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1 Building blocks
The 3d structures of all building blocks and the composition, textual properties and simulation results of 

the MOFs studied are available on a Zenodo repository.1

Partway through our work, we noticed that there was a mistake where edge building block E34B (Table 

S3) was a variant of E25A with the same chemical structure. The resulting MOF variants have slight 

structural differences, likely due to differences in the building block 3d coordinates. Therefore, we kept 

both variants in the data analysis.

Table S1. Organic node (ON) building blocks used in MOF construction. The ON code corresponds to 

the identifiers used in our dataset. The identifiers for these building blocks as found in the ToBaCCo 

database2 are listed in brackets. In the chemical diagram, “A” denotes an “any” atom placeholder, and 

the purple bond indicates the connection to other building blocks.

ON code

[ToBaCCo code]

Structure SMILES

ON1

[Tob_ON_2]

A

A A [*]C1=CC([*])=CC([*])=C1

ON2

[Tob_ON_1]

A

A

A N

N N

[*]C1=NC([*])=NC([*])=N1

ON3

[Tob_ON_5]

A
N

A
N

A
N

[*]N1C=C(C2=CN([*])C=C2

C3=CN([*])C=C34)C4=C1

ON4 A

AA
A

[*]CC(C[*])(C[*])C[*]
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ON5

[Tob_On_7]

A A A

A [*]C1=CC2([*])C=C([*])C1

C([*])=C2

ON6

[Tob_On_8]

AA

A A

(tetrahedral conformation)

[*]C1=CC([*])=CC(C2=CC([

*])=CC([*])=C2)=C1

ON7

[Tob_On_9]
AA

AA [*]C1=C([*])C=C([*])C([*])

=C1

ON8

[Tob_On_10]

A

AA

A

(planar conformation)

[*]C1=CC([*])=CC(C2=CC([

*])=CC([*])=C2)=C1

ON9

[Tob_On_11]

A

A

A

A

[*]C1=C(C=C2)C3=C4C2=C

([*])C=C([*])C4=CC=C3C([

*])=C1

ON10

[Tob_On_12]

A

NN
N
H

A

A

H
N

A

[*]C1=C2C=CC(=N2)C(=C2

C=CC(=C(C3=NC(=C(C4NC

1=CC=4)[*])C=C3)[*])N2)[*

]

ON11

[Tob_On_13]

A

A A

A

[*]C1C=CC(=CC=1)C(=C(C

1C=CC(=CC=1)[*])C1C=CC

(=CC=1)[*])C1C=CC(=CC=

1)[*]
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ON12

[Tob_On_14]

A
A

A

A
A

A
[*]C1C([*])=C([*])C(=C(C=

1[*])[*])[*]

ON13 A

A A

A [*]C1=CC=C(C2=CC(C3=C

C=C([*])C=C3)=CC(C4=CC(

C5=CC=C([*])C=C5)=CC(C

6=CC=C([*])C=C6)=C4)=C2

)C=C1

ON14

[Tob_On_6] A

A

A
A

[*]C([*])([*])[*]

Table S2. Metal cluster node (MC) building blocks used in MOF construction. The “MC” code 

corresponds to the identifiers used in our dataset. The identifiers for these building blocks as found in 

the ToBaCCo database2 are listed in brackets. 

MC code

[ToBaCCo code]

Structure Description

MC1

[sym_3_mc_0]

3-c Cu

MC2

[sym_4_mc_1]

4-c Zn

MC3

[sym_5_mc_2]

4-c Cu paddlewheel
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MC4

[sym_6_mc_3]

6-c Zn

MC5

[sym_7_mc_4]

6-c Cr

Mc6

[sym_9_mc_5]

6-c Zr

MC7

[sym_8_mc_7]

8-c Co

Mc8

[sym_8_mc_9]

8-c Zr

Mc9

[sym_10_mc_10]

10-c Zr
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Mc10

[sym_12_mc_11]

12-c Zr

Mc11

[sym_24_mc_13]

24-c Cu

Mc12 6-c Be



7

Table S3. Edge (E) building blocks used in MOF construction. The shaded rows indicate the identifiers 

used in this dataset, and the corresponding ToBaCCo database2 identifiers are listed in brackets, if 

available. The chemical diagrams are shown under the respective identifiers. In the chemical diagram, 

the purple bond indicates the connection to other building blocks, and the “A” denotes an atom 

placeholder replaceable with either metal cluster or organic node connection point (usually a carbon 

atom).

