Supporting Information:

Quantum Chemical Screening of Eutectic Solvent Components for Insights into CO₂ Complexation Mechanisms

Stephen P. Vicchio,*,† Osasumwen Ikponmwosa,‡ and Rachel B. Getman*,‡

†Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, United States

‡William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH 43210, United States

E-mail: stephen.vicchio@uky.edu; getman.11@osu.edu

Contents

S1 General Structural Information	3
S2 Implicit Solvation Considerations	8
S3 Explicit $[HBAa]^-$ Considerations	11
S4 Additional Figures and Tables Referred to in the Main Text	13
S5 Trends between CO_2 Binding and Proton Transfer Free Energies	16
S6 Raw Electronic Energies	18
S7 Reaction Energies	23
References	26

S1 General Structural Information

Table S1: The structure name, type, and abbreviation for the different $[HBAc]^+$ species included in the structure library.

Structure	Type	Abbreviation
Choline	[HBAc] ⁺	$[Ch]^+$
1-Ethyl-3-methylimidazolium	$[HBAc]^+$	$[EMIM]^+$
3-Ethylthiazolium	$[HBAc]^+$	$[ETH]^+$
3-Ethyl-4,5-dimethylthiazolium	$[HBAc]^+$	$[EMMTH]^+$
3-Ethyl-5-(hydroxymethyl)thiazolium	$[HBAc]^+$	[EHMTH] ⁺

Table S2: The structure name, type, and abbreviation for the different [HBAa]⁻ species included in the structure library.

Structure	Type	Abbreviation
Imidazolide	[HBAa] ⁻	$[Im]^-$
2-Methylimidazolide	$[HBAa]^-$	$[MeIm]^-$
2-Ethylimidazolide	$[HBAa]^-$	$[{ m EtIm}]^-$
Tetrazolide	$[HBAa]^-$	$[Tz]^-$
2-Cyanopyrrolide	$[HBAa]^-$	$[2-CNpyr]^{-}$
Pyrazolide	$[HBAa]^-$	$[Pyz]^-$
Pyrrolide	$[HBAa]^-$	$[Pyr]^-$
1,2,3-Triazolide	$[HBAa]^-$	$[123 - Trz]^{-}$
1,2,4-Triazolide	$[HBAa]^-$	$[124-Trz]^{-}$
Benzotriazolide	[HBAa] ⁻	$[B-Trz]^{-}$
Indazolide	[HBAa] ⁻	$[Ind]^{-}$
Benzimidazolide	$[HBAa]^-$	$[BIm]^-$

Table S3: The structure name, type, and abbreviation for the different HBD species included in the structure library.

Structure	Type	Abbreviation
1,5-Pentanediamine	HBD	PDA
1,3-Propanediamine	HBD	TDA
1,2-Ethanediamine	HBD	EDA
Monoethanolamine	HBD	MEA
Ethylene Glycol	HBD	EG
Propylene Glycol	HBD	\mathbf{PG}
Glycerol	HBD	GOL

Figure S1: The (a) $[\text{HBAc}]^+$, (b) $[\text{HBAa}]^-$, and (c) HBD species included in the structure library. The structure served as the basis for all the hypothetical reactions associated with the different CO₂ complexation pathways, as discussed in Table 1 and Figure 3 of the main text. Atom color key: blue = nitrogen, red = oxygen, gray = carbon, yellow = sulfur, and white = hydrogen.

Figure S2: The $[Pyr-R]^-$, ligand functionalized structures used to investigate the CO₂ binding reactions (Reaction **R2**) with different ligand environments. Atom color key: blue = nitrogen, red = oxygen, gray = carbon, yellow = sulfur, and white = hydrogen.

Figure S3: The $[Im-R]^-$, ligand functionalized structures used to investigate the CO₂ binding reactions (Reaction **R2**) with different ligand environments. Atom color key: blue = nitrogen, red = oxygen, gray = carbon, yellow = sulfur, and white = hydrogen.

S2 Implicit Solvation Considerations

Klemm et al. uses implicit solvation to simulate the liquid structure (i.e., the hydrogen bonding network) of [Ch]⁺[Pro]⁻:EG eutectic solvent.¹ The high-throughput screening approach also requires implicitly capturing the liquid structure, as the hydrogen bond network stabilizes the ionic species present in the eutectic solvent. Now, the dielectric constant for ionic liquids and eutectic solvents is a function of species present (i.e., the [HBAc]⁺, [HBAa]⁻, and HBD). Given all the different combinations of structures considered during high-throughput screening, determining a dielectric constant for each unique combination wasn't feasible. In theory, each of the eutectic solvent (i.e., 420 [HBAc]⁺[HBAa]⁻:HBD combinations) requires a specific dielectric constant. Additionally, the specific dielectric constant would be a function of the molar ratio between the [HBAc]⁺[HBAa]⁻ and the HBD. Hence, a representative dielectric constant is needed.

