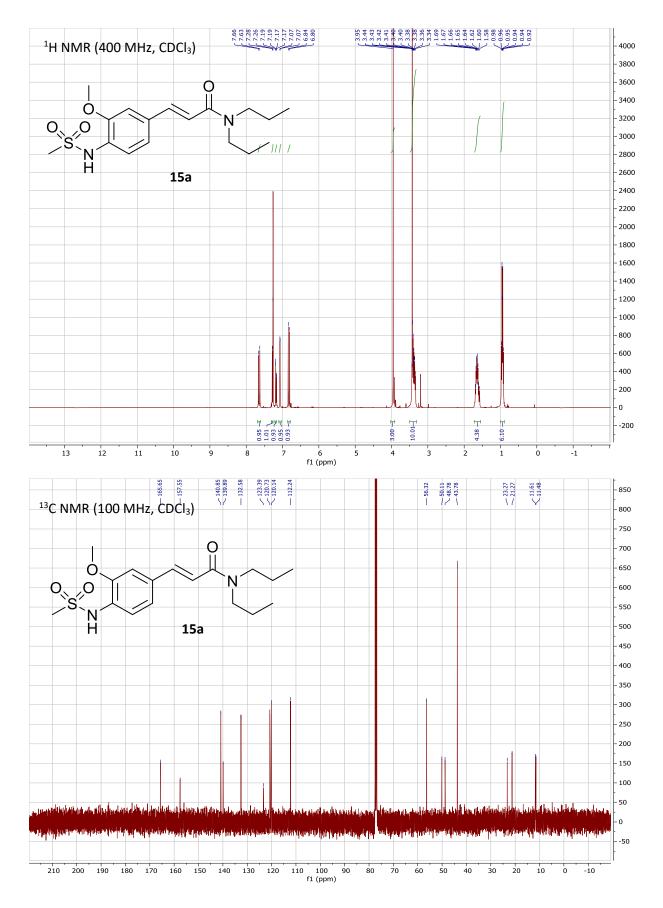


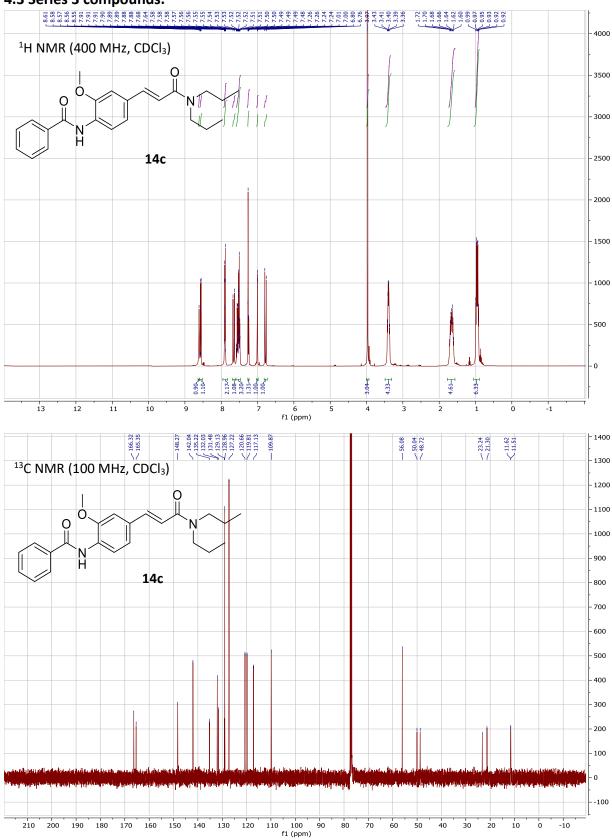

¹H NMR (400 MHz, CDCl₃) VM-02-35-1H 13a 2.0 3.000 8.0 1.0 10.0 1.006 3.0 9.0 5.0 ppm 1.060 4.189 5.176

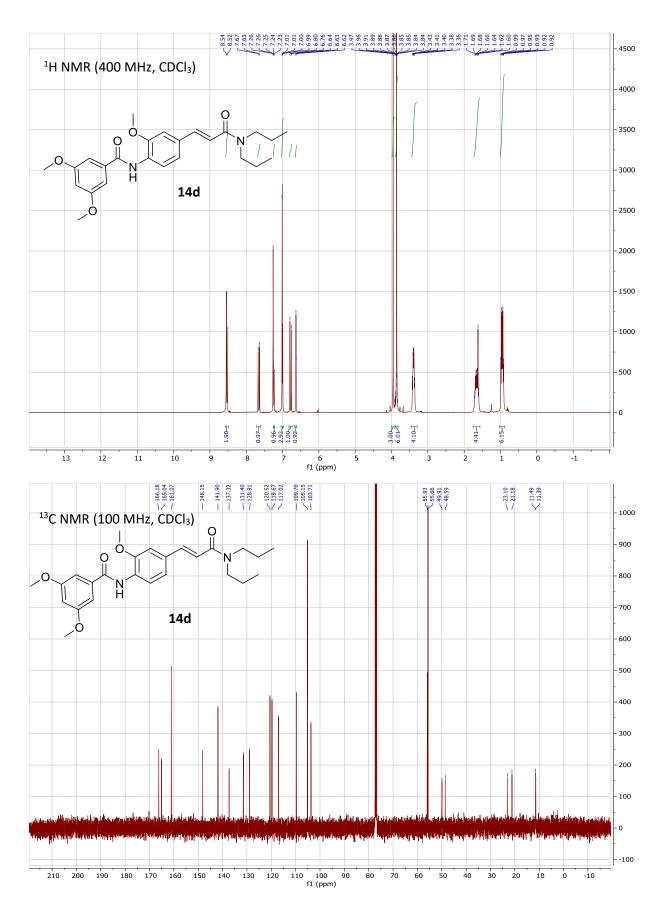

¹³C NMR (100 MHz, CDCl₃)

