Supplementary Information

Microwave-assisted synthesis of tubulin assembly inhibitors as anticancer agents by aryl ring reversal and conjunctive approach

Domiziana Masci,^{a,b} Michela Puxeddu,^c Claudia Colla,^c Antonio Coluccia,^c Martina Santelli,^a Pietro Sciò,^c Elena Mariotto,^{d,e} Giampietro Viola,^{d,e} Ernest Hamel,^f Rosa Lerose,^g Carmela Mazzoccoli,^g Romano Silvestri,^{c,*} and Giuseppe La Regina^c

^a Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy

^b Policlinico Universitario A. Gemelli Foundation-IRCCS, 00168 Rome, Italy

[°] Laboratory affiliated with the Institute Pasteur Italy – Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy

^d Department of Woman's and Child's Health, University of Padua, Hemato-oncology Lab, Via Giustiniani 3, 35128 Padua, Italy

^e Istituto di Ricerca Pediatrica Città della Speranza - IRP, Corso Stati Uniti, 4-35127 Padua, Italy

^{*f*} Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States

^g Hospital Pharmacy, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy

Corresponding author: romano.silvestri@uniroma1.it

Contents of Supporting Information

Chart 1S. Comparing MW-assisted synthesis of 3-30 with our previous protocols (Ref.1S).

Figure S1. Correlation between the IC₅₀ values of MCF-7 cancer cell growth inhibition and % values of [³H]colchicine binding inhibition (Table 1 and Table 2)

Figure S2. Inhibition of HCT116 cell growth by compound 4.

Figure S3. Inhibition of BX-PC3 cell growth by compound 4.

Figure S4. RMSD Plot.

Figure S5. New hydrogen bond between the ketone group of compound 4 and Asp251 β side chain, observed with 80% formation frequency during MD simulation.

 Table S1. Docking score and interactions of compound 4.

 Table S2. ADME profile of compound 4.

¹H and ¹³C NMR spectra of compounds 3-30.

IR spectra of compounds 3-30.

HPLC chromatograms of compounds 4, 14, 15, 18, 20, 22 and 24.

Chart 18. Comparing MW-assisted synthesis of 3-30 with our previous protocols.^{S1}

Figure S1. Correlation between the IC_{50} values of MCF-7 cancer cell growth inhibition and % values of $[^{3}H]$ colchicine binding inhibition (Table 1 and Table 2).

Figure S2. Inhibition of HCT116 cell growth by compound 4.

Figure S3. Inhibition of BX-PC3 cell growth by compound 4.

Figure S4. RMSD Plot.

Figure S5. New hydrogen bond between the ketone group of compound 4 and $Asp251\beta$ side chain, observed with 80% formation frequency during MD simulation.

Table S1. Docking score and interactions of compound 4.

	_	Type of Interactions						
Cpd	Docking score ^a	H-bond	Hydrophobic ^b	Polar				
		Ring A pOCH ₃	Ring A Leu254β 4.1 Å	Ring B OCH ₃ Lys254β 4.2 Å				
		Cys241β 3.1 Å	Ring B Leu248β 4.1 Å					
			Ring B Lys252β 3.7 Å					
4	-7.65		Ring C Met259β 3.8 Å					
			Ring C Lys352β 3.7 Å					
			Ring C Ala180α 4.4 Å					
			Ring C Val181α 4.7 Å					

^aDocking score is in Kcal/mol; ^b Distance are computed between the ring centroid and closest residue atom.

