Supplementary Information (SI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2025

Rational Design of Gold(I)-NHC Complexes as Anticancer Agents: Induction of Necroptosis and Paraptosis in Lung Adenocarcinoma

Sayari Dewan, Himanshu Sonker, Kajal Chaudhary, Ritika Gautam Singh*

*All correspondence should be addressed to rgautam@iitk.ac.in

Table of Contents:

Physical Method and Materials	
General synthesis of enemines	Scheme S1
Structure of enemines LS1 – LS7	Figure S1
Synthesis of analogues L1 – L7	Scheme S2
Structure of analogues L1 – L7	Figure S2
¹ H NMR and ¹³ C{ ¹ H} NMR, ESI-MS of LS1-LS7	Figure S3 – S9
¹ H NMR and ¹³ C{ ¹ H} NMR spectra and ESI-MS of L1-L7	Figure S10 – S16
¹ H NMR and ¹³ C{ ¹ H} NMR spectra and ESI-MS of AuL1-L7	Figure S17-S23
Crystal data for AuL2, AuL3, AuL5, AuL7	Table S1
Selected bond distances (Å) and bond angles (°) for AuL2, AuL3, AuL5, AuL7	Table S2
IR Spectra of L1-L7 and AuL1-AuL7	Fig S24
Absorption Spectra of Analogues L1-L7 and AuL1-AuL7 in DMSO	Figure S25
Stability studies by UV-Vis spectroscopy	Figure S26
Cartesians coordinates of AuL3 at the BP86/def2TZVP	Table S3
Cartesians coordinates of AuL4 at the BP86/def2TZVP	Table S4
Cartesians coordinates of AuL7 at the BP86/def2TZVP	Table S5
Optimized structures of AuL3, AuL4, AuL7 by DFT.	Figure S27
MFI of TMRM in A549 cells	Figure S28
Fluorescence microscopy images for ROS generation in A549 cells	Figure S29
Relative cell viabilities in A549 cells in presence of N-acetyl cysteine	Figure S30
IC ₅₀ value of AuL4 in presence of inhibitor of necrostatin 1, cycloheximide, and both necrostatin and cycloheximide	Figure S31
Lipophilicity of compound L1 to L7	Table S6
1H, 13C and HMBC spectra in CDCl3 of AuL6	Figure S32 – S38

Materials and Instrumentations:

The chemicals and solvents required were purchased from Sigma Aldrich and Merck and were used as received. Anilines were prepared by reported method.¹ DMSO-d⁶ were used as solvents for NMR measurements on JEOL 400 and 500 MHz spectrometers. For ¹H and ¹³C NMR spectroscopy, the chemical shift is reported as dimensionless values and is frequency referenced relative to TMS. Waters Micro mass Quattro Micro triple-quadruplet mass spectrometer was used to collect ESI-MS data. UV–visible spectra were obtained using a JASCO V–670 UV–Visible absorption spectrophotometer. Emission spectra were recorded on Perkin Elmer Spectrometer in the range of 400-4000 cm-1 using KBr pellets. The following abbreviations are used: m (multiplet), s (singlet), br s (broad singlet), d (doublet), t (triplet) dd (doublet of doublet) and dt (doublet of triplet).

General synthesis of enemines:

Scheme S1: Synthesis of enemines LS1 – LS7

Figure S1: Structure of enemines LS1 – LS7

General synthesis of analogues L1-L7

Scheme S2: Synthesis of analogues L1 – L7

Figure S2: Structure of analogues L1 – L7.

¹H NMR and ¹³C{¹H} NMR spectra, ESI spectra of the LS1-LS8

LS1

Yellow solid. Yield: 75%. ¹H NMR (δ ppm, DMSO– d_6 , 500 MHz): 8.40 (d, J=8.6 Hz, 1H), 8.08 (d, J=8.6, 1H), 7.99 (d, J=8.1 Hz, 1H), 7.91 (d, J=8.4 Hz, 1H), 7.75 (t, J= 7.0 Hz, 1H), 7.67-7.59 (m, 1H), 7.40 (s, 1H), 7.16 (dt, J=28.5, 7.4 Hz, 12H), 6.97 (d, J=7.2 Hz,8H), 6.33 (s, 2H), 5.44(s, 2H), 3.44 (s, 3H). ¹³C NMR (δ ppm DMSO– d_6 , 100 MHz, proton decoupled): 165.91,155.81,155.65,154.20,143.68,143.48,134.68,130.58,129.81,129.85,128.84,128.44,1 26.87,118.40,113.85,56.29,52.07. ESI-MS (ES⁺; [M+H]⁺ m/z) calculated for C₄₃H₃₅N₂O : 595.2749, observed : 595.2744.

Figure S3. ¹H NMR and ¹³C{¹H} NMR spectra of the LS1

Ph Ph N Ph Ph nBu

Yellow solid. Yield: 80%. ¹H NMR (δ ppm, DMSO– d_6 , 500 MHz): ¹H NMR (400 MHz, DMSO-D6) δ 8.40 (d, J = 8.5 Hz, 1H), 8.08 (d, J = 8.6 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.63 (t, J = 7.3 Hz, 1H), 7.35 (s, 1H), 7.16 (m, J =13H), 6.93 (d, J = 7.1 Hz, 7H), 6.60 (s, 2H), 5.40 (s, 2H), 2.33 (t, J = 7.3 Hz, 2H), 1.34 – 1.25 (m, 2H), 1.13 (dd, J = 14.6, 7.3 Hz, 2H), 0.74 (t, J = 7.3 Hz, 3H). ¹³C NMR (δ ppm DMSO– d_6 , 100 MHz, proton decoupled):154.17,143.34,137.26, 129.83,129.65,128.79,128.55,128.10, 126.79, 51.68,34.92, 33.50,21.85,13.28. ESI-MS (ES+;[M+H]⁺ m/z) calculated for C₄₆H₄₁N₂: 621.3269, observed 621.3268.