E0

[NTN]

E1

[CBB_2]
E2 E3

(No real atom)
A

A A

A

A

A

E4

[CBB_12]
E5 E6 E7

A

A

O AC
H2

A C
H2

A

A

N
A

A

E8 E9
E10

[CBB_5]
E11

N N

N
NH2

AA A A

HO

OH
OA A SA A

E12

[CBB_17]

E13

[CBB_8]

E14

[CBB_24]

E15

[CBB_11]

A

A
A

A

A A

A

A
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E16 E17 E18 E19

A

A

A

A

A

A

H

H

A

A

E20 E21A (“EE”) E21B (“EZ”) E22

A

A

A

A

H

H

A

A

H

H

A

A

E23 E24 E25A (“EE”) E25B (“EZ”)

A

A
A

A

A

A

H

H A

A

H

H

E26 E27 E28 E29
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A

A

A

A
A

A A

A

E30 E31 E32B E33

N
N

A

A

A

A

A

A

A

A

H

E34B E35 E36
E37A and 

E37B

A

A

H

H

A

A

A
O

A
O

A

A

A

A

E38 E39A E39B E40
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A

A
H

H A

A
H
H

A

A
A

A

E41 E42 E43 E44

A

A
O

O A

A

O OH

A A

A A

E45 E46
E47

[CBB_28]
E48

O
A A

O
A

A

A

A

A A

E49

[CBB_21]
E50 E51 E52

O
A A

A

A
N

A

A

O

A

A

E53A E53B E54 E55

O

O

A

A

O
O

A

A NN

H
NA

A

N NH
A

A
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2 Additional discussion of MOF structure generation
We note that 534 structures (out of 105,764) showed a structural collapse (certain atoms are 

unphysically close to each other) after the geometric optimization. The percentage is much lower than 

what was observed in our prior work3, which focused on a tri-nodal net to construct MOFs. We 

discarded these structures prior to all data analysis and the list of these structures is available in the 

Zenodo repository.1

We also found that the geometry optimization of MOFs with certain organic linkers with phenylethynyl 

groups sometimes suffered from getting trapped in local energy minima with the UFF force field, and 

consequently the linkers had a bent shape (Figure S1). This issue happened consistently with gradient-

based minimization algorithms (including CG and FIRE), but it could be resolved to some extent by 

using Newton’s method or quasi-Newton algorithms. The bending is observed for the phenylethynyl 

based molecules shown in Table S4 even in the gas phase (no MOF) with all the gradient-based 

optimizations in three software packages: Open Babel, Materials Studio and LAMMPS. To reduce the 

bending in the long linkers in LAMMPS, we used the implemented Hessian-free truncated Newton 

algorithm as the minimizer for the atom positions for the MOFs with tpt topology and the long edge 

building blocks. Further analyzing two cases, f5_ssc_46 and f5_ssc_87, we note that the angle at the 

connection points between the linker and the metal node could deviate too far from what is realistic, 

whereas the bond lengths and angles inside the building blocks are well modeled. To get around this 

issue, future work that improves the optimization algorithm may focus on 1) improving the building 

block placement algorithm and 2) performing geometric relaxation and/or molecular dynamics with 

building block groups constrained to reduce the degrees of freedom during the optimization.
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(a)

(b)

Figure S1. Example molecule that features phenylethynyl groups and shows bent angles (shown in green) 

between carbons (dark grey) as a result of being trapped in a local energy minimum.

Table S4. The derived molecules based on the long edge building blocks. An edge building block is a 

molecular fragment with connection points to connect with other building blocks. 

Molecules Edge building blocks

H

H

1,1′-(1,2-ethynediyl)bis[4-(2-

phenylethynyl)benzene]

A

A

H

H

1,4-bis[2-[4-(2-

phenylethynyl)phenyl]ethynyl]benzene

A

A
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H

H

1,1′-(1,2-ethynediyl)bis[4-[2-[4-(2-

phenylethynyl)phenyl]ethynyl]benzene]

