Non-Steroidal Anti-Inflammatory Drugs Conjugated to a Synthetic Peptide Exhibits *in vitro* Cytotoxic Activity Against Cervical Cancer and Melanoma Cells

Daniel Alejandro Castellar-Almonacid^a, Andrea Carolina Barragán-Cárdenas^b, Karla Geraldine Rodríguez-Mejia^a, Laura Angélica Maldonado-Sanabria^a, Natalia Ardila-Chantré^a, Jose David Mendoza-Mendoza^b, Claudia Marcela Parra-Giraldo^c, Jhon Erick Rivera-Monroy^d, Zuly Jenny Rivera-Monroy^e, Javier Eduardo García-Castañeda^a, and Ricardo Fierro Medina^e

- ^{b.} Instituto de Biotecnología-Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogotá. D.C, Colombia
- ^{c.} Biomedical Sciences Faculty- Universidad Europea, Madrid, España
- ^{d.} Universidad de la Salle, LIAC, Bogotá. D.C, Colombia
- e. Departamento de Química-Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogotá. D.C, Colombia

Supplementary Material

NAP-1: NAP-RWQWRWQWR

NAP-Orn₃1: NAP-OOO-RWQWRWQWR

IBU-Orn₃₋1: IBU-OOO-RWQWRWQWR

Figure S1. Structures of NSAID-peptide conjugates. The conjugated peptides consist of the palindromic sequence (black) with or without a spacer (three Ornithine residues in pink) and the NSAID (blue) attached at the N-terminal end of the sequence

^a. Departamento de Farmacia-Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogotá. D.C, Colombia

Figure S2. The analytical characterization by RP-HPLC and HRMS ESI-QTOF of the peptide 1: RWQWRWQWR. (A) Chromatographic profile with the retention time and purity percentage displayed. (B) ESI-QTOF mass spectra with the main multiple charged species identified and the isotopic distribution for the base peak.

Figure S3. The analytical characterization by RP-HPLC and HRMS ESI-QTOF of the peptide NAP-1: NAP-RWQWRWQWR. (A) Chromatographic profile with the retention time and purity percentage displayed. (B) ESI-QTOF mass spectra with the main multiple charged species identified and the isotopic distribution for the base peak.

Figure S4. The analytical characterization by RP-HPLC and HRMS ESI-QTOF of the peptide IBU-1: IBU-RWQWRWQWR. (A) Chromatographic profile with the retention time and purity percentage displayed. (B) ESI-QTOF mass spectra with the main multiple charged species identified and the isotopic distribution for the base peak.

Figure S5. The analytical characterization by RP-HPLC and HRMS ESI-QTOF of the peptide NAP-Orn₃-1: NAP-Orn₃-RWQWRWQWR (A) Chromatographic profile with the retention time and purity percentage displayed. (B) ESI-QTOF mass spectra with the main multiple charged species identified and the isotopic distribution for the base peak.

Figure S6. The analytical characterization by RP-HPLC and HRMS ESI-QTOF of the peptide IBU-Orn₃-1: IBU-Orn₃-RWQWRWQWR (A) Chromatographic profile with the retention time and purity percentage displayed. (B) ESI-QTOF mass spectra with the main multiple charged species identified and the isotopic distribution for the base peak.

Figure S7. The analytical characterization by RP-HPLC and HRMS ESI-QTOF of the peptide Orn₃-1: Orn₃-RWQWRWQWR (A) Chromatographic profile with the retention time and purity percentage displayed. (B) ESI-QTOF mass spectra with the main multiple charged species identified and the isotopic distribution for the base peak.

Figure S8. FT-IR ATR spectra of (A) Orn₃-1 (B) NAP-Orn₃-1 (C) IBU-Orn₃-1. FT-ATR spectra were acquired in a Shimadzu IRAffinity1S with a Spec ATR module. Parameters were as follows: Wavelength range 500-4500 cm-1, number of scans 64, Resolution 8.

Figure S9. (Top panel) Expanded chromatographic profile of peptide 1 after digestion with trypsin (A) at different time points: 1 min (red), 2 h (green), and 24 h (blue). Mass spectrum of peptide 1: peak 1 (t_R = 4.5 min) is shown in (B), and mass spectrum of peak 2 (t_R = 4.7 min) is shown in (C). (Bottom panel) Expanded chromatographic profile of peptide NAP-Orn₃-1 after digestion with trypsin (A) at different time points: 1 min (red), 2 h (green), and 24 h (blue). Mass spectrum of peptide NAP-Orn₃-1 after digestion with trypsin (A) at different time points: 1 min (red), 2 h (green), and 24 h (blue). Mass spectrum of peptide NAP-Orn₃-1: peak 1 (tR = 4.3 min) is shown in (B), and mass spectrum of peak 2 (tR = 4.7 min) is shown in (C).

m/z experimental	Specie	Fragment	m/z expected
831.70	[M+H]+	RWQWR	831.44
471.70	[M+H]+	RWQ with loss of water	471.24
415.63	[M+2H] ²⁺	RWQWR	416.22
360.41	[M+H]+	WR	361.20
342.03	[M+H]+	WR with loss of water	342.18

Table S1. Peptide fragments identified in the mass spectra of peptides 1 and NAP-Orn₃-1 after trypsin treatment.