LS2

Figure S4. ¹H NMR and ¹³C{¹H} NMR spectra of the LS2

LS3

Yellow solid. Yield: 71%. ¹H NMR (δ ppm, DMSO– d_6 , 500 MHz): 8.37 (d, J= 8.6 Hz, 1H), 8.05 (d, J=8.5, 1H), 8.00 (d, J=15.6, 8.3 Hz, 2H), 7.92 (d, J=8.4 Hz, 1H), 7.73 (t, J= 7.6 Hz, 1H), 7.62 (t, J=7.75 Hz, 1H), 7.39 (s, 1H), 7.19-7.09 (m, 12H), 6.93 (d,7.3 Hz, 8H), 6.80 (s, 2H), 5.41 (s, 2H) 0.98 (s, 9H). ¹³C NMR (δ ppm DMSO– d_6 , 100 MHz, proton decoupled): 165.27, 154.15, 147.61, 145.30, 143,57, 137.29, 132.47, 129.61, 128.75, 126.77, 125.03, 118.51, 52.12, 34.46, 31.51. ESI-MS (ES+;[M+H]⁺ m/z) calculated for C₄₆H₄₁N₂: 621.3269,observed 621.3269.

Figure S5. ¹H NMR and ¹³C{¹H} NMR spectra of the LS3

Ph Ph N Ph Ph F

Yellowish White solid. Yield: 76%. ¹H NMR (δ ppm, DMSO– d_6 , 500 MHz): 8.40 (d, 1H), 8.05 (d, J=8.5, 1H), 8.00 (d, J=8.1 Hz, 1H), 7.92 (d, J=8.4 Hz, 1H), 7.75 (t, J= 8.3 Hz, 1H), 7.64 (t, J=8.1 Hz, 1H), 7.36 (s, 1H), 7.21-7.14 (m, 12H), 6.97-6.96 (m,8H), 6.52 (d, J=9.7 Hz, 2H), 5.43(s, 2H). ¹³C NMR (δ ppm DMSO– d_6 , 100 MHz, proton decoupled): 166.50, 157.87, 153.83, 147.61, 137.28, 135.67, 130.64, 129.85, 129.63, 129.08, 128.97, 128.55, 127.08, 118.40, 114.88, 114.69, 51.97. ESI-MS (ES+;[M+H]⁺ m/z) calculated for C₄₂H₃₂FN₂: 583.2549, observed 583.2538.

LS4

Figure S6. ¹H NMR and ¹³C{¹H} NMR spectra of the LS4

LS5

Yellowish white solid. Yield: 79%. ¹H NMR (δ ppm, DMSO– d_6 , 500 MHz): δ 8.45 (d, J = 8.7 Hz, 1H), 8.07 – 8.03 (m, 1H), 7.97 (d, J = 8.6 Hz, 1H), 7.80 (t, J = 7.1 Hz, 1H), 7.70 (t, J = 7.5 Hz, 1H), 7.38 (s, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.22 (m,7.25-7.23, 8H), 7.06 (m,7.21-7.18, 4H), 7.00 (d, J = 7.1Hz, 5H), 6.76 (s, 2H), 5.47 (s, 2H).¹³C NMR (δ ppm DMSO– d_6 , 100 MHz, proton decoupled): 166.21, 142.79, 137.28, 135.75, 130.67, 129.85, 129.65, 129.09, 128.61, 128.55, 128.10, 127.79, 127.61, 127.13, 127.08, 118.32, 51.83. ESI-MS (ES+;[M+H]⁺ m/z) calculated for C₄₂H₃₂CIN₂: 599.2254, observed 599.2255.

Figure S7. ¹H NMR and ¹³C{¹H} NMR spectra of the LS5

LS6

Yellowish white solid. Yield: 83%. ¹H NMR (δ ppm, DMSO– d_6 , 500 MHz): δ 8.40 (d, J = 8.7 Hz, 1H), 8.07 (d, J = 8.6 Hz, 1H), 7.99 (d, J = 7.3 Hz, 1H), 7.93 (d, J = 8.5 Hz, 1H), 7.74 (ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.63 (ddd, J = 8.1, 6.9, 1.1 Hz, 1H), 7.43 (s, 1H), 7.19-7.16 (m, 5H), 7.13 – 7.04 (m, 13H), 6.94-6.90 (m, 4H), 6.84 (d, J = 6.8 Hz, 8H), 6.61 (s, 2H), 5.39 (s, 1H), 5.37 (s, 1H). ¹³C NMR (δ ppm DMSO– d_6 , 100 MHz, proton decoupled):165.47,154.09,144.45, 143.58, 132.88, 129.55, 129.47, 129.32, 129.27, 128.72, 128.68, 126.73, 126.60, 118.40, 55.64, 51.79.ESI-MS (ES+;[M+H]⁺ m/z) calculated for C₅₅H₄₃N₂: 731.3246, observed: 731.3433.

Figure S8. ¹H NMR and ¹³C{¹H} NMR spectra of the LS6

NMR (500 MHz,) δ 8.51 (d, *J* = 8.6 Hz,1H), 8.40 (s,1H), 8.29 (d, *J* = 8.5 Hz,1H), 8.11 (d, *J* = 8.0 Hz,1H), 8.05 (d, *J* = 7.3 Hz,1H), 7.82 (ddd, *J* = 8.4, 6.9, 1.4 Hz,1H), 7.68 (ddd, *J* = 8.1, 7.0, 1.1 Hz,1H), 7.33-7.28 (m, 5H), 7.21-7.16 (m, 2H), 7.16 – 7.12 (m, 4H), 6.93 (s,2H), 5.57 (s, 1H), 2.85 (m, 2H), 1.00 (d, *J* = 6.9 Hz, 12 H). ¹³C NMR (δ ppm DMSO–*d*₆, 100 MHz, proton decoupled): 164.02,154.42, 147.85, 146.64,144.75, 140.04, 137.96, 136.87, 130.94, 129.80, 129.52, 128.84,128.70, 126.72, 124.31, 118.36, 56.29, 28.09, 23.75.ESI-MS (ES+;[M+H]⁺ m/z) calculated for C₃₅H₃₅N₂: 483.2800, observed: 483.2813.

