Supplementary Information (SI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2025

Screening apelin analogues and a small molecule agonist as effective cardiovascular therapeutics against reperfusion injury

Anjalee Wijewardane^a, Kleinberg X. Fernandez^a, Anran Zhang^{bc}, Conrad Fischer^a, Dineth P. Nagahawatta^{bc}, Xavier Iturrioz^e, Charlotte Avet^f, Bethan L. Heard^a, Catherine Llorens-Cortes^{d,e}, Gavin Y. Oudit^{bc}, Michel Bouvier^f, John C. Vederas^a

Table of Contents

1.	Chemical synthesis and structures of RI apelin analogues	2
	RI-13	
	RI-13A2	
	RI-17	
	RI-17A2	
	Radioligand displacement assays of RI apelin analogues	
	Effects of APJ agonists on blood pressure	
	Biased signaling profile values for tested APJ ligands	

1. Chemical synthesis and structures of RI apelin analogues

a. <u>RI-13</u>

Peptide RI-3 was synthesized following the general SPPS elongation procedure introducing amino acids in the following order: Fmoc-D-Arg(Pbf)-OH, Fmoc-D-Pro-OH, Fmoc-d-Arg(Pbf)-OH, Fmoc-D-Leu-OH, Fmoc-D-Ser(tBu)-OH, Fmoc-D-His(Trt)-OH, Fmoc-D-Lys(Boc)-OH, Fmoc-Gly-OH, Fmoc-D-Pro-OH, Fmoc-D-Pro-OH, and Fmoc-D-Phe-OH, with end-capping after each step. After the final N-terminal deprotection, the peptide was then cleaved from the resin and purified using the HPLC general method and an Agilent C18 RP-HPLC column (100 Å, 5 μ m, 250 mm, 4.6 mm). The desired peptide was isolated as a white solid after lyophilization (6 mg, 12%). The desired peptide was isolated as a white solid after lyophilization (6 mg, 12%). Monoisotopic mass calculated for $C_{69}H_{111}N_{23}O_{16}S$ 775.9223, found (FTICR-ESI-MS) 775.9216 [M + 2H]²⁺.

$$H_2N$$
 H_2N
 H_2N

Fig. S1(a). Chemical structure of RI-13

b. RI-13A2

Peptide RI-13A2 was synthesized following the general SPPS elongation procedure introducing amino acids in the following order: FmocD-Arg(Pbf)-OH, Fmoc-D-Pro-OH, Fmoc-D-Arg(Pbf)-OH, Fmoc-D-Leu-OH, Fmoc-D-Ser(tBu)- OH, Fmoc-D-His(Trt)-OH, Fmoc-D-Lys(Boc)-OH, Fmoc-Gly-OH, Fmoc-D-Pro-OH, Fmoc-DMet-OH, Fmoc-Aib-OH, and Fmoc-D-BrF-OH, with end-capping after each step. After the final N-terminal deprotection, the peptide was then cleaved from the resin and purified using the HPLC general method and an Agilent C18 RP-HPLC column (100 Å, 5 μ m, 250 mm, 4.6 mm). The desired peptide was isolated as a white solid after lyophilization (8 mg, 16%). Monoisotopic mass calculated for $C_{69}H_{112}BrN_{23}O_{16}$ 799.8993, found (FTICR-ESI-MS) 799.8981 [M +2H]²⁺.

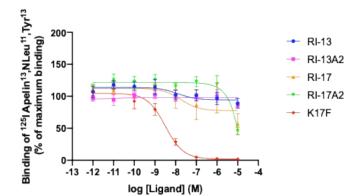
Fig. S1(b). Chemical structure of RI-13A2

c. <u>RI-17</u>

Peptide RI-17 was synthesized following the general SPPS elongation procedure introducing amino acids in the following order: FmocD-Phe-OH, Fmoc-D-Arg(Pbf)-OH, Fmoc-D-Arg(Pbf)-OH, Fmoc-D-Gln(Trt)-OH, Fmoc-DArg(Pbf)-OH, Fmoc-D-Pro-OH, Fmoc-D-Arg(Pbf)-OH, Fmoc-D-Leu-OH, Fmoc-D-Ser(tBu)-OH, Fmoc-D-His(Trt)-OH, Fmoc-D-Lys(Boc)-OH, Fmoc-Gly-OH, Fmoc-D-Pro-OH, Fmoc-D-Pro-OH, and Fmoc-D-Phe-OH, with end-capping after each step. After the final N terminal deprotection, the peptide was then cleaved from the resin and purified using the HPLC general method and an Agilent C18 RP-HPLC column (100 Å, 5 μ m, 250 mm, 4.6 mm). The desired peptide was isolated as a white solid after lyophilization (15 mg, 30%). Monoisotopic mass calculated for $C_{96}H_{156}N_{34}O_{20}S$ 1069.6051, found (FTICR-ESI-MS) 1069.605 [M + 2H]²⁺.

Fig. S1(c). Chemical structure of RI-17

d. RI-17A2


Peptide RI-17 was synthesized following the general SPPS elongation procedure introducing amino acids in the following order: FmocD-Phe-OH, Fmoc-D-Arg(Pbf)-OH, Fmoc-D-Arg(Pbf)-OH, Fmoc-D-Arg(Pbf)-OH, Fmoc-D-Arg(Pbf)-OH, Fmoc-D-Leu-OH, Fmoc-D-Ser(tBu)-OH, Fmoc-D-His(Trt)-OH, Fmoc-D-Lys(Boc)-OH, Fmoc-Gly-OH, Fmoc-D-Pro-OH, Fmoc-D-Nle-OH, Fmoc-Aib-OH, and Fmoc-D-BrF-OH, with end-capping after each step. After the final N-terminal deprotection, the peptide was then cleaved from the resin and purified using the HPLC general method and an Agilent C18 RP-HPLC column (100 Å, 5 μm, 250 mm, 4.6 mm).