A representative dielectric constant was selected using a series of test calculations on the $[HBAc]^+$, $[HBAa]^-$, and HBD pathways for the $[EMMTH]^+[IMID]^-:MEA$ eutectic solvent. The influence of the dielectric constant on the calculated pathway energies are presented in Table S4. In G16, 'None ($\epsilon = 0.0000$)' represents the pathway energies from gas phase DFT calculations (i.e., no solvent is included). The dielectric constant was then systematically varied from 'None $\epsilon = 0.0000$ ' to 'Water $\epsilon = 78.3553$ ', with 'None' and 'Water' representing extreme cases of the dielectric constant values. The other dielectric constants include toluene ($\epsilon = 2.3741$), 1,2-dichloroethane ($\epsilon = 10.125$), and ethanol ($\epsilon = 24.8520$). The same analysis is performed with the inclusion of dispersion corrections (Table S5).

Table S4: Understanding the role of implicit solvation on the pathway free energies (ΔG^c) in units of kJ/mol by varying the dielectric constant for the [EMMTH]+[IMID]⁻:MEA eutectic solvent.

Pathway	None $\epsilon = 0.0000$	Toluene $\epsilon = 2.3741$	1,2-Dichloroethane $\epsilon = 10.125$	Ethanol $\epsilon = 24.8520$	Water $\epsilon = 78.3553$
HBAc	-396.0	-186.9	-84.9	-67.7	-59.8
$[HBAa]^-$	-85.1	-69.7	-60.4	-58.7	-57.9
[HBD] ⁻	-43.1	-45.0	-54.7	-57.3	-58.6

Table S5: Understanding the role of implicit solvation on the pathway free energies (ΔG^c) in units of kJ/mol by varying the dielectric constant for the [EMMTH]+[IMID]⁻:MEA eutectic solvent with dispersion corrections.

Pathway	None $\epsilon = 0.0000$	1,2-Dichloroethane $\epsilon = 10.125$	$\begin{array}{c} \text{Ethanol} \\ \epsilon = 24.8520 \end{array}$	Water $\epsilon = 78.3553$
HBAc	-416.4	-105.1	-87.9	-80.0
$[HBAa]^-$	-99.6	-75.1	-73.4	-72.5
[HBD] ⁻	-50.8	-67.7	-70.3	-71.6

Significant differences in energies for the $[HBAc]^+$ pathway using gas phase energies are observed due to the lack of stabilization of the cationic species (Table S4). Without implicitly considering the liquid structure (i.e., no dielectric constant, $\epsilon = 0.0000$), the $[HBAc]^+$ pathway energies are significantly downhill (-396.0 kJ/mol).

By just including the liquid structure with a small dielectric constant (i.e., toluene $(\epsilon = 2.3741)$), the same [HBAc]⁺ pathway energy is calculated to be -186.9 kJ/mol. As the dielectric constant increases, the [HBAc]⁺ pathway continues to become more positive, again suggesting that the [HBAc]⁺ is highly sensitive to the liquid structure. When inspecting the electronic energies for each structure, the energy of the cationic species ([HBAc]⁺) drives the fluctuations in the [HBAc]⁺ pathway energies. For both [HBAa]⁻ and the HBD pathways, the difference in pathway energies is less sensitive to liquid structure. Increasing

the dielectric constant from $\epsilon = 0.0000$ to $\epsilon = 78.3553$ increases the [HBAa]⁻ pathway energies by 27.2 kJ/mol and decreases the HBD pathway energies by 15.5 kJ/mol. Therefore, including implicit solvation becomes necessary to capture the electronic structure correctly. In Table S5, the same analysis as Table S4 with the addition of dispersion corrections. A similar observation as the dielectric constant is observed when the dispersion corrections are included.

In summary, calculating representative electronic energies requires considering the liquid structure by selecting a dielectric constant. Ultimately, ethanol ($\epsilon = 24.8520$) is chosen to represent the solvation environment in the high-throughput DFT calculations. Only minor changes in the energies between ethanol ($\epsilon = 24.8520$) and water $\epsilon = 78.3553$ are observed, suggesting that the energies start to plateau when the dielectric constant increases. Dispersion corrections were also included in the DFT electronic energies.

S3 Explicit [HBAa]⁻ Considerations

In the main text, Figure 4 shows the CO_2 complexation energies for the [HBAa]⁻ species. These figures only include implicit solvation to model the hydrogen bond network, which was needed to accurately model the electronic structure of the different species (as discussed in SI Section 2.0 Implicit Solvation Considerations). Additional insights are provided by considering explicit HBD species for intermediates involved in Reaction **R2** (i.e., the [HBAa]⁻ complexation pathway). By explicitly considering the HBD, further complexity is introduced into the model and required additional DFT calculations. For example, each [HBAa]⁻ and [HBAa– CO_2]⁻ required inclusion of an HBD (Figure S4). The inclusion of explicit HBD is two-fold: (1) to validate the implicit modeling approach and (2) to understand how the hydrogen bond stabilization can impact the pathway energies.