A

A

3 Definitions and discussion of topological densities: net density and td10
O’Keeffe proposed the net density as a packing density descriptor that allows comparison of the density 

of sphere-packing and non-sphere-packing nets.4 The net density is defined as  where  is the 𝜌= 𝑁/𝑉 𝑁

number of circles or spheres with non-overlapping unit diameter in a volume V. In other words, the 

distance between closest in-contact circles or spheres is normalized to a distance unit of 1, and the unit 

cell volume is derived accordingly. The net density is closely related to the occupied fractional volume  𝜙

by a factor of  for circles or  for spheres.𝜋/4 𝜋/6

Other mathematical descriptors often used for the vertex density of a graph include the coordination 

sequences and their cumulative sums (known as “topological densities”).5,6 The coordination sequence is 

a set of numbers (cs1, cs2, cs3,…) that represent the number of vertices included in the neighbor shells 

and not counted yet (example shown in Figure S2) for any arbitrary vertex. The topological density td10 

is defined as the cumulative tenfold sum of the coordination sequences, . For nets with 
𝑡𝑑10=

𝑖= 10

∑
𝑖= 1

𝑐𝑠𝑖

multiple kinds of vertices that have different coordination sequences, the td10 is computed as the 

weighted average of the vertices.
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(a)

(b)

Figure S2. Illustration of coordination sequence (cs) in (a) lvt-a and (b) srs nets. The first shell around 

the yellow vertex is highlighted in orange (cs1); the second shell is highlighted in light green (cs2); the 

third shell is highlighted in dark green (cs3).
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4 Comments on the difference between td10 and net density
In the exploratory data analysis, both net density and td10 showed positive correlations with the upper 

limit of the VDC. While both higher td10 and net density suggest higher interconnectivity between 

vertices, the spatial cutoff is different. The net density describes the vertex density over a unit volume 

constructed with non-overlapping unit diameter spheres, whereas the td10 describes the neighboring 

number density over 10 coordination shells from a reference vertex, without considering the spatial 

information. This makes td10 an insufficient descriptor for describing the interconnectivity over a 

specific unit volume. For example, both crs and bcs nets have a higher td10 than pcu, and both of them 

have 16 vertices in their cubic unit cell, but with different symmetry. After normalizing the unit cell 

volume, crs has a lower dense packing than pcu, while bcs has a denser packing than pcu (Figure S3). 

The influences are clearly seen by comparing the resulting MOFs. 

Figure S3. Comparison of unit cell and vertex density of crs and bcs nets. Red: crs net (lower net 

density), orange: bcs net (higher net density). The shortest vertex distance (edge length) in both nets is 

normalized to the same length, and therefore the unit cell sizes are different.
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5 Details about ML model hyperparameters and performance
Table S5. LASSO model performance metrics for different energy histogram parameters tested. 
Coefficient of determination R2, mean absolute error (MAE), root mean squared error (RMSE) are 
shown for both training set and testing set. Spearman’s rank correlation coefficient ρ (ρs) and Kendall’s 
τ (τk) are shown for testing set. The results show a decrease in predictive performance as the bin range is 
extended to -12 kJ/mol and an improvement when the bin width is refined to 0.5 kJ/mol.

Parameter set Training set metrics Testing set metrics
Bin range 
[kJ/mol]

Bin width 
[kJ/mol]

R2 MAE 
[g/L]

RMSE 
[g/L]

R2 MAE 
[g/L]

RMS
E 

[g/L]

ρs τk

-10 to 0 1 0.926 1.388 1.832 0.916 1.457 1.992 0.940 0.803
-12 to 0 1 0.926 1.395 1.841 0.885 1.508 2.345 0.938 0.802
-10 to 0 0.5 0.952 1.057 1.468 0.939 1.126 1.700 0.961 0.845

Table S6. The coefficients of the best LASSO model parameterized using bin ranges between -10 and 0 
kJ/mol and 0.5 kJ/mol bin width.

Bin range [kJ/mol] Coefficient

(Intercept) 32.505

-Inf to -10 -498.36

-10 to -9.5 -49.452

-9.5 to -9 -3213.1

-9 to -8.5 0

-8.5 to -8 0

-8 to -7.5 0

-7.5 to -7 0

-7 to -6.5 0

-6.5 to -6 183.09

-6 to -5.5 195.35

-5.5 to -5 93.86

-5 to -4.5 141.64

-4.5 to -4 110.43

-4 to -3.5 121.87

-3.5 to -3 90.265
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-3 to -2.5 87.052

-2.5 to -2 68.023

-2 to -1.5 73.198

-1.5 to -1 13.873

-1 to -0.5 53.871

-0.5 to 0 0

0 to Inf -21.693

Table S7. Random forest model performance as a function of training size. Model performance metrics 
are shown for training set predictions, unbiased out-of-bag predictions, and testing set predictions.