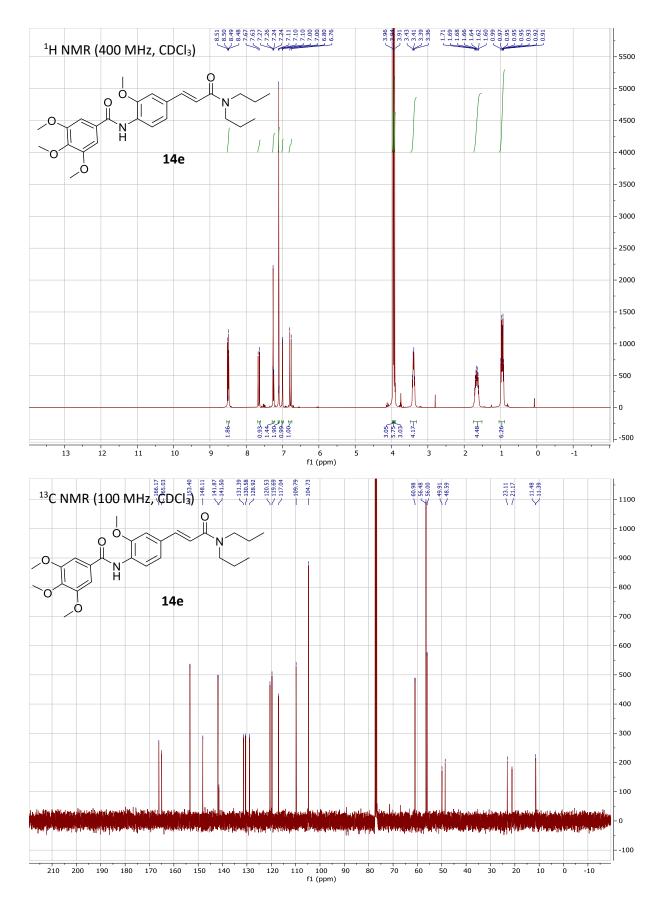


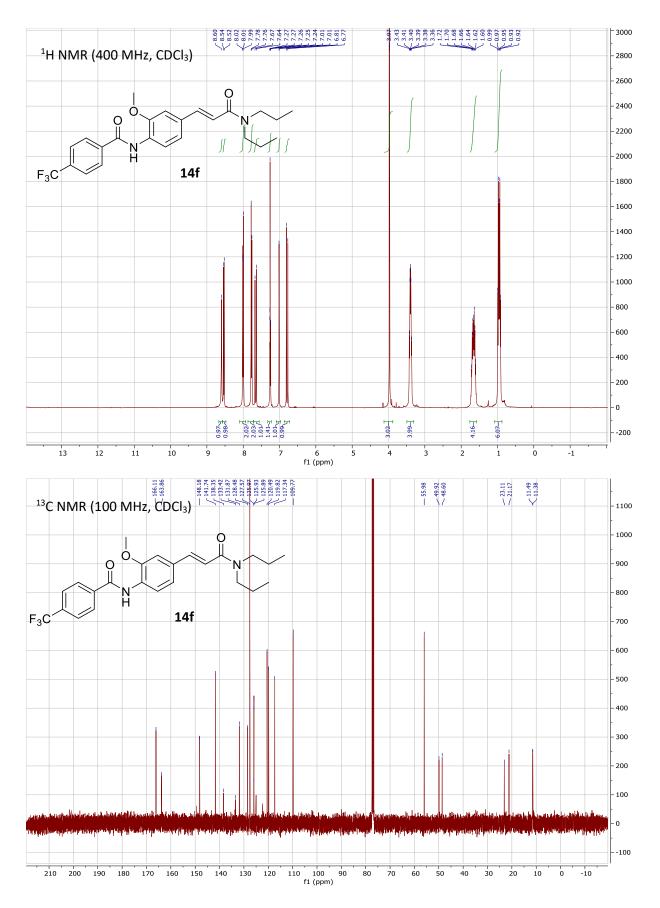


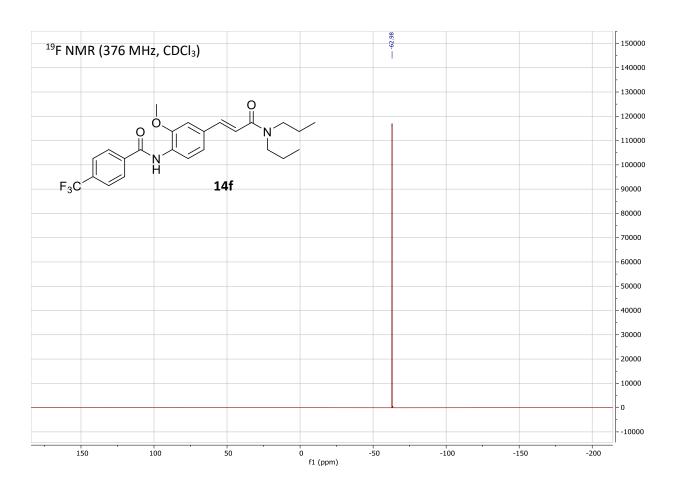