Figure S4: An example of explicit hydrogen bond stabilization for both $[HBAa]^-$ and $[HBAa-CO_2]^-$. The hydrogen bond is labeled in orange for both structures (with the distance also provided).

Similar trends for the [HBAa]⁻ complexation energies are observed between implicit solvation (Figure 4; main text) and explicit hydrogen bond stabilization (Figure S5a). Although the energies reported in Figure S5b fluctuate, $\Delta\Delta G$, generally, lead to a lowering ($\Delta\Delta G < 0$) of the [HBA]⁻ pathway energy. However, these values are below 25 kJ/mol, except for [Tz]⁻/EDA (-31.2 kJ/mol), [Tz]⁻/EG (-47.5 kJ/mol), and [Tz]⁻/GOL (-44.1 kJ/mol). Given the relative simplicity of our models (needed because any further complexity would

prohibit high throughput screening), these errors are likely within the standard error of our simulations. The finding suggests that implicit solvation is a reasonable approximation for the purposes of high throughput screening. As with most endeavors into high throughput screening, promising systems should be checked with more sophisticated models if better accuracy in the calculated free energies is needed.

Figure S5: Heat maps showing (a) $[\text{HBAa}]^- \text{CO}_2$ complexation pathway free energies $(\Delta G^{c,exp}_{[HBAa]^-})$ including hydrogen bond stabilization from the HBD species and (b) the difference between the explicit and implicit CO_2 complexation pathway free energies $(\Delta G^{c,exp}_{[HBAa]^-} - \Delta G^c_{[HBAa]^-})$. The values of $\Delta G^c_{[HBAa]^-}$ are the pathway free energies reported in Figure 4 (main text).

S4 Additional Figures and Tables Referred to in the Main Text

Figure S6: Heat maps comparing the free energies between the [HBD]⁻ and HBAc pathways: (a) difference between the [HBD]⁻ pathway proton transfer step $(-\mathbf{R5} + \mathbf{R1}; -\Delta G_5 + \Delta G_1)$ and the HBAc pathway proton transfer step $(-\mathbf{R3} + \mathbf{R1}; -\Delta G_3 + \Delta G_1)$ and (b) difference between HBD $(\Delta G^c_{[HBD]^-})$ and HBAc $(\Delta G^c_{[HBAa]^+})$ complexation pathways. The expressions for the different pathways are presented in Figure 3 of the main text. For the proton transfer steps, the energy (ΔG_1) is calculated using $[\text{Im}]^-$ as the proton acceptor. Swapping out the different [HBAa]⁻ species would only shift all energies, accordingly. The color bar indicates the more favorable pathway. For (a), blue indicates $[\text{HBD}]^-$ proton transfer is more favorable $(-\Delta G_5 + \Delta G_1 < -\Delta G_3 + \Delta G_1)$ and mauve indicates the $[\text{HBAc}]^+$ proton transfer is more favorable $(-\Delta G_5 + \Delta G_1 < -\Delta G_3 + \Delta G_1)$. For (b), blue indicates that the HBD complexation is preferred $(\Delta G^c_{[HBD]^-} < \Delta G^c_{HBAc})$ and mauve indicates that the HBAc complexation pathway is preferred $(\Delta G^c_{[HBD]^-} > \Delta G^c_{HBAc})$.

Figure S7: Structures (a) $[Pyr-MeOH]^-$, (b) $[Im-MeOH]^-$, and (c) $[Im-EtOH]^-$ illustrating hydrogen bond stabilization due to the inclusion of the R-OH groups at *ortho*-positions relative to the N atom CO₂ binding site. The CO₂ binding energy (**R2**; $\Delta G_2 = \Delta G^c$) for each structure is reported without (left column) and with (right column) intramolecular hydrogen bonding. The intramolecular hydrogen bonds are dashed, orange lines between the proton in OH and the complexed CO₂. Atom Color Key: Gray = Carbon, Blue = Nitrogen, Red = Oxygen, White = Oxygen.

Figure S8: Scaling plots for the HBD species using the reaction free energies presented in Table 1 (main text). The proton transfer (ΔG_5) and CO₂ binding (ΔG_6) reactions are considered.