Table S2. ADME	parameter	for com	pound 4.
----------------	-----------	---------	----------

Cpd	MW ^a	H don ^b	H Acc ^c	logP ^d	logS ^e	tPSA ^f	L r ^g	V r ^h
4	444.48	0	6	4.44	-5.38	71.81	0	0

Physicochemical properties predicted by QikProp:^{S2,3} ^{*a*} Molecular Weight; ^{*b*} Number of H-bond acceptors; ^{*c*} Number of H-bond donors; ^{*d*} Octanol-water partition coefficient predictor by XLOGP3 method; ^{S4} ^{*e*} Logarithm of compounds water solubility by ESOL method; ^{S5} ^{*f*} Topological polar surface area; ^{*s*} L r: Lipinsky Rule deviation (log P <5, H-bond donors \leq 5, H-bond acceptors \leq 10, and a molecular weight <500); ^{S6} ^{*h*} V r: Veber rule deviation (rotable bonds \leq 10, tPSA \leq 140). ^{S7}

References of SI

- (S1) G. La Regina, R. Bai, A. Coluccia, V. Famiglini, S. Passacantilli, V. Naccarato, G. Ortar, C. Mazzoccoli, V. Ruggieri, F. Agriesti, C. Piccoli, T Tataranni, M. Nalli, A. Brancale, S. Vultaggio, C. Mercurio, M. Varasi, C. Saponaro, S. Sergio, M. Maffia, A. M. L. Coluccia, E. Hamel, R. Silvestri. 3-Aroyl-1,4-diarylpyrroles inhibit chronic myeloid leukemia cell growth through an interaction with tubulin. *ACS Med. Chem. Lett.* 2017, **8**, 521-526. DOI: 10.1021/acsmedchemlett.7b00022.
- (S2) E. M. Duffy, W. L. Jorgensen. Prediction of Properties from Simulations: Free Energies of Solvation in Hexadecane, Octanol, and Water. J. Am. Chem. Soc. 2000, 122, 2878-2888. DOI: 10.1021/ja993663t.
- (S3) Schrödinger Release 2018: QikProp, Schrödinger, LLC, New York, NY, 2018.
- (S4) T. Cheng, Y. Zhao, X. Li, F. Lin, Y. Xu, X. Zhang, Y. Li, R. Wang, L. Lai. Computation of octanol-water partition coefficients by guiding an additive model with knowledge. *J Chem Inf Model*. 2007, 47, 2140-2148. DOI: 10.1021/ci700257y.
- (S5) J. S. Delaney. ESOL: Estimating Aqueous Solubility Directly from Molecular Structure. J. Chem. Inf. Comput. Sci. 2004, 44, 1000-1005. DOI: 10.1021/ci034243x.
- (S6) C. A. Lipinski, F. Lombardo, C. A. Dominy, P. J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Adv. Drug Delivery Rev.* 2001, **46**, 3-26. DOI: 10.1016/s0169-409x(00)00129-0.
- (S7) D. F. Veber, S. R. Johnson, H. Y. Cheng, B. R. Smith, K. W. Ward, K. D. Kopple. Molecular properties that influence the oral bioavailability of drug candidates. *J Med Chem.* 2002, 6, 2615-23. DOI: 10.1021/jm020017n.

¹H and ¹³C NMR Spectra of Pyrroles **3-24** and Indoles **25-30**

IR Spectra of Pyrroles 3-24 and Indoles 25-30

HPLC Chromatograms of Compounds 4, 14, 15, 18, 20, 22 and 24

Cpd 4			
Sample Name:	Cpd 4	Injection Volume:	20,0
Vial Number:	22	Channel:	UV_VIS_3
Sample Type:	unknown	Wavelength:	254.0
Control Program:		Bandwidth:	4
Quantif. Method:	default_0_05	Dilution Factor:	1,0000
Run Time (min):	34,00	Sample Weight:	1,0000
		Sample Amount:	1,0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	16,66	Peak 1	24,048	3,637	0,36	n.a.	BM *^
2	22,99	Cpd 4	2554,339	1018,404	99,64	n.a.	BMB*
Total:			2578,388	1022,040	100,00	0,000	

Cpd 14			
Sample Name:	Cpd 14	Injection Volume:	20,0
Vial Number:	53	Channel:	UV_VIS_3
Sample Type:	unknown	Wavelength:	254.0
Control Program:		Bandwidth:	4
Quantif. Method:	default_0_05	Dilution Factor:	1,0000
Run Time (min):	34,00	Sample Weight: Sample Amount:	1,0000 1,0000