Figure S9. ^1H NMR and $^{13}\text{C}\{^1\text{H}\}$ NMR spectra of the LS7

White solid. Yield: 82%. ¹H NMR (δ ppm, DMSO– d_6 , 400 MHz): 10.00 (s, 1H), 8.05 (d, J=8.2, 1H), 7.99 (d, J=7.7 Hz, 1H), 7.80 (t, J=7.8 Hz, 1H), 7.73 (t, J= 7.6 Hz, 1H), 7.62 (d, 9.7 Hz, 1H), 7.43-7.35 (m, 2H), 7.223-7.07 (m, 14H), 6.97-6.92(m, 6H), 6.44 (s, 2H), 5.34(s, 2H), 3.53 (s, 3H). ¹³C NMR (δ ppm DMSO– d_6 , 100 MHz, proton decoupled): 160.50, 143.80, 141.90, 130.53, 130.01, 129.42, 129.07, 128.29, 127.45, 126.68, 124.73, 117.85, 115.45, 114.80, 55.07, 51.54. ESI-MS (ES+;[M]⁺ m/z) calculated for C₄₄H₃₃N₂O⁺ :607.2743, observed: 607.2732.

Figure S10. ^1H NMR and $^{13}\text{C}\{^1\text{H}\}$ NMR spectra of L1

L2

White solid. Yield: 88%. ¹H NMR (δ ppm, DMSO– d_6 , 500 MHz): 10.09 (s, 1H), 8.08 (d, J=8.3, 1H), 8.01 (d, J=9.0 Hz, 1H), 7.81 (t, J=7.8 Hz, 1H), 7.74 (t, J= 7.6 Hz, 1H), 7.64 (d, 9.7 Hz, 1H), 7.45 (d, J=11.1 Hz, 2H) 7.25-7.06 (m, 14H), 6.98-6.92(m, 6H), 6.82 (s, 2H), 5.33 (s, 2H), 2.49-2.47 (m, 2H) 1.32 (dt, J= 15.0, 7.5 Hz, 2H), 1.22-1.07 (m, 2H), 0.75 (t, J=7.5 Hz, 2H) . ¹³C NMR (δ ppm DMSO– d_6 , 100 MHz, proton decoupled): 145.59, 142.18, 131.61, 130.56, 130.40, 130.04, 129.43, 128.94, 128.56, 127.40, 124.79, 117.54, 115.53, 51.28, 35.02, 33.07, 21.74, 14.08. ESI-MS (ES+;[M]⁺ m/z) calculated for C₄₇H₄₁N₂⁺:633.3264, observed: 633.3264.

Figure S11. ¹H NMR and ¹³C{¹H} NMR spectra of L2

White solid. Yield: 80%. ¹H NMR (δ ppm, DMSO– d_6 , 500 MHz): 9.76 (s, 1H), 7.93 (d, J=7.6 Hz, 1H), 7.87 (d, J=8.2 Hz, 1H), 7.71 (m, 1H), 7.57 (d, 9.6 Hz, 1H), 7.46 (s, 1H), 7.37 (d, J=9.7 Hz, 1H), 7.24-6.98 (m, 12H), 6.90(d, J=7.5 Hz, 10H), 5.34(s, 2H), 0.97 (s, 4H), ¹³C NMR (δ ppm DMSO– d_6 , 100 MHz, proton decoupled):153.22,142.04,141.85,141.49,129.39.129.05,128.88,127.37,127.21,17.92,117.44 ,115.38,51.71,35.15,31.05. ESI-MS (ES+; [M]⁺ m/z) calculated for C₄₇H₄₁N₂⁺:633.3264, observed: 633.3264.

Figure S12. ¹H NMR and ¹³C{¹H} NMR spectra of L3

L4

White solid. Yield: 82%. ¹H NMR (δ ppm, DMSO– d_6 , 500 MHz): 10.12 (s, 1H), 8.03 (dd, J=19.6,8.0 Hz, 2H), 7.82 (t, J=7.4 Hz, 1H), 7.75 (t, J= 7.7 Hz, 1H), 7.65 (d, 9.6 Hz, 1H), 7.51 (s, 1H), 7.46 (d, J=9.7 Hz, 1H), 7.26-7.06 (m, 13H), 7.02-6.94(m, 8H), 6.76 (d, J=9.2 Hz, 2H), 5.39(s, 2H). ¹³C NMR (δ ppm DMSO– d_6 , 100 MHz, proton decoupled):163.77, 161.76, 145.53, 141.41, 141.13, 130.89, 130.58, 130.03, 129.49, 129.42, 129.34, 129.19, 129.06, 128.40, 127.61, 127.44, 127.25, 124.71, 117.98, 117.42, 116.44, 116.25, 115.40, 51.46. ESI-MS (ES+; [M]⁺ m/z) calculated for C₄₃H₃₂FN₂⁺: 595.2544, observed: 595.2532.

L5

White solid. Yield: 87%. ¹H NMR (δ ppm, DMSO– d_6 , 400 MHz): 10.13 (s, 1H), 8.01 (dd, J=15.1, 8.1 Hz, 2H), 7.81 (t, J=7.8 Hz, 1H), 7.73 (t, J=7.4 Hz, 1H), 7.50 (s, 1H), 7.43 (d, J=9.1 Hz, 1H), 7.25-7.05 (m, 12H), 6.97 (d, J=7.3 Hz, 8H), 6.93 (s, 2H), 5.41 (s, 2H), ¹³C NMR (δ ppm DMSO– d_6 , 100 MHz, proton decoupled): 144.75, 141.03, 136.21, 132.68, 130.58, 130.01, 129.32, 128.45, 127.49, 124.70, 117.88, 117.23, 113.56, 51.41. ESI-MS (ES+; [M]⁺ m/z) calculated for C₄₃H₃₂CIN₂⁺: 611.2249, observed 611.2248.