Table S6: Comparing Complexation Energies (ΔE^c) and Free Energies (ΔG^c) for the [HBAa]⁻ Species at the b3lyp/6-311+G(d,p) (manuscript) and wB97XD/6-311+G(d,p) levels of theory. All energies are reported in kJ/mol

	ΔE^c_{b3lyp}	ΔE^c_{wB97XD}	ΔG^c_{b3lyp}	ΔG^c_{wB97XD}
$[Pyr]^-$	-103.2	-105.8	-94.9	-97.0
$[2-CNpyr]^{-}$	-55.4	-56.0	-49.9	-50.0
$[MeIM]^-$	-75.9	-77.6	-67.7	-68.5
$[{ m EtIm}]^-$	-75.0	-76.7	-67.7	-68.3
$[\mathrm{Im}]^-$	-73.4	-75.6	-67.1	-68.8
$[\mathrm{BIm}]^-$	-64.4	-66.5	-60.8	-62.3
$[124-Trz]^{-}$	-48.0	-51.0	-42.0	-44.3
$[123 - Trz]^{-}$	-38.6	-41.2	-33.6	-35.6
$[B-Trz]^{-}$	-35.5	-37.5	-32.9	-34.5
$[Pyr]^-$	-78.3	-81.4	-71.5	-74.2
$[\mathrm{Ind}]^-$	-74.7	-78.2	-69.7	-73.0
$[Tz]^-$	-19.3	-21.5	-14.7	-15.8

S5 Trends between CO_2 Binding and Proton Transfer Free Energies

Figure S9: Scaling plots for the (a) [HBAa]⁻, (b) [HBAc]⁺, and (c) HBD species using the reaction free energies presented in Table 1 (main text). For (a), the proton transfer (ΔG_1) and CO₂ binding (ΔG_2) reactions are considered. For (b), the proton transfer (ΔG_3) and CO₂ binding (ΔG_4) reactions are considered. For (c), the proton transfer (ΔG_5) and the weak CO₂ complexation (ΔG_7) are considered.

The interplay between the CO_2 binding and proton transfer steps is fundamental to the CO_2 complexation process. Figure S9 explores the relationship between these species to identify the relationships between the different reaction steps. For the [HBAa]⁻ species (Figure S9a), the more negative (i.e., stronger) the proton transfer free energy indicates a more negative (i.e., stronger) CO_2 binding energy that is attributed to the increased nucleophilicity of the [HBAa]⁻. As discussed by Rheinhardt et al., most CO_2 sorption materials rely on nucleophiles to capture CO_2 .² Nucleophiles contain electron lone pairs capable of forming chemical bonds. A [HBAa]⁻ that strongly binds CO_2 is also likely to accept a proton from an [HBAc]⁺ and/or HBD. When considering proton transfers, strong nucleophiles also utilize the electron-rich character to bind protons. These findings support the idea that there is a competitive process between CO_2 binding and proton affinity for an $[HBAa]^-$ species.

The same trend is observed for both $[HBAc]^+$ (Figure S9b) and $[HBD]^-$ species (Figure S8), i.e., a more negative proton transfer energy indicates a more negative CO₂ binding energy. Since the HBAc and $[HBD]^-$ rely on intermolecular proton transfers for CO₂ complexation, a stronger (more negative) proton transfer energy leads to unfavorable CO₂ binding thermodynamics. An $[HBAc]^+$ and/or $[HBD]^-$ species with a more negative proton transfer energy suggests that the species is less likely to donate a proton for CO₂ complexation.

The findings support the importance of intermolecular proton transfers in identifying CO_2 complexation in a given DESs/ESs, and suggest that descriptors such as proton affinity or pKa³ could be useful when identifying candidate HBAc, [HBAa]⁻, and [HBD]⁻ species and/or predicting potential product distributions.

That said, as discussed above, HBD species can complex CO_2 via multiple pathways. We find that the pathway where CO_2 weakly complexes to the HBD prior to proton transfer is thermodynamically more likely to occur. By weakly complexating CO_2 , the proton transfer to a [HBAa]⁻ species becomes more favorable. Figure S9c compares this proton transfer (ΔG_5) free energy with the free energy of weak CO_2 complexation (ΔG_7) . Unlike the results presented for the [HBAa]⁻ and [HBAc]⁺ species, there is not a strong correlation between these two free energies.

S6 Raw Electronic Energies

Table S7: The electronic energies (E), and the vibrational free energy correction terms at 1 atm and 25 °C (G_{Vib}) for the [HBAc]⁺ species (**Structure**). All raw electronic energies are presented in hartrees. The energies are organized by their the intermediate **Type** (i.e., Isolated, CO₂ binding, and Proton Transfer), with the **Chemical Naming** indicating the shorthand notation. The bracketed species (i.e., []) are positively charged.