The desired peptide was isolated as a white solid after lyophilization (12 mg, 24%). Monoisotopic mass calculated for $C_{96}H_{157}BrN_{34}O_{20}$ 1093.5821, found (FTICR-ESI-MS) 1093.5839 [M + 2H]²⁺.

Fig. S1(d). Chemical structure of RI-17A2

*All RI peptides were obtained in 90-95% purity by HPLC. The trace impurities were identified as truncated, inactive peptides.

2. Radioligand displacement assays of RI apelin analogues

APJ receptor agonist	IC ₅₀ (nM)		
apelin-17	2.46 ± 1.31 (7)		
RI-13	n.d.		
RI-13A2	>10- ⁶ M (7)		
RI-17	>10-6 M (7)		
RI-17A2	>10-6 M (7)		

Figure S2. Competition binding curves of different apelin receptor ligands. Membranes of CHO cells stably expressing the hApelinR were incubated with 0.2 nM of radiolabeled [125I]-Apelin-13 (Apelin 13, Nle11, Tyr13) in the presence of increasing concentrations of each ligand (from 1 pM to 10 μ M). Data are expressed as a percentage of maximal binding of [125I]-Apelin-13 in the absence of any unlabeled ligand. Graphic is a compilation of 4 independent experiments performed in duplicate. Error bars represent the SE.

3. Effects of APJ agonists on blood pressure

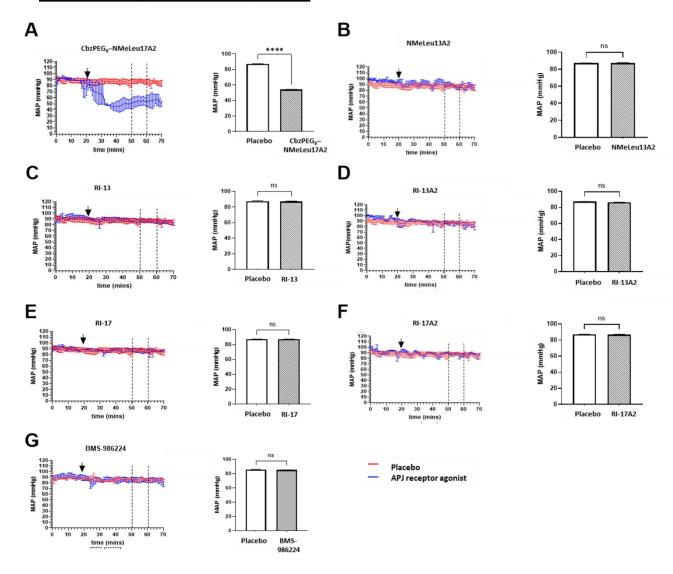


Figure S3. Different effects of apelin analog and receptor agonist on blood pressure and ischemia-reperfusion injury. A) the effect of CbzPEG $_6$ -NMeLeu17A2 (n=3) on mean arterial blood pressure (MAP), B) the effect of apelin 13 analog, NMeLeu13A2, on MAP (n=4). The effect of apelin 13 analog reverse enantiomers, C) RI13 (n=4) and D) RI13A2 (n=4), on MAP. The effect of apelin 17 reverse enantiomers, E) RI17 (n=4) and F) RI17A2 (n=4) on MAP. G) The effect of small molecule apelin receptor agonist BMS-986224 on blood pressure (n=4). The MAP recording between 50 and 60 minutes has been averaged and compared with their controls (placebo (n=4)). The vehicle for BMS-986224 is 0.1% DMSO (n=3). The arrow indicates the time when analogs were introduced. Values mean \pm SEM and \pm **P<0.0001, compared to the control group.

4. Biased signaling profile values for tested APJ ligands

Table S1. BRET-detected $logEC_{50}$ values for individual activation pathways

	Gαi1 activation log EC ₅₀	Gαi2 activation log EC ₅₀	β-arr1 recruitment log EC ₅₀	β-arr2 recruitment log EC ₅₀
AMG-986	10.56 ± 0.07	10.67 ± 0.04	8.96 ± 0.04	9.00 ± 0.03
BMS-986224	9.99 ± 0.05	9.96 ± 0.04	7.97 ± 0.04	8.05 ± 0.02
pyr-apelin-13	9.78 ± 0.06	9.75 ± 0.04	7.74 ± 0.02	7.76 ± 0.01
apelin-17	10.69 ± 0.10	10.78 ± 0.02	8.77 ± 0.02	8.74 ± 0.03
NMe13A2	10.47 ± 0.06	10.66 ± 0.04	8.91 ± 0.03	8.94 ± 0.03
Cbz-PEG ₆ -NMeLeu17A2	10.52 ± 0.08	10.73 ± 0.04	9.04 ± 0.03	8.81 ± 0.07
apelin 8-mer C-terminal	6.31 ± 0.05	6.46 ± 0.03	n.d.	n.d.
apelin 9-mer N-terminal	n.d.	n.d.	-	-
apelin-5-mer C-terminal	5.97 ± 0.06	5.94 ± 0.04	-	-