Figure S14. ¹H NMR and ¹³C{¹H} NMR spectra of L5

White solid. Yield: 81%. ¹H NMR (δ ppm, DMSO– d_6 , 500 MHz): 10.18 (s, 1H), 8.08 (d, J=8.3, 1H), 8.00 (dd, J= 7.8, 1.2 Hz), 7.82-7.77 (m, 1H), 7.75-7.70 (m, 1H), 7.63 (d, J= 9.7 Hz, 1H), 7.55 (d, J=1.5 Hz, 1H), 7.45 (d, J= 9.7 Hz, 1H), 7.26-7.19 (m, 4H), 7.18-7.12 (m, 8H), 7.09-7.00 (m, 7H), 6.95-6.90 (m, 4H), 6.88-6.83 (m, 8H), 6.81 (s, 2H), 5.58(s, 1H), 5.33 (s, 2H), ¹³C NMR (δ ppm DMSO– d_6 , 100 MHz, proton decoupled): 146.70, 143.38, 141.98, 141.70, 131.83, 130.53, 130.38, 130.01, 129.42, 129.21, 128.91, 128.57, 127.23, 126.99, 124.75, 117.41, 115.50, 55.57, 51.31. ESI-MS (ES+; [M]⁺ m/z) calculated for C₅₆H₄₃N₂⁺:743.3240, observed: 743.3432.

Figure S15. ¹H NMR and ¹³C{¹H} NMR spectra of L7

White solid. Yield: 81%. ¹H NMR (δ ppm, DMSO– d_6 , 400 MHz): 10.92 (s, 1H), 8.59 (s, 1H), 8.47 (d, J = 8.3 Hz, 1H), 8.06 (d, J = 8.8 Hz, 1H), 7.84 (t, J = 8.4 Hz, 1H), 7.78 – 7.71 (m, 3H), 7.34 (t, J = 7.5 Hz, 4H), 7.27 – 7.22 (m, 4H), 7.17 (d, J = 7.3 Hz, 4H), 5.78 (s, 1H), 2.34 – 2.22 (m, 2H), 1.03 (dd, J = 8.0, 7.1 Hz, 12H). ¹³C NMR (δ ppm DMSO– d_6 , 100 MHz, proton decoupled):147.93,145.68, 143.73,

130.87,130.12,129.94,129.45,129.07,127.62,127.12,125.55,125.05,118.27,117.73,115.89, 56.26, 28.26, 24.52. ESI-MS (ES+; $[M]^+$ m/z) calculated for $C_{36}H_{33}N_2^+:495.2794$, observed:495.2817.

Figure S16. ^1H NMR and $^{13}\text{C}\{^1\text{H}\}$ NMR spectra of L7

Figure S17. ¹H NMR and ¹³C{¹H} NMR, ESI-MS spectra of Au-L1.

110 100 f1 (ppm)

40 30

140 130

Figure S18. $^1\!H$ NMR and $^{13}C\{^1\!H\}$ NMR, ESI-MS spectra of AuL2

Figure S19. ¹H NMR and ¹³C{¹H} NMR, ESI-MS spectra of AuL3.

Figure S20. ¹H NMR and ¹³C{¹H} NMR, ESI-MS spectra of AuL4

Figure S21. ¹H NMR and ¹³C{¹H} NMR, ESI-MS spectra of AuL5

L2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0

Figure S22. ¹H NMR and ¹³C{¹H} NMR, ESI-MS spectra of AuL6.

Figure S23. ¹H NMR and ¹³C{¹H} NMR, ESI-MS spectra of AuL7.

	AuL2	AuL3	AuL5	AuL7
CCDC	2432305	2432303	2432304	2433312
Chemical formula	C ₄₇ H ₄₀ AuCIN ₂	C ₄₇ H ₄₀ AuCIN ₂	$C_{43}H_{31}AuCl_2N_2$	C ₃₇ H ₃₄ AuCl ₄ N ₂
Formula weight	865.22	865.22	843.610	845.43
Temperature	100(2)	100(2)	100(2)	100(2)
Wavelength	0.71073	0.71073	0.71073	0.71073
Crystal size	0.14 × 0.12 × 0.1	0.14 × 0.12 × 0.1	0.14 × 0.12 × 0.1	0.12 × 0.11 × 0.1
Crystal system	Orthorhombic	Orthorhombic	Monoclinic	Monoclinic
Space group	Pbca	Pbca	C2/c	P2 ₁ /n
Unit cell dimensions				
a (Å)	90	90	90	90
β (Å)	90	90	92.274(5)	103.8670(10)
γ (Å)	90	90	90	90
а	18.2277(5)	18.8209(5)	20.900(3)	13.8388(4)
b	19.7090(5)	18.3643(5)	19.148(4)	15.3932(4)
С	20.7662(6)	21.8306(5)	18.831(3)	16.2823(5)
Volume	7460.3(4)	7545.4(3)	7530(2)	3367.42(17)
Z	8	8	8	4
Density (calculated)	1.541	1.523	1.488	1.668
Absorption coefficient	4.052	4.006	4.081	4.716
F(000)	3456.0	3456.0	3321.0	8389
Goodness-of- fit on F ²	1.042	1.081	1.024	1.049
FinalRindicesI>2σ(I)	R ₁ =0.0250, wR ₂ =0.0480	R ₁ =0.0245, wR ₂ =0.0460	R ₁ =0.0286, wR ₂ =0.0608	R ₁ =0.0745, wR ₂ =0.0713