Me

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	13,84	Peak 1	66,801	9,145	1,14	n.a.	BMB*^
2	18,95	Cpd 14	2827,333	793,189	98,86	n.a.	BMB*^
Total:			2894,135	802,334	100,00	0,000	

Cpd 15			
Sample Name:	Cpd 15	Injection Volume:	20,0
Vial Number:	29	Channel:	UV_VIS_3
Sample Type:	unknown	Wavelength:	254.0
Control Program:		Bandwidth:	4
Quantif. Method:	default_0_05	Dilution Factor:	1,0000
Run Time (min):	34,00	Sample Weight: Sample Amount:	1,0000 1,0000

MeO

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	12,80	Peak 1	19,435	2,288	0,24	n.a.	BMB*^
2	13,13	Peak 2	11,621	1,247	0,13	n.a.	BMB*^
3	18,89	Peak 3	15,285	3,348	0,35	n.a.	BMB*^
4	20,06	Cpd 15	2797,019	938,075	99,27	n.a.	BMB*
Total:			2843,361	944,958	100,00	0,000	

Cpd 18			
Sample Name:	Cpd 18	Injection Volume:	20,0
Vial Number: Sample Type:	53 unknown	Channel: Wavelength:	0V_VIS_3 254.0
Control Program:	default 0.05	Bandwidth: Dilution Factor:	4
Run Time (min):	30,00	Sample Weight: Sample Amount:	1,0000 1,0000 1,0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10,99	Peak 1	10,376	0,773	0,11	n.a.	BMB*^
2	13,23	Peak 2	4,346	0,388	0,05	n.a.	BMB*^
3	16,06	Cpd 18	2857,142	708,472	99,84	n.a.	BMB*^
Total:			2871,864	709,633	100,00	0,000	

Cpd 20			
Sample Name:	Cpd 20	Injection Volume:	20,0
, Vial Number:	41	Channel:	UV_VIS_3
Sample Type:	unknown	Wavelength:	254.0
Control Program:		Bandwidth:	4
Quantif. Method:	default_0_05	Dilution Factor:	1,0000
Run Time (min):	34,00	Sample Weight:	1,0000
		Sample Amount:	1,0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	16,11	Cmpd 20	2822,964	1543,254	100,00	n.a.	BMB*
Total:			2822,964	1543,254	100,00	0,000	

Cpd 22			
Sample Name:	Cpd 22	Injection Volume:	20,0
Vial Number:	25	Channel:	UV_VIS_3
Sample Type:	unknown	Wavelength:	254.0
Control Program:		Bandwidth:	4
Quantif. Method:	default_0_05	Dilution Factor:	1,0000
Run Time (min):	34,00	Sample Weight:	1,0000
		Sample Amount:	1,0000

Me Me^{_N}

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	14,63	Peak 1	21,719	8,777	0,61	n.a.	BMB*^
2	21,50	Cpd 22	2516,590	1417,760	98,13	n.a.	BMB*^
3	23,16	Peak 2	66,965	18,311	1,27	n.a.	BMB*^
Total:			2605,274	1444,848	100,00	0,000	

Cpd 24			
Sample Name:	Cpd 24	Injection Volume:	20,0
Vial Number:	55	Channel:	UV_VIS_
Sample Type:	unknown	Wavelength:	254.0
Control Program:		Bandwidth:	4
Quantif. Method:	default_0_05	Dilution Factor:	1,0000
Run Time (min):	30,00	Sample Weight: Sample Amount:	1,0000 1,0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	10,42	Cpd 24	1567,201	769,437	98,09	n.a.	BM *
2	11,15	Peak 2	27,614	6,519	0,83	n.a.	M *^
3	16,12	Peak 3	10,508	2,019	0,26	n.a.	BMB*^
Total:			1605,323	777,975	100,00	0,000	