Training set Out of bag Testing set
Training size RMSE

[g/L]
R2 MAE

[g/L]
RMSE
[g/L]

R2 MAE
[g/L]

RMSE
[g/L]

R2 MAE
[g/L]

1251 0.609 0.993 0.420 1.488 0.956 1.035 1.492 0.956 1.028
2502 0.549 0.994 0.374 1.350 0.964 0.925 1.407 0.960 0.959
3753 0.534 0.994 0.361 1.302 0.965 0.892 1.340 0.964 0.898
5004 0.516 0.995 0.347 1.266 0.967 0.858 1.286 0.967 0.865
6255 0.497 0.995 0.334 1.219 0.970 0.825 1.273 0.967 0.849
7503 0.495 0.995 0.331 1.216 0.969 0.819 1.244 0.969 0.830
8754 0.488 0.995 0.326 1.199 0.971 0.806 1.246 0.969 0.825
10005 0.481 0.995 0.321 1.183 0.971 0.796 1.231 0.969 0.812
11256 0.478 0.995 0.317 1.177 0.971 0.785 1.221 0.970 0.807
12507 0.475 0.996 0.314 1.165 0.972 0.777 1.212 0.970 0.802
13569 0.473 0.995 0.312 1.165 0.972 0.774 1.206 0.971 0.794

Table S8. RF hyperparameter tuning results. Training size: the number of data points included for 
training. mtry: number of variables used for each node. RMSE: root mean square error. Rsquared: the 
coefficient of determination. MAE: mean absolute error. SD: standard deviation (calculated based on the 
5-fold cross validation).

Training 
size

mtry RMSE Rsquared MAE RMSE SD Rsquared 
SD

MAE SD

1251 2 2.0278 0.9203 1.4769 0.0907 0.0295 0.0684
12 1.5117 0.9503 1.0663 0.1055 0.0202 0.0693
22 1.5307 0.9486 1.0747 0.1130 0.0199 0.0779

2502 2 1.7635 0.9435 1.2775 0.1037 0.0087 0.0605
12 1.3818 0.9629 0.9538 0.1089 0.0062 0.0602
22 1.3924 0.9621 0.9565 0.1249 0.0067 0.0630

3753 2 1.7048 0.9451 1.2376 0.0695 0.0065 0.0460
12 1.3364 0.9637 0.9144 0.0708 0.0047 0.0371
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22 1.3610 0.9622 0.9273 0.0838 0.0044 0.0473
5004 2 1.6320 0.9485 1.1728 0.0525 0.0079 0.0381

12 1.2809 0.9658 0.8733 0.0779 0.0063 0.0396
22 1.3187 0.9635 0.8869 0.0771 0.0065 0.0364

6255 2 1.5889 0.9517 1.1394 0.0705 0.0040 0.0475
12 1.2395 0.9687 0.8417 0.0437 0.0022 0.0222
22 1.2597 0.9675 0.8498 0.0439 0.0020 0.0215

7503 2 1.5460 0.9537 1.1135 0.0557 0.0055 0.0324
12 1.2209 0.9690 0.8312 0.0562 0.0036 0.0244
22 1.2394 0.9679 0.8373 0.0614 0.0036 0.0227

8754 2 1.5195 0.9555 1.0961 0.0491 0.0047 0.0183
12 1.2162 0.9695 0.8209 0.0497 0.0045 0.0202
22 1.2423 0.9680 0.8322 0.0486 0.0048 0.0219

10005 2 1.4998 0.9567 1.0786 0.0287 0.0016 0.0269
12 1.1997 0.9705 0.8090 0.0396 0.0022 0.0255
22 1.2289 0.9689 0.8219 0.0458 0.0025 0.0289

11256 2 1.4748 0.9578 1.0623 0.0315 0.0035 0.0297
12 1.1955 0.9705 0.8039 0.0371 0.0027 0.0200
22 1.2215 0.9691 0.8120 0.0403 0.0029 0.0181

12507 2 1.4586 0.9592 1.0493 0.0396 0.0021 0.0211
12 1.1792 0.9716 0.7906 0.0133 0.0007 0.0120
22 1.2055 0.9702 0.8019 0.0184 0.0011 0.0128

