Supplementary Information (SI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Materials

Investigation of the Anticancer Efficacy and Impact on Energy Metabolism of Dual-Core Gold(I) Complex BGC2a

Hai-Ling Gao,^a Wenwen Ding,^b Zhi-Xin Shen,^c* Qingbin Cui^{b,d}*

^aDepartment of Histology and Embryology, Shandong Second Medical University, Weifang, Shandong 261053, China. ^bDepartment of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China.

^cDepartment of Thyroid and Breast Surgery, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261042, China.

^dDepartment of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, US.

Corresponding authors: <u>szx1758@163.com</u> (Z.X.S.); <u>Qingbin.cui@utoledo.edu</u> (Q.C.)

Figure S1. ¹H- (upper) and ³¹P-NMR (middle) spectra of BGC2a and its HPLC trace (bottom).

Note: NMRs were recorded using CDCl₃ as the solvent. HPLC was performed using an Agilent 1100 HPLC system with a Zorbax C18 column and a linear gradient mobile phase ranging from 5% to 95% acetonitrile containing 0.05% formic acid. Detection was at 210 nm.

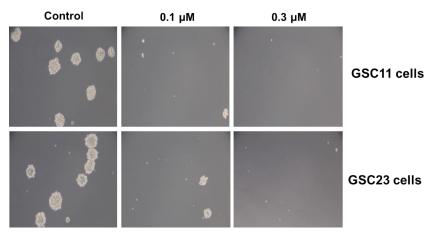


Figure S2. BGC2a (0.1 and 0.3 μ M) was effective in reducing the spheroid formations by GSC11 and GCS23 cells.