Table S1: Structure description of gold complexes

R indices (all	R ₁ =0.0387,	R ₁ =0.0424,	R ₁ =0.0382,	R ₁ =0.0346,
data)	wR ₂ =0.0517	wR ₂ =0.0542	wR ₂ =0.0647	wR ₂ =0.0274

Bond distance(Å)	AuL2	AuL3	AuL5	AuL7
C1-N1	1.355(3)	1.357(3)	1.359(3)	1.349(4)
C1-N2	1.367(3)	1.364(4)	1.356(4)	1.370(4)
C12-N1	1.445(3)	1.450(3)	1.441(3)	1.449(4)
Au1-C1	1.978(2)	1.983(3)	1.987(3)	1.967(4)
Au1-Cl1	2.2671(6)	2.2625(7)	2.2689(9)	2.289(15)
Bond angle (°)				
CI1-Au1-C1	173.94(7)	174.48(8)	174.40(8)	176.1(4)
Au1-C1-N1	119.61(17)	122.2(2)	124.1(2)	121.6(2)
Au1-C1-N2	136.02(19)	132.9(2)	130.2(2)	133.8(2)
N1-C1-N2	104.3(2)	104.6(2)	104.6(2)	104.4(3)
C1-N1-C12	122.7(2)	123.0(2)	124.6(2)	124.7(3)

 Table S2: Selected bond distances (Å) and bond angles (°) for gold complexes.

Fig S25: UV-Vis absorption spectra of L1-L7 and AuL1-AuL 7 in room temperature in DMSO.

Fig S26: UV-Vis absorption spectra of AuL1-AuL7 in room temperature in 1X PBS for 48 h.

Table S3: Cartesians coordinates of AuL3 at the BP86/def2TZVP.

Atom	X	Y	Z
Au	-1.21866600	-0.04775100	-2.08968500
CI	-0.68324300	-0.07440600	-4.31176000
Ν	-0.66214300	0.00707300	0.83351900
Ν	-2.81761600	-0.03220300	0.57004500
С	-6.53571400	-0.09298800	0.57326000
Н	-7.34187900	-0.09508000	1.31047300
С	0.52583300	-2.98190800	2.00890800
С	2.82713800	-1.14181500	0.20091700
Н	3.35667600	-2.08869700	0.08133400
С	0.71969600	-2.53427400	0.55852900
Н	-0.29126700	-2.37530400	0.14705800
С	0.45854400	3.06353400	1.96573000
С	-1.19603600	0.01862600	2.10554000
Н	-0.57786000	0.04221600	2.99379600
С	1.45109600	-1.19459700	0.43876000
С	2.79402900	1.25600000	0.18598400

Н	3.28892600	2.21820500	0.05660500
С	-5.77418800	-0.11486800	-1.71313600
н	-5.98538100	-0.13434900	-2.78347700
С	2.12915800	-4.66118400	0.19500800
Н	2.28473400	-4.73610400	1.27312000
С	-4.15175700	-0.06127100	0.08162900
С	-1.63191700	-0.02403100	-0.13732000
С	1.35149000	-3.61735900	-0.32478100
С	3.52791000	0.06897200	0.07834900
С	-0.66244300	3.84825900	2.28534700
Н	-1.38868600	4.08557700	1.50344300
С	1.22109300	3.66162500	-0.40016300
С	1.41166000	1.26503600	0.42354600
С	1.96380200	4.75019400	0.07695300
Н	2.12996500	4.86422700	1.15002600
С	2.49236700	-5.54613300	-2.03375000
Н	2.93178600	-6.29530900	-2.69550200
С	-5.20396800	-0.06394000	1.04123300
С	1.22518200	-3.09983600	4.34035600
Н	1.93806100	-2.82695900	5.12161900
С	1.71363800	-4.50965300	-2.56147900
Н	1.54133600	-4.44301600	-3.63755400
С	2.26495400	5.57850200	-2.18260400
Н	2.66671900	6.32312900	-2.87281800
С	-2.56136500	-0.00593100	1.96450800
С	-4.44894100	-0.08661100	-1.28687300
Н	-3.63519700	-0.08401300	-2.01654900
С	-6.82454100	-0.11827800	-0.78414800
Н	-7.86093500	-0.14051800	-1.12498900
С	-3.63142200	-0.00907800	2.90334000
Н	-3.38740800	0.01147600	3.96540500
С	-0.57970600	-3.78683600	2.33162700

Н	-1.28765500	-4.06211900	1.54540200
С	0.12098700	-3.89834300	4.64807200
Н	-0.03608500	-4.25165900	5.66912800
С	-0.85814000	4.33003700	3.58095600
н	-1.73823300	4.93601100	3.80663400
С	2.48423500	5.70150300	-0.80885700
н	3.05871400	6.54455300	-0.41870800
С	1.18821700	3.25783300	4.28280700
н	1.91890000	3.02240900	5.05979800
С	-0.78292100	-4.24088700	3.63610100
н	-1.65077300	-4.86336300	3.86423500
С	2.69788300	-5.61822800	-0.65424000
н	3.29892700	-6.42603800	-0.23093900
С	1.14932900	-3.55463200	-1.71434500
Н	0.54796000	-2.74429900	-2.13729200
С	1.42461000	-2.64482400	3.03148700
н	2.28822800	-2.01635000	2.80377900
С	-4.91437300	-0.03742600	2.45413500
н	-5.75167100	-0.04057000	3.15422200
С	0.06881200	4.03603400	4.58734600
н	-0.08234200	4.41093400	5.60156900
С	1.38020300	2.77508200	2.98274200
н	2.25609200	2.16273300	2.75810300
С	0.75834500	0.02754800	0.55646300
С	0.64052000	2.58365000	0.52406300
н	-0.37243900	2.38290100	0.13683800
С	1.52121200	4.49656400	-2.66795000
н	1.33871900	4.38963100	-3.73908900
С	1.00500100	3.54750200	-1.78434500
Н	0.43079700	2.70152100	-2.17407600
С	5.04071200	0.05028800	-0.20080700
С	5.29493100	-0.65858000	-1.55296800

Н	4.92564600	-1.69399100	-1.54739900
Н	6.37478400	-0.68577800	-1.76798600
н	4.79379200	-0.12752200	-2.37570900
С	5.76230100	-0.72454300	0.92717500
Н	5.60668600	-0.23843700	1.90263900
н	6.84549600	-0.75588200	0.73125500
Н	5.40636900	-1.76203200	1.00386500
С	5.63981900	1.46627800	-0.27471800
Н	5.19754800	2.05830000	-1.08964700
н	6.72125000	1.39650800	-0.46575300
Н	5.50414000	2.02011800	0.66693800

Table S4: Cartesians coordinates of AuL4 at the BP86/def2TZVP.