13569 2 1.4459 0.9592 1.0391 0.0237 0.0036 0.0069
12 1.1785 0.9711 0.7900 0.0285 0.0029 0.0111
22 1.2068 0.9696 0.8015 0.0309 0.0031 0.0153
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Figure S4. Histogram of prediction residuals of the testing set for the final RF model. The prediction 

errors for most MOFs in the testing set are within 2 g/L.
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Figure S5. Parity plots of hydrogen deliverable capacity for the full dataset from the random forest (RF) 

model versus results from GCMC simulation: (a) training set results, (b) testing set results. Predictions 

are shown for the best RF model after hyperparameter tuning. R2 is 0.995 for the training set, and 0.971 

for the testing set.
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Figure S6. Prediction results for top MOFs (predicted capacity > 48g/L) are improved by sample 

stratification and increased sample size. The MOFs plotted were selected based on the predictions from 

the RF model trained with (a) approximately 1,000 data points without stratification, (b) approximately 

1,000 data points with stratification, (c) approximately 13,000 data points with stratification. The 

GCMC simulations were subsequently performed to obtain the capacity of these MOFs.
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6 Case studies of MOFs and nets
Table S9. Structural properties of the two example structures in Figure 7 with “vacant” topologies.

Structure id LCD [Å] PLD [Å] VSA
[m2/cc]

GSA
[m2/g] PV [cm3/g]

f1_srsa_6_1x1x1 72.98 70.18 195.4 6370 32.00

f1_diaf_5_1x1x1 69.33 62.85 227.0 7280 31.49

7 Topologies of the best performing MOFs
Table S10. Nets that result in MOFs with simulated VDC > 52.0 g/L. 

Net Source

bcs 6-c

ctn 3,4-c

pyr 3,6-c

tsx 3,6-c

Synthesized MOF / 

coordination polymer

rob 6-c Natural / synthesized minerals

ibd 4,6-c

ssc 4,4-c

Theoretical MOF topologies

czz 3,6-c

esg 3,6-c

icd 4,4-c

No references
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8 Effect of different optimization algorithms on top performing MOFs
To understand how different optimization methods may affect the MOF porosity and subsequently the 

predicted storage performance, we studied two example MOFs from our top performing candidates: 

f1_pyr_142 and f1_tsx_103 by comparing their textural properties and simulated hydrogen isotherms. 

For f1_pyr_142, we compared the different versions of the structure from 1) not optimized (straight 

from the structural assembly), 2) optimized with LAMMPS using the CG/FIRE algorithm (default 

algorithm used for all structures), 3) optimized with LAMMPS using only CG algorithm and 4) 

optimized with extended tight binding (xTB) method. For f1_tsx_103, we compared the structure 

versions optimized with 1) LAMMPS, 2) xTB and 3) DFT.

Table S11 presents the textural properties of different versions of the two MOFs, with relative 

differences compared to the default MOF structure (LAMMPS with CG/FIRE). We found that compared 

to the default MOF structure, the unoptimized structure of f1_pyr_142 has a much larger pore size, with 

~40% larger PLD and LCD, and 50% larger PV. In addition, we also observed ~10% differences in 

LCD, surface area, and PV between other optimized structures and the default f1_pyr_142. For 

f1_tsx_103, the changes in the textural properties across all three different optimized structures are less 

than 5%.

Table S11. Textural properties of different crystal structure versions of f1_pyr_142 and f1_tsx_103. The 

percentages in brackets denote the relative difference compared to the default structure optimized in 

LAMMPS (in bold).

Cif name Structure 

version

LCD [Å] PLD 

[Å]

Crystal 

density 

[g/cc]

Volume 

[Å3]

VSA 

[m2/cc]

GSA 

[m2/g]

VF PV [cc/g]

f1_pyr_142 not optimized 13.36 

[+38%]

10.46 

[+41%]

0.36 

[-29%]

25678 

[+40%]

1965

[-26%]

5493 

[+3%]

0.82 

[+10%]

2.28 

[+54%]

LAMMPS 

(CG/FIRE)

9.67 7.42 0.50 18343 2669 5331 0.74 1.48

LAMMPS 

(CG only)

11.47 

[+19%]

7.42 

[-0%]

0.46 

[-8%]

20026 

[+9%]

2460 

[-8%]

5364 

[+1%]

0.76 

[+3%]