Structure	Type	${oldsymbol E}$	E_{Vib} (hartree)	$G_{Vib} \ ({ m hartree})$
[EMMTH] ⁺	Isolated	-726.910185	0.181712	0.167637
$EMMTH-CO_2$	$\rm CO_2$ Binding	-915.106474	0.185957	0.165529
EMMTH	Proton Transfer	-726.424136	0.168714	0.155064
$[EHMTH]^+$	Isolated	-762.811520	0.159261	0.145591
$EHMTH-CO_2$	$\rm CO_2$ Binding	-951.009230	0.163378	0.143098
EHMTH	Proton Transfer	-762.329564	0.146149	0.132525
$[ETH]^+$	Isolated	-648.236194	0.124680	0.117020
$ETH-CO_2$	CO_2 Binding	-836.433898	0.128832	0.115399
ETH	Proton Transfer	-647.754754	0.111581	0.104290
$[Ch]^+$	Isolated	-328.896476	0.196997	0.186091
$Ch-CO_2$	CO_2 Binding	-517.092875	0.201280	0.186097
Ch	Proton Transfer	-328.401478	0.182394	0.172951
$[EMIM]^+$	Isolated	-344.737992	0.168950	0.158392
$\rm EMIM-CO_2$	CO_2 Binding	-532.931868	0.173012	0.156697
EMIM	Proton Transfer	-344.243823	0.155186	0.144630

Table S8: The electronic energies (\mathbf{E}) , and the vibrational free energy correct terms at 1 atm and 25 °C (\mathbf{G}_{Vib}) for the [HBAa]⁻ species (Structure). All raw electronic energies are presented in hartrees. The energies are organized by their the intermediate Type (i.e., isolated, CO₂ binding, and Proton Transfer), with the Chemical Naming indicating the shorthand notation. The bracketed species (i.e., []) are negatively charged.

Structure	Type	${oldsymbol E}$	E_{Vib} (hartree)	G_{Vib} (hartree)
$[123 - Trz]^{-}$	Isolated	-241.840863	0.044679	0.043871
$[123 - \text{Trz} - \text{CO}_2]^-$	$\rm CO_2$ Binding	-430.506855	0.061733	0.055481
123–Trz	Proton Transfer	-242.317712	0.058436	0.057427
$[124 - \text{Trz}]^{-}$	Isolated	-241.863102	0.045257	0.044505
$[124-\text{Trz}-\text{CO}_2]^-$	$\rm CO_2$ Binding	-430.532680	0.062206	0.056491
124-Trz	Proton Transfer	-242.341241	0.058627	0.057646
$[2-CNpyr]^{-}$	Isolated	-302.046811	0.067976	0.063868
$[2-CNpyr-CO_2]^-$	CO_2 Binding	-490.719186	0.085220	0.075630
2–CNpyr	Proton Transfer	-302.528102	0.081511	0.077011
$[EtIm]^-$	Isolated	-304.477871	0.113394	0.106516
$[EtIm-CO_2]^-$	$\rm CO_2$ Binding	-493.157734	0.130802	0.118989
EtIm	Proton Transfer	-304.970451	0.126986	0.119805
$[MeIm]^-$	Isolated	-265.149319	0.084478	0.079804
$[MeIm-CO_2]^-$	$\rm CO_2$ Binding	-453.829523	0.101810	0.092611
MeIm	Proton Transfer	-265.641803	0.097916	0.092787
$[B-Trz]^-$	Isolated	-395.535897	0.092351	0.087885
$[B-Trz-CO_2]^-$	CO_2 Binding	-584.200722	0.109264	0.098578
B-Trz	Proton Transfer	-396.008826	0.105617	0.100831
$[\mathrm{BIm}]^-$	Isolated	-379.522029	0.104290	0.099737
$[BIm-CO_2]^-$	CO_2 Binding	-568.197846	0.121478	0.110809
BIm	Proton Transfer	-380.006097	0.117581	0.112624
$[\mathrm{Im}]^-$	Isolated	-225.816524	0.056432	0.055463
$[Im-CO_2]^-$	CO_2 Binding	-414.495762	0.073552	0.067557
Im	Proton Transfer	-226.305004	0.069757	0.068513
$[Ind]^-$	Isolated	-379.490058	0.103758	0.099042
$[Ind-CO_2]^-$	CO_2 Binding	-568.169792	0.121228	0.110631
Ind	Proton Transfer	-379.980146	0.117474	0.112342
$[Pyz]^-$	Isolated	-225.793753	0.055934	0.054910
$[Pyz-CO_2]^-$	CO_2 Binding	-414.474860	0.073303	0.067166
Pyz	Proton Transfer	-226.285601	0.069717	0.068466
$[Pyr]^-$	Isolated	-209.748912	0.067022	0.065760
$[Pyr-CO_2]^-$	CO_2 Binding	-398.439527	0.084653	0.078614
Pyr	Proton Transfer	-210.249814	0.080740	0.079178
$[Tz]^-$	Isolated	-257.818326	0.033038	0.032194
$[Tz-CO_2]^-$	CO_2 Binding	-446.476978	0.049808	0.043660
Tz	Proton Transfer	-258.288767	0.046663	0.045805