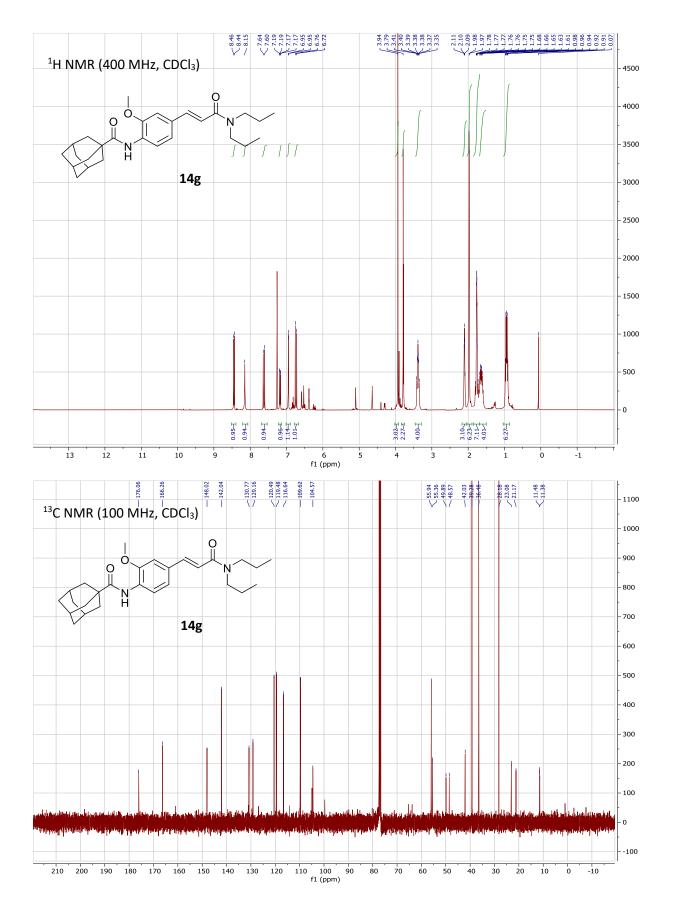


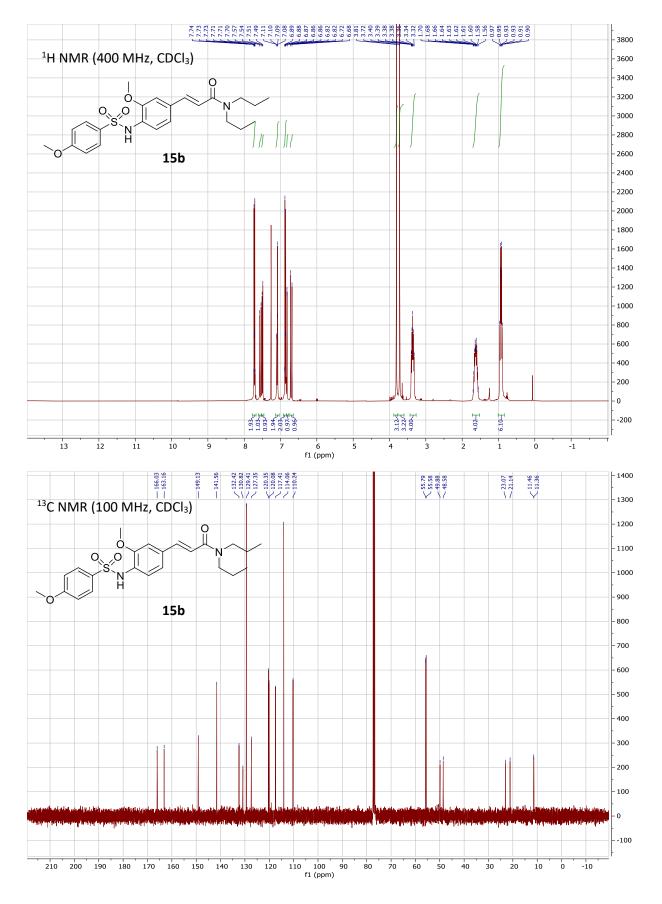


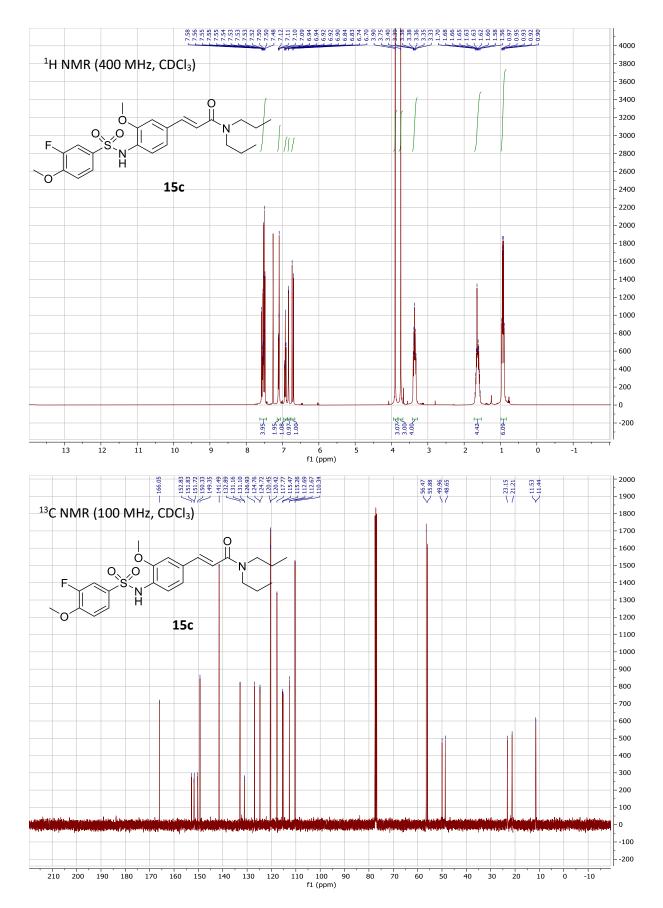


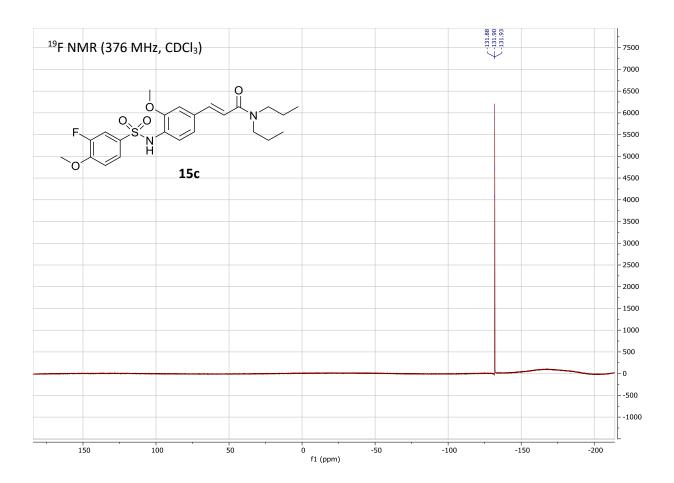