Atom	X	Y	Z
Au	-0.00002700	1.07637100	-2.01681400
CI	-0.00003100	0.76505000	-4.27989900
Ν	-0.00000400	0.23912800	0.84042600
Ν	-0.00007600	2.41017500	0.78414800
С	-0.00019100	6.11171600	1.14272600
Н	-0.00024400	6.84356800	1.95373000
С	-3.02643400	-1.00886600	1.87722200
С	-1.21862400	-3.15223900	-0.12226300
Н	-2.14811600	-3.69067600	-0.30895900
С	-2.56388800	-1.06032100	0.41946100
Н	-2.38041900	-0.01639900	0.11541100
С	3.02650100	-1.00876200	1.87725000
С	-0.00004100	0.64897200	2.15839800
н	-0.00003900	-0.05101200	2.98410600
С	-1.23633900	-1.80040000	0.24174400
С	1.21879300	-3.15218600	-0.12223500
Н	2.14831600	-3.69057200	-0.30891700
С	-0.00009200	5.57279100	-1.20617000

Н	-0.00006100	5.88565300	-2.25148700
С	-4.69882500	-2.40006900	-0.11506400
Н	-4.79045400	-2.66589600	0.93995100
С	-0.00010000	3.78550300	0.42522500
С	-0.00004300	1.29812800	-0.03375800
С	-3.64177400	-1.58290300	-0.53825900
С	0.00009900	-3.79822800	-0.28358700
С	3.81735200	0.07250200	2.30094800
Н	4.06976700	0.86167500	1.58786900
С	3.64186300	-1.58268700	-0.53825100
С	1.23644000	-1.80034600	0.24176300
С	4.69893600	-2.39984800	-0.11509300
Н	4.79056400	-2.66572600	0.93990900
С	-5.55287700	-2.52268600	-2.38158500
Н	-6.29489100	-2.88555600	-3.09562800
С	-0.00016100	4.74096400	1.48107900
С	-3.18920600	-1.94060000	4.12286000
Н	-2.93975200	-2.73465600	4.83002600
С	-4.50261800	-1.70394500	-2.81226000
Н	-4.41787700	-1.42392700	-3.86405900
С	5.55300700	-2.52231800	-2.38161400
Н	6.29503300	-2.88513200	-3.09567300
С	-0.0008000	2.02159900	2.14793700
С	-0.00006200	4.21253400	-0.90863700
Н	-0.00000900	3.47297700	-1.71335500
С	-0.00016000	6.52937700	-0.18093300
Н	-0.00018200	7.59381400	-0.42114600
С	-0.00013800	2.99714200	3.18488600
Н	-0.00014300	2.65269600	4.21892700
С	-3.81736500	0.07235900	2.30087100
Н	-4.06984200	0.86148100	1.58775600
С	-3.97363100	-0.85953800	4.53170200

Н	-4.33929100	-0.80151800	5.55877400
С	4.28687600	0.14903600	3.61343200
Н	4.89859700	0.99971200	3.92122000
С	5.64775300	-2.86825300	-1.03189700
Н	6.46600100	-3.50283700	-0.68470300
С	3.18935200	-1.94059700	4.12284000
Н	2.93995500	-2.73470500	4.82996800
С	-4.28688700	0.14892500	3.61335400
Н	-4.89867000	0.99957200	3.92109800
С	-5.64762500	-2.86854700	-1.03184900
Н	-6.46585500	-3.50313500	-0.68462500
С	-3.55591600	-1.23889900	-1.89827000
Н	-2.73390000	-0.60567600	-2.24565400
С	-2.71901500	-2.01361000	2.80624100
Н	-2.10382300	-2.86270300	2.50089000
С	-0.00018400	4.31728500	2.85993300
Н	-0.00023300	5.08385600	3.63681600
С	3.97369800	-0.85949600	4.53173000
Н	4.33936100	-0.80149900	5.55880200
С	2.71916300	-2.01357700	2.80621900
Н	2.10402900	-2.86269800	2.50082600
С	0.00003300	-1.14748200	0.42962400
С	2.56395300	-1.06019300	0.41949200
Н	2.38042100	-0.01627200	0.11547100
С	4.50273600	-1.70357200	-2.81224900
Н	4.41799800	-1.42349600	-3.86403300
С	3.55601500	-1.23859900	-1.89824000
Н	2.73399300	-0.60536900	-2.24559400
F	0.00013200	-5.11002400	-0.63016800

Table S5: Cartesians coordinates of AuL7 at the BP86/def2TZVP.