Table S9: The electronic energies (\boldsymbol{E}) , and the vibrational free energy correct terms at 1 atm and 25 °C ($\boldsymbol{G_{Vib}}$) for the HBD species (**Structure**). All raw electronic energies are presented in hartrees. The energies are organized by their the intermediate **Type** (i.e., isolated, CO₂ binding, Proton Transfer, and Weak CO₂ Binding), with the **Chemical Naming** indicating the shorthand notation. The bracketed species (i.e., []⁻) are negatively charged.

Structure	Type	$oldsymbol{E}$	E_{Vib} (hartree)	$G_{Vib}~({ m hartree})$
EDA	Isolated	-190.606500	0.109563	0.104841
$[EDA-CO_2]^-$	CO_2 Binding	-378.796833	0.113913	0.104681
[EDA] ⁻	Proton Transfer	-190.056825	0.094207	0.089814
$EDA-CO_2$	Weak CO_2 Binding	-379.262278	0.125802	0.111076
EG	Isolated	-230.349123	0.084494	0.079266
$[EG-CO_2]^-$	CO_2 Binding	-418.540312	0.088998	0.080175
$[EG]^-$	Proton Transfer	-229.839282	0.070281	0.066264
$EG-CO_2$	Weak CO_2 Binding	-419.004219	0.100842	0.085696
GLY	Isolated	-344.925361	0.118632	0.108581
$[\text{GLY}-\text{CO}_2]^-$	CO_2 Binding	-533.127594	0.123297	0.111305
$[GLY]^-$	Proton Transfer	-344.436382	0.105158	0.098686
$GLY-CO_2$	Weak CO_2 Binding	-533.586957	0.135279	0.116270
MEA	Isolated	-210.477898	0.097036	0.092099
$[MEA-CO_2]^-$	CO_2 Binding	-398.667470	0.101379	0.092049
$[MEA]^-$	Proton Transfer	-209.965626	0.082777	0.079085
$MEA-CO_2$	Weak CO_2 Binding	-399.132977	0.113389	0.098361
$[MEA-CO_2]^-$	CO_2 Binding	-398.668521	0.101326	0.091426
$[MEA]^-$	Proton Transfer	-209.930952	0.081801	0.077366
$MEA-CO_2$	Weak CO_2 Binding	-399.134000	0.113450	0.099006
PDA	Isolated	-308.593507	0.195893	0.182516
$[PDA-CO_2]^-$	CO_2 Binding	-496.783343	0.200296	0.181845
$[PDA]^{-}$	Proton Transfer	-308.041340	0.180320	0.167229
PDA	Weak CO_2 Binding	-497.249539	0.212174	0.189030
\mathbf{PG}	Isolated	-269.687774	0.112796	0.106483
$[PG-CO_2]^-$	CO_2 Binding	-457.878155	0.117092	0.106122
$[PG]^-$	Proton Transfer	-269.183850	0.098431	0.093665
$PG-CO_2$	Weak CO_2 Binding	-458.342906	0.129112	0.112448
TDA	Isolated	-229.935024	0.138387	0.130945
$[TDA-CO_2]^-$	CO_2 Binding	-418.124852	0.142694	0.130244
$[TDA]^-$	Proton Transfer	-229.383408	0.122899	0.115723
$\mathrm{TDA-CO}_2$	Weak CO_2 Binding	-418.590982	0.154605	0.137177

Table S10: The electronic energies (\mathbf{E}) , and the vibrational free energy correct terms at 1 atm and 25 °C (\mathbf{G}_{Vib}) for the [HBAa]⁻ species. All raw electronic energies are presented in hartrees. The energies are organized by their reaction **Type** (i.e., Isolated, CO₂ binding, and proton affinity), with the **Chemical Naming** indicating the shorthand notation. The bracketed species (i.e., []) are negatively charged.