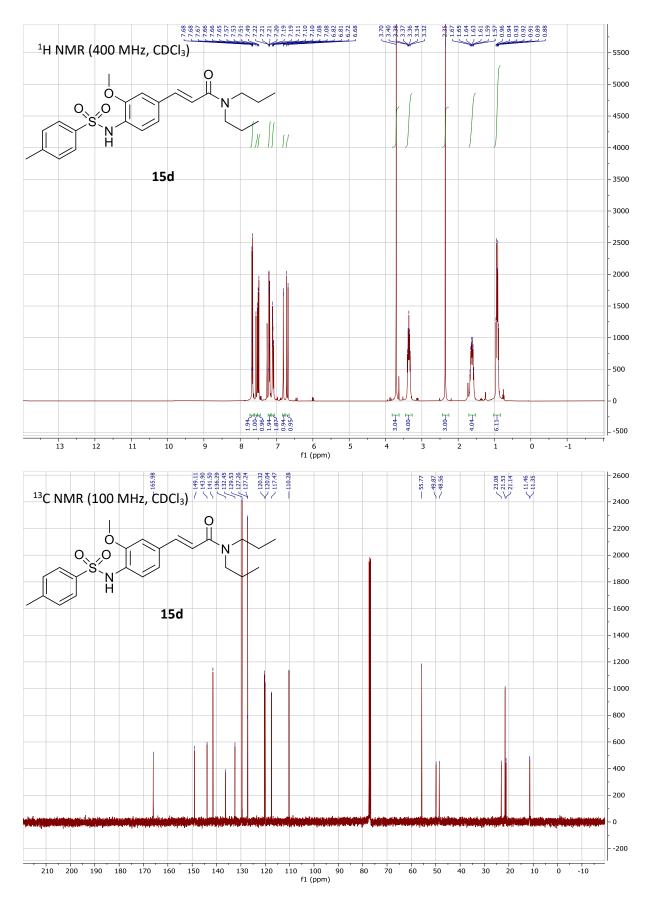

4.3 Series 3 compounds.

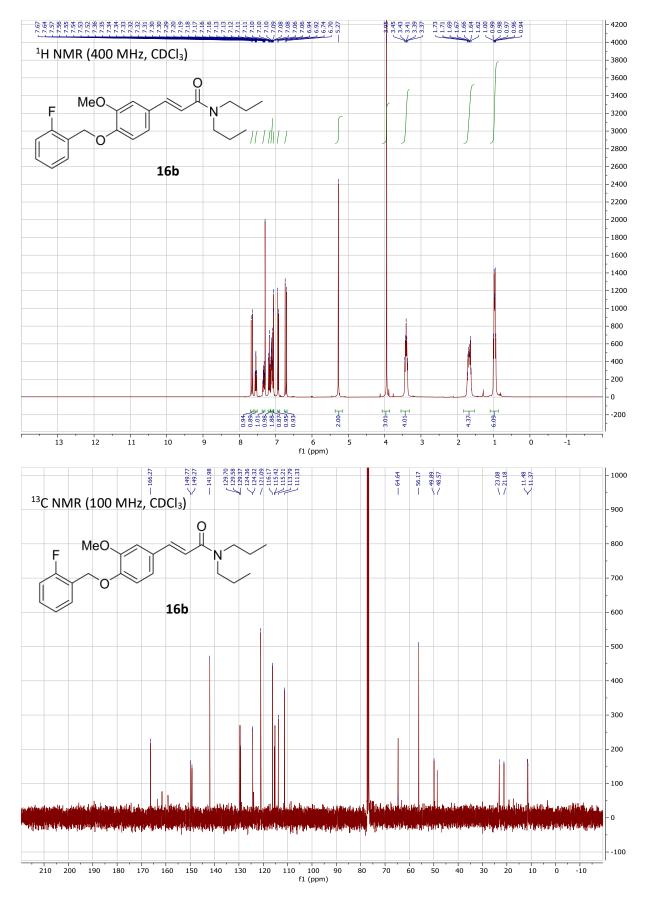