1.66 

[+12%]

xTB 9.24 7.00 0.54 17093 2614 4865 0.72 1.35 
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[-4%] [-6%] [+7%] [-7%] [-2%] [-9%] [-2%] [-9%]

f1_tsx_103 LAMMPS 11.45 7.85 0.43 12214 2285 5328 0.76 1.76

xTB 11.78 

[+3%]

7.78 

[-1%]

0.43 

[-0%]

12264 
[+0.4%]

2302 

[+1%]

5389 

[+1%]

0.76 

[-0%]

1.77 
[+0.6%]

DFT 11.73 

[+2%]

7.80 

[-1%]

0.42 

[-3%]

12602 

[+3%]

2284 

[-0%]

5495 

[+3%]

0.76 

[+1%]

1.83 

[+4%]

We observe slight differences in the amount of H2 adsorbed under low and medium pressure comparing 

the unoptimized f1_pyr_142 and the optimized counterparts (Figure S7), but the differences in 

volumetric uptakes at 100 bar between optimized structures are small. As a result of changes in crystal 

density, the gravimetric uptakes at 100 bar between optimized structures are significantly different. The 

differences in PV are correlated with the differences in predicted gravimetric hydrogen uptakes in the 

medium to high pressure region under both 77 K and 160 K conditions. This observation is in agreement 

with previous studies.3,7 For f1_tsx_103, the simulated H2 uptakes are in good agreement across all three 

versions of the structures (Figure S8).



26

Figure S7. Simulated H2 isotherms of different versions of f1_pyr_142 at 77 K and 160 K, with the 

absolute uptake in (a) volumetric units (g/L) and (b) gravimetric units (wt%). Blue: the unoptimized 

structure, red: optimized using LAMMPS with CG/FIRE algorithm (default), green: optimized using 

LAMMPS with CG algorithm, purple: optimized using xTB method.
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Figure S8. Simulated H2 isotherms of different versions of f1_tsx_103 at 77 K and 160 K, with the 

absolute uptake in (a) volumetric units (g/L) and (b) gravimetric units (wt%). Blue: optimized using 

LAMMPS with CG/FIRE algorithm (default), red: optimized using xTB method, green: optimized with 

DFT method.
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We also compared the deliverable capacity of these structures. To our surprise, the VDC values of 

different versions of f1_pyr_142 differ only minimally (Table S12); the difference between the 

deliverable capacity of the unoptimized structure and the optimized structure is less than 3%. 

Nevertheless, optimization methods lead to differences in crystal density and PV, which lead to 

significant difference in GDC. When overlapping the optimized structures as shown in Figure S9, we 

indeed observe a smaller unit cell and slightly shorter bonds overall for the xTB-optimized structure 

(Figure S10) compared to the default structure (Figure S9a). On the other hand, there is some linker 

rotation in the structure optimized with LAMMPS-CG compared to the default structure (Figure S9b), 

suggesting that the geometric optimization may have ended up in another local minima.

Table S12. Hydrogen absolute uptake at 77 K and 160 K and deliverable capacity in different units for 

all different crystal structures of f1_pyr_142 and f1_tsx_103. The relative difference compared to the 

default structure (in bold) is shown in the brackets.

Cif name Structure 

version

Uptake at 77 

K/100 bar [g/L]

Uptake at 160 

K/5 bar [g/L]

Deliverable 

[g/L]

Deliverable 

[mg/g]

Deliverable 

[wt%]

f1_pyr_142 not optimized 52.76 1.66 51.10 

[-3%]

142.75 

[+36%]

12.49 

[+31%]

LAMMPS 

(CG/FIRE)

55.20 2.52 52.68 105.15 9.51

LAMMPS 

(CG only)

54.45 2.15 52.31 

[-1%]

113.96 

[+8%]

10.23 

[+8%]

xTB 55.25 2.74 52.51 

[-0.2%]

97.79 

[-7%]

8.91 

[-6%]

f1_tsx_103 LAMMPS 54.97 2.25 52.73 122.90 10.95 

xTB 55.16 2.26 52.89 

[+0.3%]

123.88 

[+1%]

11.02 

[+1%]

DFT 54.55 2.19 52.36 

[-1%]

125.85 

[+2%]

11.18 

[+2%]
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Figure S9. Overlapping crystal structures of f1_pyr_142 optimized with (a) LAMMPS (CG/FIRE) 

algorithm versus xTB method and (b) LAMMPS(CG/FIRE) algorithm versus LAMMPS (CG only) 

algorithm.  The visualization was generated in the CrystalCMP program.8
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Figure S10. Pair distribution function g(r) between all atoms in the crystal structures optimized with (a) 

LAMMPS (CG/FIRE) and (b) xTB. The most notable change in pairwise distance is around 2.0 Å.