Structure	Type	$oldsymbol{E}$	$E_{Vib}~({ m hartree})$	$G_{Vib}~({ m hartree})$
[Pyr-OH] ⁻	Isolated	-285.000782	0.072256	0.068626
$[Pyr-OH-CO_2]^-$	CO_2 Binding	-473.697831	0.089467	0.082215
[Pyr-MeOH] ⁻	Isolated	-324.329962	0.101452	0.094805
$[Pyr-MeOH-CO_2]^-$	CO_2 Binding	-513.023030	0.119372	0.109273
[Pyr–Me] ⁻	Isolated	-249.080140	0.095063	0.090544
$[Pyr-Me-CO_2]^-$	CO_2 Binding	-437.769628	0.112910	0.103647
$[Pyr-Et]^-$	Isolated	-288.408662	0.123872	0.116674
$[Pyr-Et-CO_2]^-$	CO_2 Binding	-477.097852	0.141800	0.129918
$[Pyr-EtOH]^{-}$	Isolated	-363.665015	0.130151	0.122348
$[Pyr-EtOH-CO_2]^-$	CO_2 Binding	-552.351586	0.148023	0.135213
$[Pyr-CN]^{-}$	Isolated	-302.046811	0.067976	0.063868
$[Pyr-CN-CO_2]^-$	CO_2 Binding	-490.719186	0.085220	0.075630
$[Pyr-COOCH_3]^-$	Isolated	-437.718417	0.112698	0.102569
$[Pyr-COOCH_3-CO_2]^-$	CO_2 Binding	-626.391486	0.130242	0.115078
$[Pyr-F]^{-}$	Isolated	-309.025170	0.060124	0.057666
$[Pyr-F-CO_2]^-$	CO_2 Binding	-497.697575	0.077464	0.069553
$[Pyr-CHO]^{-}$	Isolated	-323.139326	0.078432	0.074046
$[Pyr-CHO-CO_2]^-$	CO_2 Binding	-511.810177	0.095785	0.085384
$[Pyr-COCH_3]^-$	Isolated	-362.474725	0.106798	0.098441
$[Pyr-COCH_3-CO_2]^-$	CO_2 Binding	-551.142874	0.124056	0.110560

Table S11: The electronic energies (\mathbf{E}) , and the vibrational free energy correct terms at 1 atm and 25 °C (\mathbf{G}_{Vib}) for the [HBAa]⁻ species. All raw electronic energies are presented in hartrees. The energies are organized by their reaction **Type** (i.e., Isolated, CO₂ binding, and proton affinity), with the **Chemical Naming** indicating the shorthand notation. The bracketed species (i.e., []) are negatively charged.

Structure	Type	$oldsymbol{E}$	$E_{Vib}~({ m hartree})$	$G_{Vib}~({ m hartree})$
$[Im-OH]^-$	Isolated	-301.073811	0.061826	0.059090
$[Im-OH-CO_2]^-$	CO_2 Binding	-489.761000	0.078539	0.071668
[Im-EtOH] ⁻	Isolated	-379.722483	0.119375	0.110162
$[Im-EtOH-CO_2]^-$	CO_2 Binding	-568.410361	0.137007	0.124419
[Im-MeOH] ⁻	Isolated	-340.394265	0.090651	0.084316
$[Im-MeOH-CO_2]^-$	CO_2 Binding	-529.080004	0.108282	0.098457
$[Im-Me]^-$	Isolated	-265.149319	0.084478	0.079804
$[Im-Me-CO_2]^-$	CO_2 Binding	-453.829523	0.101810	0.092611
$[Im-Et]^-$	Isolated	-304.477871	0.113394	0.106516
$[Im-Et-CO_2]^-$	CO_2 Binding	-493.157734	0.130802	0.118989
$[Im-F]^-$	Isolated	-325.094445	0.049510	0.047471
$[Im-F-CO_2]^-$	CO_2 Binding	-513.758991	0.066459	0.058569
$[Im-CN]^-$	Isolated	-318.106245	0.056992	0.053209
$[Im-CN-CO_2]^-$	CO_2 Binding	-506.767929	0.073804	0.064179
$[Im-CHO]^-$	Isolated	-339.198605	0.067521	0.063501
$[Im-CHO-CO_2]^-$	CO_2 Binding	-527.859776	0.084436	0.074199
$[Im-COOCH_3]^-$	Isolated	-453.787050	0.102014	0.092594
$[Im-COOCH_3-CO_2]^-$	CO_2 Binding	-642.447806	0.119066	0.103463
$[Im-COCH_3]^-$	Isolated	-378.534525	0.095875	0.087802
$[Im-COCH_3-CO_2]^-$	CO_2 Binding	-567.194650	0.112572	0.098352

S7 Reaction Energies

Table S12: The reaction free energies for the $[HBAa]^+$ species (in kJ/mol). ΔG_3 represents the proton transfer free energy (Reaction **R3**), and ΔG_4 represents the CO₂ binding free energy to the deprotonated $[HBAa]^+$ species (i.e., HBAa) according to Reaction **R4**. All free energies are reported at 1 atm and 25 °C.

Structure	ΔG_3	ΔG_4
$[EMMTH]^+$	-264.675445	-79.485568
$[EHMTH]^+$	-252.637478	-72.186786
$[ETH]^+$	-252.162454	-69.407145
$[Ch]^+$	-286.683124	-96.229789
$[EMIM]^+$	-282.871885	-90.261736

Table S13: The reaction free energies for the [HBAa]⁻ species (in kJ/mol). ΔG_1 represents the proton transfer free energy (Reaction **R1**), and ΔG_2 represents the CO₂ binding free energy (Reaction **R2**). All free energies are reported at 1 atm and 25 °C.