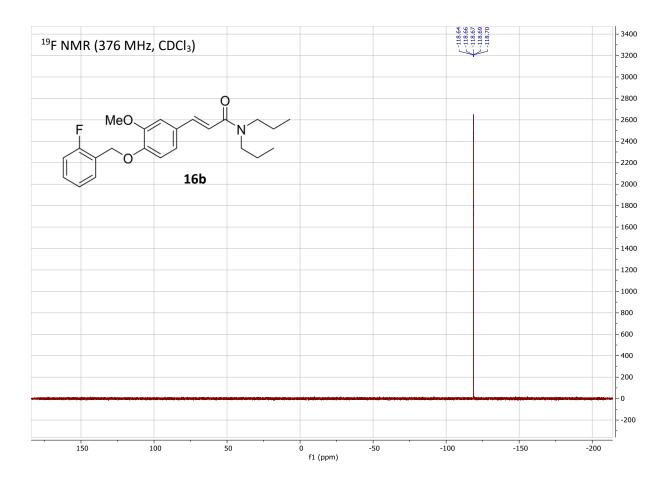


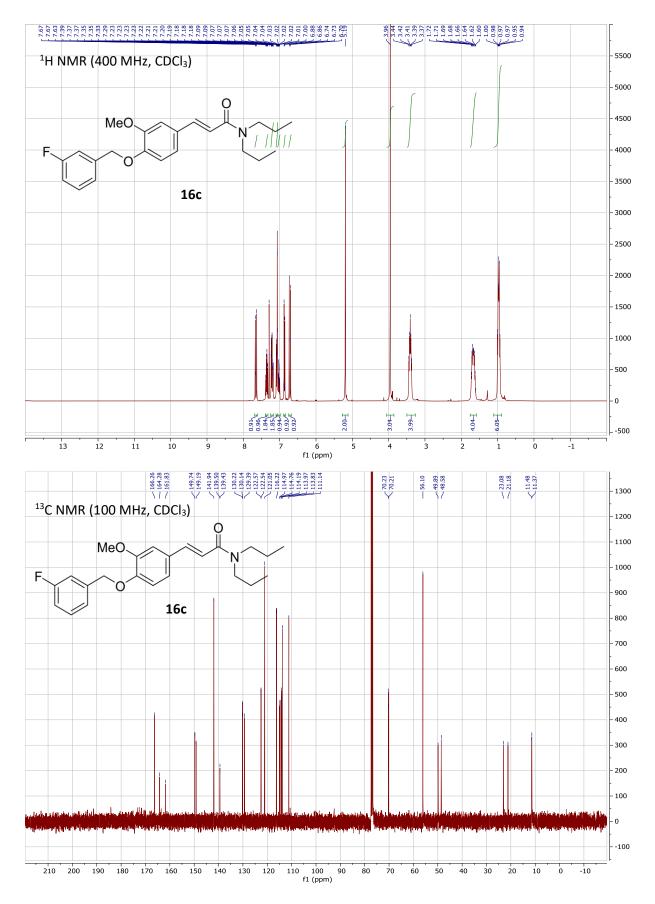


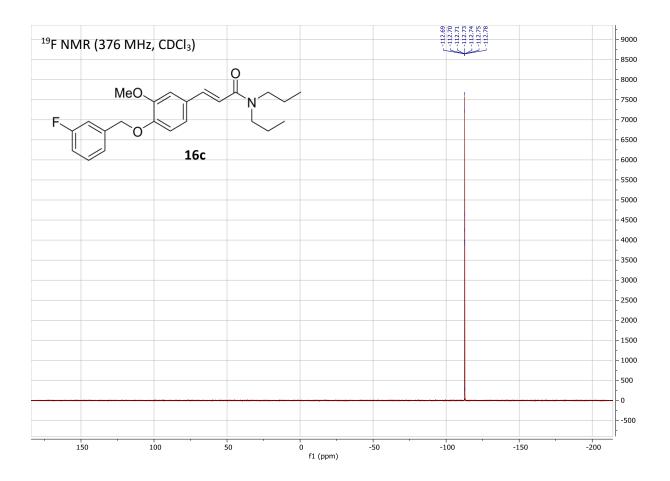


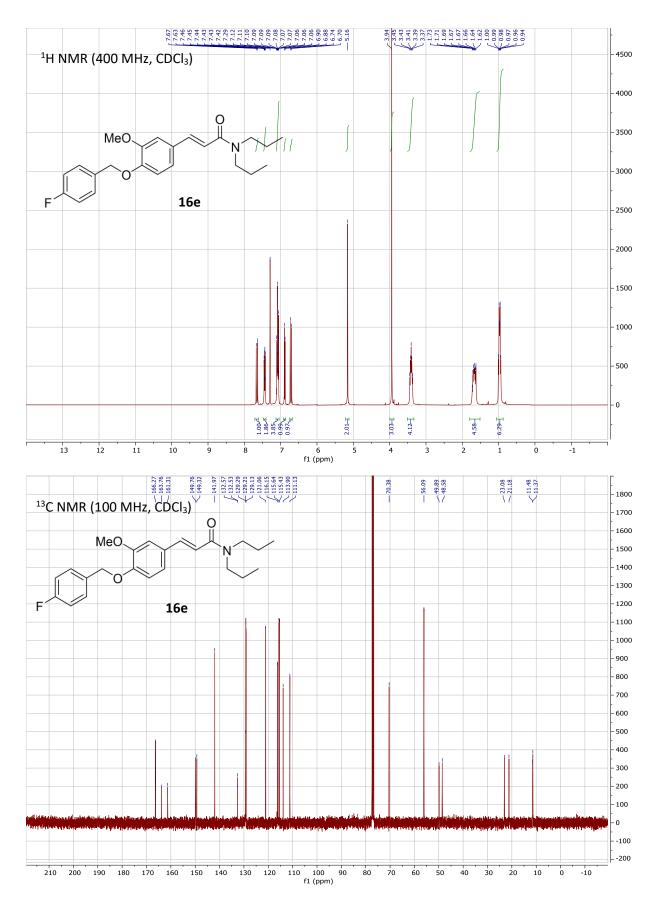