Atom	x	Y	Z
Au	1.70974900	-1.38953500	-0.54671400
CI	1.02934300	-3.42596600	-1.32942000
Ν	1.34553800	1.32856700	0.60151200
Ν	3.47154100	1.03280500	0.27426400
С	2.24612200	0.40505900	0.14001300
С	4.76574500	0.54390600	-0.04845900
С	1.95605600	2.49575900	1.01273300
Н	1.39589200	3.33531500	1.40535000
С	-2.84349000	0.68112600	0.75477100
С	-0.64307300	0.56450100	1.83037900
С	0.19652700	0.17475500	3.04182300
Н	1.24465700	0.43290500	2.82686700
С	-2.02734400	0.36469700	1.84831600
Н	-2.48697000	-0.07200200	2.73905000
С	3.30590700	2.33216000	0.81453000
С	-5.82715900	-1.63128300	1.24812300
Н	-6.50149600	-0.95772900	1.78439800
С	4.97269700	-0.73511900	-0.58040700
Н	4.11645900	-1.39084100	-0.75856500
С	-0.08504000	1.10757900	0.65368700
С	7.16748300	0.93757500	-0.12659600
Н	8.01608800	1.60084400	0.05583400
С	4.43004900	3.17607700	1.04319800
Н	4.25830700	4.16880100	1.45965000
С	-2.24823300	1.23174200	-0.38252400
Н	-2.87695800	1.49279800	-1.23586900
С	0.14359700	-1.34506800	3.29051000
Н	-0.87743900	-1.67416400	3.53702900
Н	0.79763800	-1.61619200	4.13343300
Н	0.47386700	-1.90415000	2.40308500

С	-4.64222300	-1.12065100	0.69153000
С	-0.27162200	2.04545000	-1.73860400
Н	0.81726100	2.12699300	-1.60088400
С	-0.22146800	0.96064500	4.29941500
Н	-0.15884000	2.04734000	4.13783100
Н	0.43308200	0.70211800	5.14569100
Н	-1.25532100	0.72476600	4.59464300
С	-0.86574200	1.45648400	-0.46441500
С	7.36675200	-0.33051000	-0.65430400
Н	8.37469600	-0.67473300	-0.89152200
С	5.87362900	1.40660100	0.18873800
С	5.67612500	2.72520100	0.73814300
Н	6.55303700	3.35355000	0.90395900
С	-4.34133500	0.37524900	0.83725700
Н	-4.64977700	0.64974000	1.86205800
С	6.26264600	-1.16530600	-0.87958200
Н	6.40377700	-2.16499200	-1.29351900
С	-6.15514400	-2.98224500	1.12191300
Н	-7.07874900	-3.35989100	1.56605300
С	-5.29993200	-3.85046200	0.43370200
Н	-5.55156800	-4.90858500	0.33806500
С	-5.18268200	1.24147400	-0.10178100
С	-3.79109300	-2.00034100	0.00805100
Н	-2.85433500	-1.63476000	-0.41655700
С	-4.11789300	-3.35533200	-0.12133700
Н	-3.43494200	-4.02244200	-0.65079900
С	-0.81085000	3.46393600	-2.00743200
Н	-1.89789400	3.45357400	-2.17860400
Н	-0.33458700	3.88899800	-2.90416100
Н	-0.61182700	4.13955100	-1.16189100
С	-5.56214600	2.53077900	0.30579600
Н	-5.26830900	2.88676200	1.29729900

С	-5.57584800	0.80191500	-1.37447000
Н	-5.30823600	-0.20489100	-1.70180700
С	-6.31882600	1.63261200	-2.22013600
Н	-6.61672600	1.27070600	-3.20656200
С	-6.30829400	3.36118000	-0.53380700
Н	-6.59875800	4.35752900	-0.19352100
С	-6.68790600	2.91460300	-1.80384300
Н	-7.27456700	3.55946200	-2.46114400
С	-0.50834500	1.12048700	-2.94783500
н	-0.09646500	0.11700900	-2.76667200
Н	-0.02346500	1.53575300	-3.84456300
н	-1.58194400	1.01449400	-3.16610400

Fig S27: Optimized structures of AuL3, AuL4, AuL7 (Atom colours: Au- yellow, Cblack, CI- green, F-grey, H- white).

Fig S28: Mean Fluorescence Intensity of TMRM dye in A549 cells.

FIG S29: ROS generation in A549 cells. Cells were treated with AuL4 for 12 h and then stained with H_2DCFDA. Scale Bar :100 $\mu m.$

FIG S30: ROS generation in A549 cells. Relative cell viabilities in presence of ROS scavenger 2mM NAC. Cells were pretreated with NAC for 1 h and then treated with AuL4 for 24h.

FIG S31: IC₅₀ value of AuL4 in presence of inhibitor of necrostatin 1, cycloheximide, and both necrostatin and cycloheximide

Compound	clogP
L1	5.4
L2	6.7
L3	6.8
L4	5.2
L5	5.7
L6	5.9
L7	8.5

Table S6: Lipophilicity of compound L1 to L7

¹H, ¹³C and HMBC spectra in CDCI₃

¹H NMR (400 MHz, CHLOROFORM-D) δ 10.30 (d, J = 8.4 Hz, 1H), 7.74 – 7.49 (m, 6H), 7.12 (m, 12 H), 6.83 (d, J = 5.3 Hz, 5H), 6.68 (d, J = 9.5 Hz, 2H), 6.46 (s, 2H), 5.77 (s, 1H), 5.37 (s, 2H), 3.58 (s, 3H). ¹³C NMR (100 MHz, CHLOROFORM-D) δ 165.58, 160.02, 143.42, 142.03, 141.77, 132.90, 131.27, 129.57, 129.26, 129.08, 128.66, 128.48, 128.39, 127.64, 126.89, 126.78, 125.10, 124.98, 118.31, 117.09, 115.00, 114.89, 55.23, 51.99.

FIG S32 ¹H, ¹³C and HMBC spectra in CDCI₃ of AuL1

AuL2:

¹H NMR (400 MHz, CHLOROFORM-D) δ 10.31 (d, *J* = 8.5 Hz, 1H), 7.68 – 7.53 (m, 3H), 7.26 – 7.12 (m, 12H), 7.08 (d, *J* = 7.2 Hz, 5H), 6.83 – 6.79 (m, 4H), 6.77 (s, 2H), 6.70 (d, *J* = 9.5 Hz, 1H), 5.80 (s, 1H), 5.36 (s, 2H), 2.56 – 2.38 (m, 2H), 1.46 (m, 2H), 1.28 (m, 2H), 0.85 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CHLOROFORM-D) δ 165.18, 144.86, 142.28, 142.10, 141.44, 132.91, 129.57, 129.50, 129.30, 129.06, 128.57, 128.44, 127.63, 126.74, 126.67, 125.12, 124.97, 118.33, 116.84, 114.88, 51.76, 35.59, 33.06, 22.30, 13.93.