Structure	ΔG_1	ΔG_2
$[123-Trz]^{-}$	-237.937941	-33.561692
$[124 - Trz]^{-}$	-242.417260	-41.990537
$[2-CNpyr]^{-}$	-250.688490	-49.921740
$[EtIm]^-$	-279.942323	-67.714724
$[MeIm]^-$	-280.496540	-67.733830
$[B-Trz]^-$	-229.250550	-32.905808
$[\mathrm{BIm}]^-$	-258.650385	-60.767646
$[\mathrm{Im}]^-$	-269.808770	-67.066982
$[\mathrm{Ind}]^-$	-273.372075	-69.697252
$[Pyz]^-$	-277.319822	-71.546397
$[Pyr]^-$	-301.454040	-94.943609
$[Tz]^-$	-220.970729	-14.667836

Table S14: The reaction free energies for the HBD species (in kJ/mol). ΔG_5 represents the proton transfer free energy (Reaction R5); ΔG_6 represents the CO₂ binding free energy to the deprotonated HBD (i.e., [HBD]⁻) according to Reaction R6; ΔG_7 represents CO₂ binding free energy of the weakly complexed CO₂ (Reaction R6); and ΔG_8 represents the proton transfer free energy of the weakly complexed CO₂ intermediate (Reaction R8). All free energies are reported at 1 atm and 25 °C.

Structure	ΔG_5	ΔG_6	ΔG_7	ΔG_8
EDA	-425.282589	-219.339754	-20.860085	-226.802920
EG	-326.014889	-119.511675	-18.556235	-225.059449
GLY	-279.401339	-97.131186	-32.313244	-214.583397
MEA	-332.366002	-124.136404	-18.951851	-227.181449
MEA	-418.889394	-215.053754	-19.945498	-223.781138
PDA	-431.142589	-225.235955	-20.790475	-226.697110
PG	-310.964094	-105.673775	-19.867368	-225.157687
TDA	-429.867846	-224.018776	-21.336188	-227.185259

Table S15: The reaction free energies for the ligand functionalized $[Pyr-R]^-$ species (in kJ/mol). ΔG_2 represents the CO₂ binding free energy (Reaction R2). All free energies are reported at 1 atm and 25 °C.

Structure	ΔG_2
[Pyr-OH] ⁻	-109.9
$[Pyr-MeOH]^-$	-97.1
[Pyr-Me] ⁻	-91.3
[Pyr-Et] ⁻	-90.2
[Pyr-EtOH] ⁻	-84.3
$[Pyr-CN]^{-}$	-49.9
$[Pyr-COOCH_3]^-$	-49.8
$[Pyr-F]^{-}$	-49.7
[Pyr-CHO] ⁻	-47.0
$[Pyr-COCH_3]^-$	-37.9

Table S16: The reaction free energies for the ligand functionalized $[Im-R]^-$ species (in kJ/mol). ΔG_2 represents the CO₂ binding free energy (Reaction R2). All free energies are reported at 1 atm and 25 °C.

Structure	ΔG_2
[Im-OH] ⁻	-86.7
[Im-EtOH] ⁻	-84.1
[Im-MeOH]	-78.8
[Im-Me] ⁻	-67.7
[Im-Et]	-67.7
$[Im-F]^{-}$	-31.1
$[Im-CN]^-$	-23.9
[Im-CHO]	-23.3
[Im-COOCH ₃] ⁻	-21.8
[Im-COCH ₃] ⁻	-20.9

References

- Klemm, A.; Vicchio, S. P.; Bhattacharjee, S.; Cagli, E.; Park, Y.; Zeeshan, M.; Dikki, R.; Liu, H.; Kidder, M. K.; Getman, R. B.; Gurkan, B. Impact of Hydrogen Bonds on CO2 Binding in Eutectic Solvents: An Experimental and Computational Study toward Sorbent Design for CO2 Capture. <u>ACS Sustainable Chemistry and Engineering</u> **2023**, <u>11</u>, 3740–3749.
- (2) Rheinhardt, J. H.; Singh, P.; Tarakeshwar, P.; Buttry, D. A. Electrochemical capture and release of carbon dioxide. ACS Energy Letters 2017, 2, 454–461.
- (3) Bernhardsen, I. M.; Krokvik, I. R.; Perinu, C.; Pinto, D. D.; Jens, K. J.; Knuutila, H. K. Influence of pKa on solvent performance of MAPA promoted tertiary amines. International Journal of Greenhouse Gas Control **2018**, 68, 68–76.