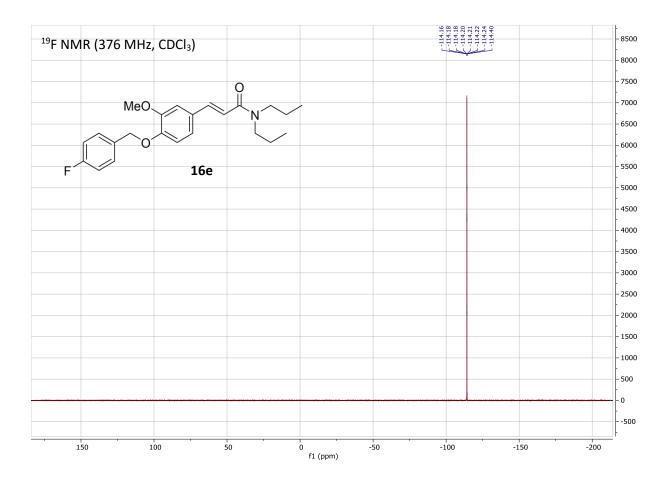


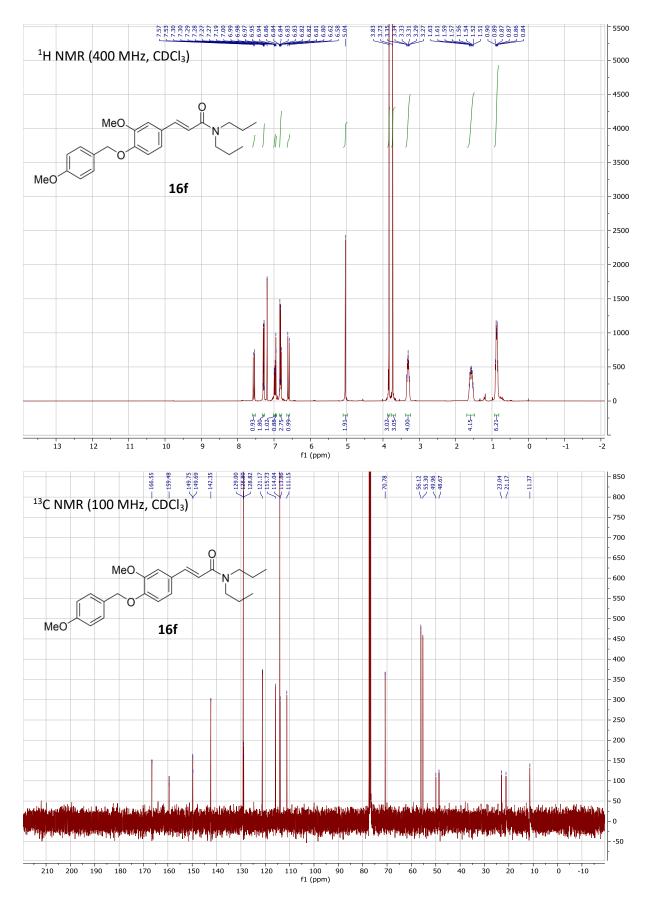


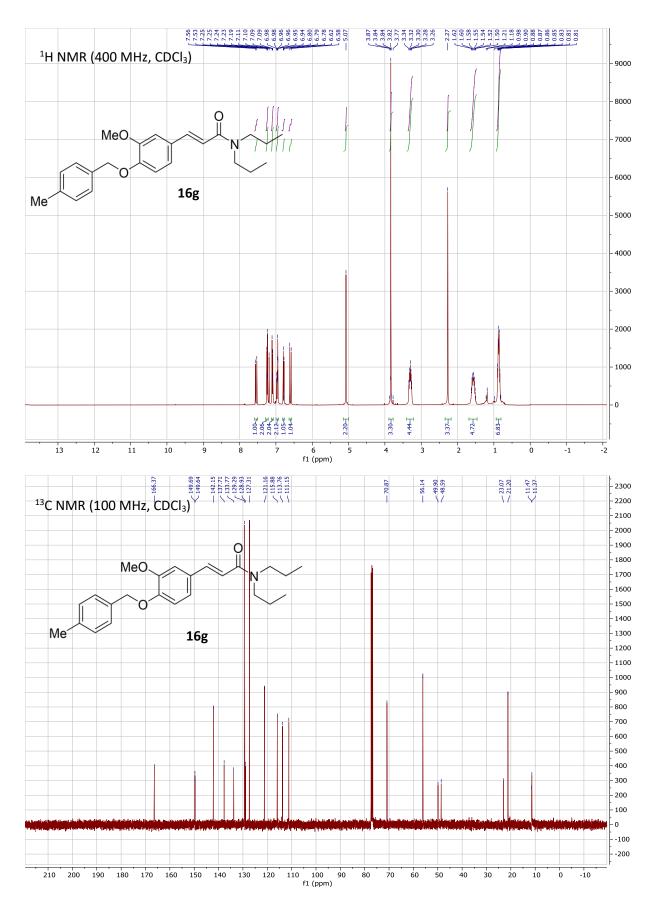