FIG S33 ¹H, ¹³C and HMBC spectra in CDCI₃ of AuL2

AuL3:

¹H NMR (400 MHz, CHLOROFORM-D) δ 10.32 (d, *J* = 8.5 Hz, 1H), 7.67 – 7.53 (m, 4H), 7.21 (d, *J* = 7.6 Hz, 3H), 7.19 – 7.16 (m, 2H), 7.15 – 7.12 (m, 6H), 7.08 (t, *J* = 5.0 Hz, 5H), 6.97 (s, 2H), 6.80 (dd, *J* = 6.3, 3.2 Hz, 4H), 6.69 (d, *J* = 9.5 Hz, 1H), 5.80 (s, 1H), 5.41 (s, 2H), 1.12 (s, 9H). ¹³C NMR (100 MHz, CHLOROFORM-D) δ 165.04, 152.74, 142.33, 142.09, 141.02, 135.61, 132.93, 129.52, 129.28, 128.55, 128.43, 127.60, 126.75, 126.65, 125.07, 118.36, 116.83, 114.89, 52.02, 35.03, 31.07.

FIG S34 ¹H, ¹³C and HMBC spectra in CDCI₃ of AuL3

AuL4:

¹H NMR (400 MHz, CHLOROFORM-D) δ 10.27 (d, *J* = 8.2 Hz, 1H), 7.63 (dt, *J* = 30.7, 11.0 Hz, 3H), 7.17 (m, 10H), 7.09 (m, 7H), 6.89 – 6.78 (m, 4H), 6.69 (dd, *J* = 9.2, 3.4 Hz, 3H), 5.76 (s, 1H), 5.41 (s, 2H).¹³C NMR (δ ppm CHLOROFORM-D, 100 MHz, proton decoupled): 165.50, 144.98, 144.90, 141.47, 141.13, 132.79, 129.73, 129.55, 129.47, 129.17, 128.87,

128.65, 127.82, 127.17, 127.08, 127.02, 125.40, 124.96, 118.29, 116.93, 116.68, 116.59, 114.77, 51.98.

- (PPIII)

FIG S35 ¹H, ¹³C and HMBC spectra in CDCI₃ of AuL4

AuL5:

¹H NMR (396 MHz, CHLOROFORM-D) δ 10.26 (d, *J* = 8.4 Hz, 1H), 7.66 (dd, *J* = 16.0, 7.5 Hz, 2H), 7.57 (t, *J* = 7.3 Hz, 1H), 7.20 (dd, *J* = 9.3, 4.7 Hz, 3H), 7.18 – 7.13 (m, 7H), 7.11 (d, *J* = 9.4 Hz, 2H), 7.08 – 7.05 (m, 4H), 6.95 (s, 2H), 6.80 (dd, *J* = 6.5, 2.8 Hz, 4H), 6.70 (dd, *J* = 8.5, 3.9 Hz, 2H), 5.76 (s, 1H), 5.38 (s, 2H). ¹³C NMR (100 MHz, CHLOROFORM-D) δ 165.18, 144.04, 141.37, 141.02, 132.76, 129.73, 129.47, 129.19, 128.88, 128.67, 127.85, 127.19,

FIG S36 ¹H, ¹³C and HMBC spectra in CDCI₃ of AuL5

AuL6:

¹H NMR (400 MHz, CHLOROFORM-D) δ 10.29 (d, J = 8.5 Hz, 1H), 7.63 (dd, J = 12.1, 8.1 Hz, 2H), 7.58 – 7.52 (m, 1H), 7.23 – 7.19 (m, 4H), 7.16 – 7.06 (m, 16H), 6.95 (t, J = 7.1 Hz, 7H), 6.75 – 6.70 (m, 6H), 6.58 (d, J = 7.4 Hz,1H), 5.89 (s,1H), 5.40 (s,1H), 5.32 (s,2H). NMR (126 MHz,) δ 165.37, 145.70, 143.18, 142.14, 141.71, 141.63, 136.30, 132.90, 129.65, 129.33, 129.23, 129.05, 128.50, 128.42, 128.40, 127.66, 126.64, 126.39, 125.23, 124.94, 118.32, 116.54, 114.85, 56.29, 51.82.

FIG S37 ¹H, ¹³C and HMBC spectra in CDCI₃ of AuL6

AuL7:

¹H NMR (400 MHz, CHLOROFORM-D) δ 10.43 (d, J = 8.4 Hz, 1H), 7.66 (t, J = 7.9 Hz, 2H), 7.62 – 7.53 (m, 1H), 7.33 (t, J = 7.6 Hz, 4H), 7.29 – 7.21 (m, 6H), 7.16 (d, J = 7.6 Hz, 3H), 7.00 (s, 2H), 5.61 (s, 1H), 2.27 (dt, J = 13.6, 6.8 Hz, 2H), 1.20 (d, J = 6.8 Hz, 6H), 1.00 (d, J = 6.8 Hz, 6H).¹³C NMR (100 MHz, CHLOROFORM-D) δ 165.95, 146.45, 145.22, 143.57, 133.16, 129.84, 129.61, 129.17, 128.54, 127.65, 126.58, 126.07, 125.45, 124.98, 118.33, 115.64, 114.97, 56.92, 29.79, 28.56, 24.55, 24.27.

FIG S38. ¹H, ¹³C and HMBC spectra in CDCI₃ of AuL7