Figure S10. Microphotographs of HeLa and A375 (37°C) cells after 2h of treatment with 1600 μ g/mL of NSAID molecules Naproxen and Ibuprofen.

Figure S11. Cell viability plots in cervical cancer (A) and melanoma cells (B) for 1 and LTX-315 (KKWKKW-Dip-K-NH₂). Data represents the mean \pm S.D (n=3) (Two-way ANOVA and Sidak's multiple comparisons tests were performed, p <0.05). Oncolytic peptide LTX-315 was used as a control in the MTT assay. LTX-315 exhibited higher cytotoxicity than peptide 1 in the A-375 cell line, while peptide 1 demonstrated greater activity at concentrations above 50 µg/mL in the HeLa cell line.

Figure S12. Cytometry assays of the HeLa cells treated with peptides IBU-Orn3-1 ($60 \mu g/mL$) or 1 ($48 \mu g/mL$) by 24h at 37oC. The plots showed the population's distribution; left upper quadrant Q1: Necrosis; right upper quadrant Q2: later apoptosis; lower right quadrant Q3: early apoptosis, and lower left quadrant Q4: live cells. Negative control: cells untreated; Positive control: Formaldehyde 25%

Figure S13. Cytometry assays of the HeLa cells treated with peptides IBU-Orn3-1 ($120 \mu g/mL$) or 1 ($96 \mu g/mL$) by 2h at 37°C. The plots showed the population's distribution; left upper quadrant Q1: Necrosis; right upper quadrant Q2: later apoptosis; lower right quadrant Q3: early apoptosis, and lower left quadrant Q4: live cells. Negative control: cells untreated; Positive control: Formaldehyde 25%

Figure S14. Cytometry assays of the HeLa cells treated with peptides IBU-Orn₃-1 (120 μ g/mL) or 1 (96 μ g/mL) by 24h at 37°C. The plots showed the population's distribution; left upper quadrant Q1: Necrosis; right upper quadrant Q2: later apoptosis; lower right quadrant Q3: early apoptosis, and lower left quadrant Q4: live cells. Negative control: cells untreated; Positive control: Formaldehyde 25%

Figure S15. Cytometry assays of the HeLa cells treated with peptides IBU-Orn₃-1 (180 μ g/mL) or 1 (192 μ g/mL) by 2h at 37°C. The plots showed the population's distribution; left upper quadrant Q1: Necrosis; right upper quadrant Q2: later apoptosis; lower right quadrant Q3: early apoptosis, and lower left quadrant Q4: live cells. Negative control: cells untreated; Positive control: Formaldehyde 25%

Figure S16. Cytometry assays of the HeLa cells treated with peptides IBU-Orn₃-1 (180 μ g/mL) or 1 (192 μ g/mL) by 24h at 37°C. The plots showed the population's distribution; left upper quadrant Q1: Necrosis; right upper quadrant Q2: later apoptosis; lower right quadrant Q3: early apoptosis, and lower left quadrant Q4: live cells. Negative control: cells untreated; Positive control: Formaldehyde 25%.

Figure S17. Cell viability plots in Murine Fibroblasts (L929), human cervical cancer (HeLa), and human melanoma (A375) cells for **A**) NAP-Orn)-1 **B**) IBU-Orn₃-1. Data represents the mean+ S.D (n=3) (Two-way ANOVA and Sidak's multiple comparisons tests were performed, p <0.05). Significant statistical differences between the cytotoxic activity in L929 with HeLa cancer cells were found from 100 to 200 µg/mL for NAP-(Orn)₃-1 and 50 to 100 µg/mL for IBU-(Orn)₃-1. Significant statistical differences were found for L929 and A375 cells from 6.125 to 200 µg/mL for both peptides NAP-(Orn)₃-1 and IBU-(Orn)₃-1 excluding the 100 µg/mL concentration.

Figure S18. Hemolysis curves for the peptides in the concentration range evaluated (6.25-200 $\mu\text{g}/\text{mL})$