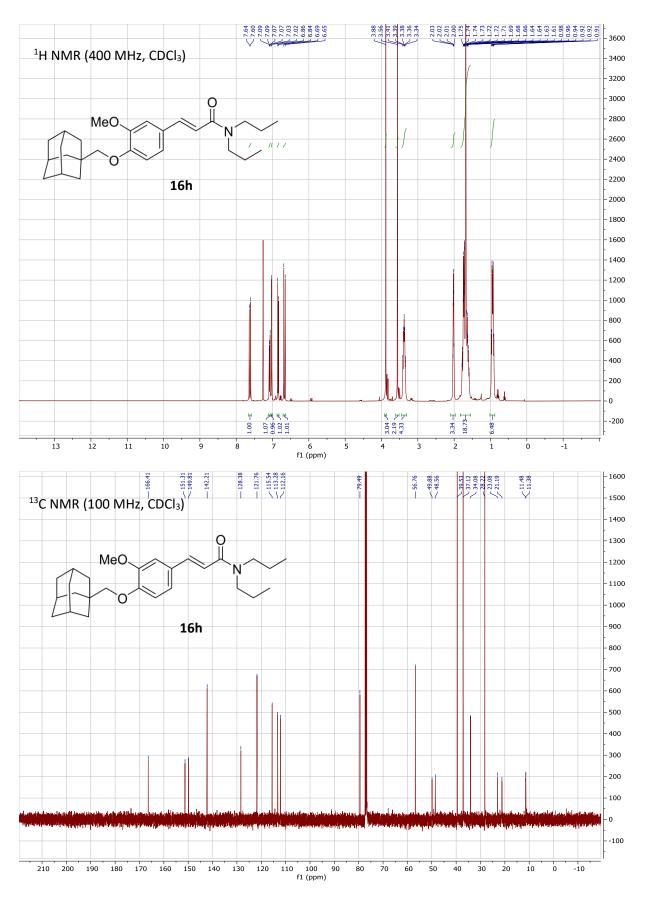


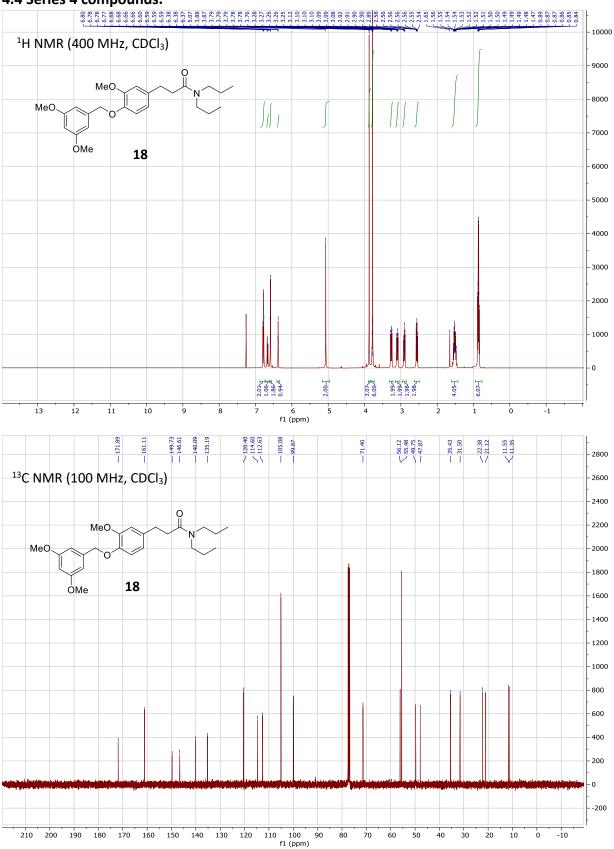


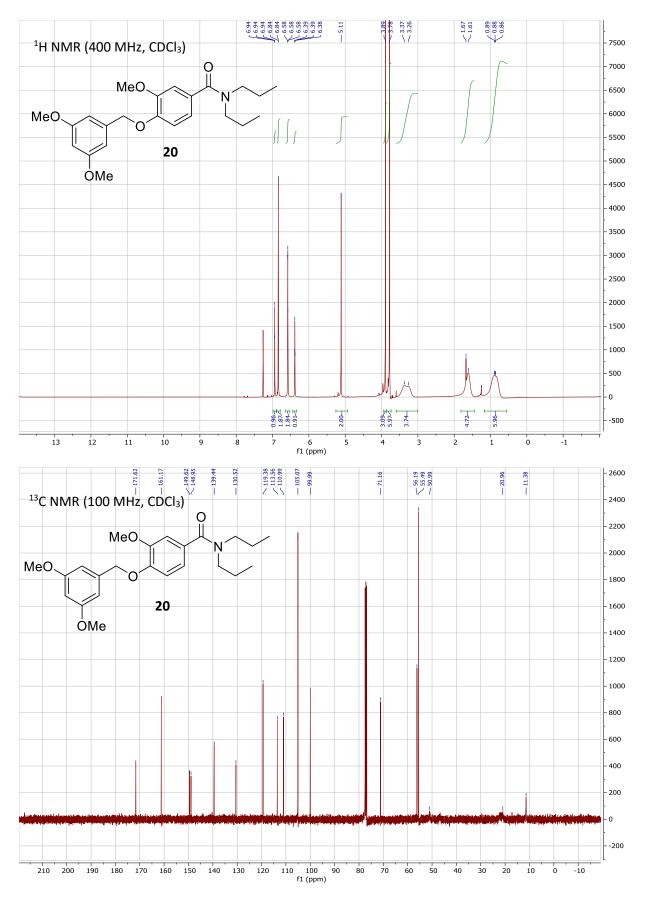


