Supplementary Information

Flame Growth of Nickel-based Cocatalyst for Efficient Solar Water Splitting of

BiVO₄ Photoanode

Haohua Wang ^a, Youyi Su ^a, Xiangui Pang ^a, Ming Zhang ^b, Wufang Wang ^a, Pingping Yang ^a, Xinxin Lu ^{c*}, and Jiale Xie ^{a, d*}

^a School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.

^b School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, People's Republic of China.

^c Hydrogen Energy R&D Department, PetroChina Shenzhen New Energy Research Institute Co., Ltd., Shenzhen 518054, P.R. China.

^d Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P.R. China.

*Corresponding author. X. X. Lu, E-mail: lu.xinxin6391@gmail.com; J. L. Xie, E-mail: jialexie@swpu.edu.cn

Figure S1. (a) SEM image and EDS mappings overlapped image of the as-prepared NiO_x/BVO photoanode. (b) EDS mapping of Bi element. (c) EDS mapping of V element. (d) EDS mapping of Ni element.

Figure S2. EDS pattern of the as-prepared NiO_x/BVO photoanode.

Figure S3. XRD patterns of the as-prepared BVO and NiO_x/BVO photoanodes.

Figure S4. (a) Bi 4f XPS spectra of the BVO and NiO_x/BVO photoanodes. (b) V 2p XPS spectra of the BVO and NiO_x/BVO photoanodes.

Figure S5. LSV curves of the as-prepared and flame-treated BVO photoanodes at a scan rate of 20 mV/s.

Figure S6. (a) LSV curves and (b) *J-t* plots of the BVO and NiO_x/BVO photoanodes with different flame treatments.

Figure S7. (a) LSV, (c) *J-t*, and (d) OCPT plots of the BVO and NiO_x/BVO photoanodes with various flame treatment times. (b) Photocurrent density of the BVO and NiO_x/BVO photoanodes at 1.23 V vs. RHE.

Figure S8. (a) LSV, (c) *J-t*, and (d) OCPT plots of the BVO and NiO_x/BVO photoanodes with various volumes of $Ni(NO_3)_2$ ethanol solution. (b) Photocurrent density of the BVO and NiO_x/BVO photoanodes at 1.23 V vs. RHE.

Figure S9. (a) CV curves of the BVO photoanode. (b) CV curves of the NiO_x/BVO photoanode. (c) ECSA of the BVO and NiO_x/BVO photoanodes.

Figure S10. (a) CV curves of the BVO and NiOx/BVO photoanodes in the dark at a scan rate of 100 mV/s. (b) LSV curves of the BVO and NiOx/BVO photoanodes in the dark at a scan rate of 20 mV/s.

Figure S11. IPCE of NiO_x/BVO and BVO photoanodes measured with two-electrode configuration without bias. The electrolyte is the phosphate buffer (PBS) solution (pH = 6.86).

Figure S12. PEC stability of the NiO_x/BVO and PAM/NiO_x/BVO photoanodes during the initial 4 h.

Figure S13. PEC performance of the $PAM/NiO_x/BVO$ photoanode. (a) LSV curves at a scan rate of

Figure S14. Hydrogen evolution plot and Faradaic efficiency of PAM/NiO_x/BVO photoanode at 1.23 V vs. RHE under AM 1.5G illumination.

Table S1. Typical NiO_x and CoO_x cocatalysts synthesized with the different methods for BVO photoanode modification and their performances.

Photoanode	Synthesis method of cocatalyst	Testing conditions	Photocurre nt at 1.23 V vs. RHE	Enhance ment factor	Ref.
NiO _x /BVO	Spin-coating and flame synthesis	AM 1.5G (100	3.80	6.67	This
		mW/cm^{2}), 0.1 M	mA/cm ²		work
		PBS ($pH = 6.86$),			
		20 mV/s			
NiO _x /BVO	Spin-coating and annealing	AM 1.5G (100	3.32	2.86	1
		mW/cm^{2}), 1 M	mA/cm^2		
		KBi ($pH = 9.5$),			
		50 mV/s			
NiO _x /Mo:BVO	Photochemical- metal-organic	AM 1.5G (100	2.44	2.07	2
		mW/cm^{2}), 0.5 M	mA/cm ²		
	deposition method	Na_2SO_4 (pH =			
		6.8), 20 mV/s			
CoO _x /BVO	Immersion and annealing	AM 1.5G (100	~ 1.5 mA/cm ²	~1.36	3
		mW/cm^{2}), 0.1 M			
		KPi ($pH = 7$), 10			
		mV/s			
NiO _x /BVO	Electrodeposition	AM 1.5G (100	3.19	2.14	4
		mW/cm^{2}), 0.5 M	mA/cm ²		
		KBi (pH = 9.2),			
		10 mV/s			
NiOOH/BVO	Immersion	AM 1.5G (100	2.70	~2.30	5
		mW/cm^{2}), 1 M	mA/cm ²		
		Na_2SO_4 (pH =			
		5.92), 10 mV/s			

References

- X. Cao, L. X. Ren, Y. B. Zhao, H. H. Chen, Z. Q. Lu, Y. Liu, S. J. Wei, Q. Ma, L. B. Zhong,
 L. J. Song and Y. J. Qiu, *Chemical Engineering Journal*, 2025, 510, 161859.
- M. Zhang, R. P. Antony, S. Y. Chiam, F. F. Abdi and L. H. Wong, *ChemSusChem*, 2019, 12, 2022-2028.
- M. Zhong, T. Hisatomi, Y. Kuang, J. Zhao, M. Liu, A. Iwase, Q. Jia, H. Nishiyama, T. Minegishi, M. Nakabayashi, N. Shibata, R. Niishiro, C. Katayama, H. Shibano, M. Katayama, A. Kudo, T. Yamada and K. Domen, *Journal of the American Chemical Society*, 2015, 137, 5053-5060.

- 4. S. Wang, Z. Shi, K. Du, Z. Ren, H. Feng, J. Wang, L. Wang, D. Cui, Y. Du and W. Hao, Small Methods, n/a, 2401443.
- H. Luo, C. Liu, Y. Xu, C. Zhang, W. Wang and Z. Chen, *International Journal of Hydrogen Energy*, 2019, 44, 30160-30170.