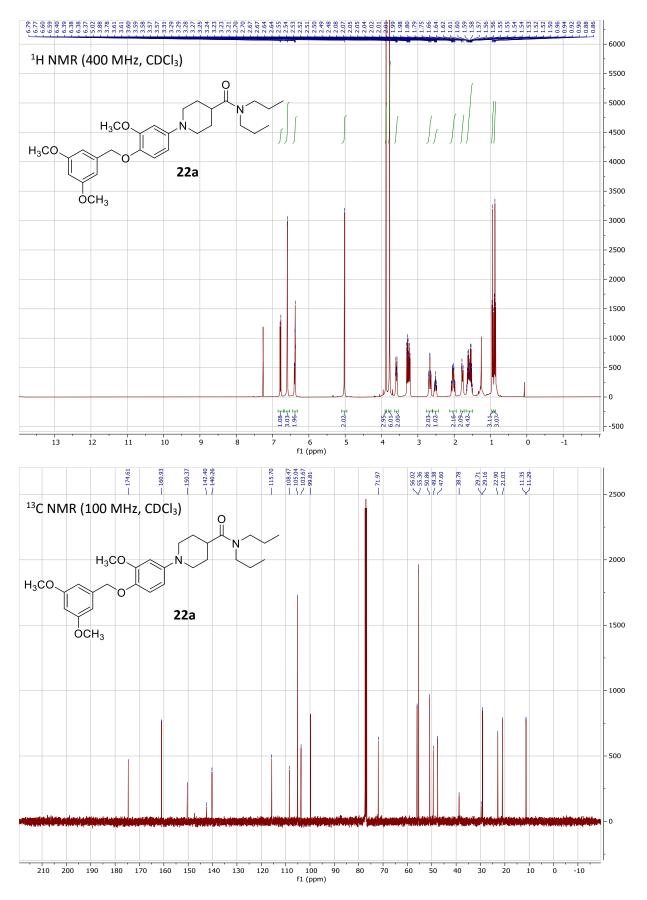


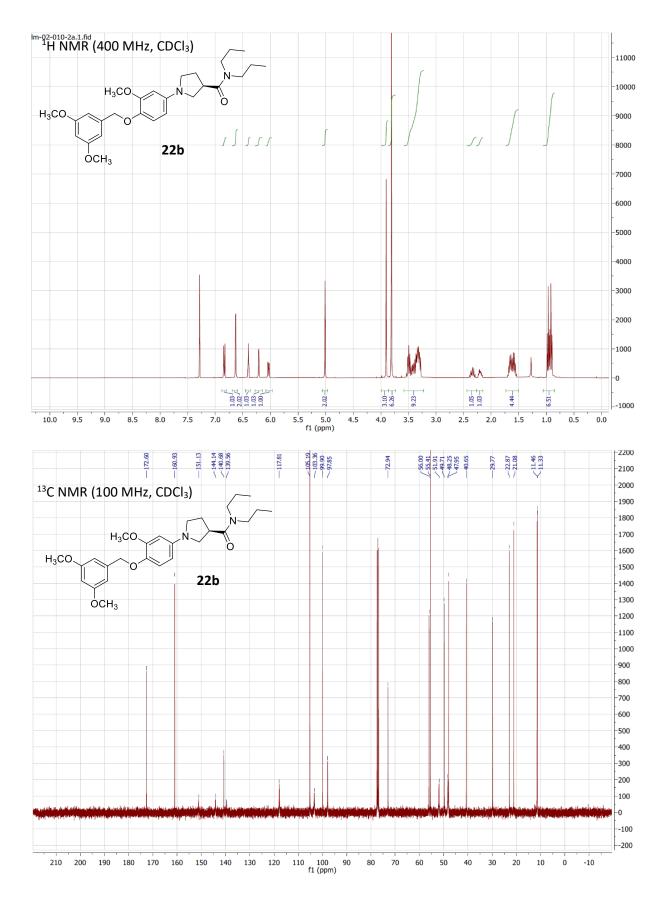


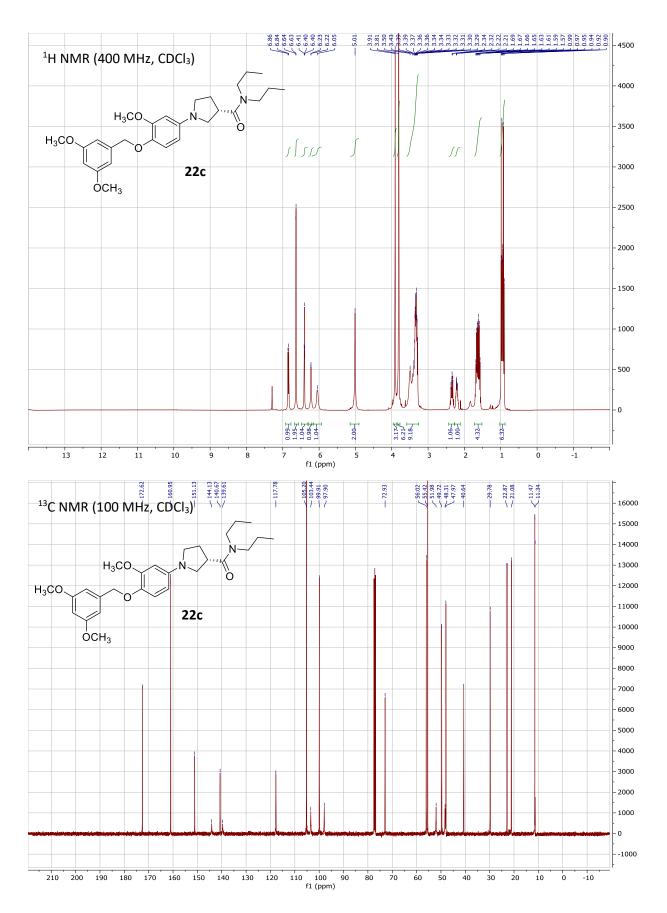











4.4 Series 4 compounds.