It is known that structural optimization is important to make structures realistic. However, our case 

studies suggest that different optimization methods can lead to up to 10% difference in the textural 

properties, where VF is the least sensitive textural property to the structural changes. The pore shape 

may become different due to linker rotations, in agreement with other work. Although differences in 

volumetric uptakes are observed in simulated isotherms particularly in the low and medium pressure 

region, the VDC is not very sensitive to the structural differences (Table S12). In contrast, gravimetric 
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uptakes and GDC can be impacted by the significant changes in PV and crystal density due to changes 

in force field and relaxation algorithms.

9 Investigation of very strong adsorption sites
We noticed that the energy grids for certain structures in the dataset exhibit energetic interactions 

stronger than -9.5 kJ/mol, and some even exceeding -10 kJ/mol. These values are higher than the typical 

binding energies associated with hydrogen physisorption, in the range of around 4-6 kJ/mol for MOFs7 

and graphene.9 Among the 105,764 structures analyzed, 1032 structures contain sites with binding 

energies between -10 and -9.5 kJ/mol and 675 structures contain energy sites stronger than -10 kJ/mol. 

We analyzed two such MOFs, f3_sxh_9 (Figure S11) and f3_unw_9 (Figure S12) in detail. They are 

constructed with the same ditopic organic linker but different metal clusters: a 6-coordinated trinuclear 

Cr cluster and a 4-coordinated copper paddlewheel, respectively, as detailed in Table S13. 

Notably, both structures contain strong adsorption sites encircled by phenyl groups from the side of the 

edge building blocks, forming an interesting bowl-shaped geometry. In the case of f3_unw_9, the 

strongest binding site (-9.81 kJ/mol) is surrounded by 3 equidistant phenyl rings (Figure S14) where the 

closest carbon atoms are more than 3.5 Å away. We also note that the heat of adsorption differs from the 

magnitude of the strongest energy sites, since the heat of adsorption, q, is related to the average energy 

of adsorption and at finite temperature molecules sample many sites beyond the strongest binding sites.

In both MOFs mentioned, the number of strong binding sites is quite low. In f3_sxh_9, only 5 locations 

out of 64,000 grid points exhibit binding energies between [-10,9.5) kJ/mol; in f3_unw_9, merely 1 grid 

in the unit cell was found in this geometric configuration, indicating that the bowl-shape geometry is not 

consistently maintained given the rotational degree of freedom of the linkers. Consequently, the 

hydrogen storage performances for both structures are modest, with predicted capacities of 38.5 g/L and 

43 g/L, respectively. Their heats of adsorption at zero loading at 77 K are 8.6 kJ/mol and 7.9 kJ/mol, 

respectively.

For additional context, we also plotted a distribution overview of properties for the structures with 

strong binding sites (Figure S15). The edge building block E13, as used in f3_sxh_9 and f3_unw_9, 
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yields the highest number of MOFs with strong binding sites compared to other edge building blocks 

(Figure S16). This observation may guide future research to develop and design edge side groups that 

form specific binding pockets, potentially enhancing gas storage capabilities.

Figure S11. The structure f3_sxh_9 shown with (a) the crystal structure and (b) the strong binding sites 

(smiley faces) and their local environment in perspective view.

Figure S12. The structure f3_unw_9 shown with (a) the crystal structure and (b) the strong binding sites 

(smiley faces) and their local environment in perspective view.
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Table S13. Composition of the two MOFs investigated for strong binding sites. The column “V1 

coordination” denotes the coordination number of the vertex.

Cif name Topology Topology type V1 

coordination

Vertices Edges

f3_sxh_9 sxh single vertex 6 v1-mc5 E13

f3_unw_9 unw single vertex 4 v1-mc3 E13

Figure S13. Pair distribution function g(r) for the energetic site (smiley face) to the neighboring atoms in 

f3_sxh_9.
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Figure S14. Pair distribution function g(r) between the energetic site (smiley face) to the neighboring 

atoms in f3_unw_9.
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Figure S15. The distribution overview of the MOF subset having strong binding sites with lower than -

10 kJ/mol binding energy with hydrogen.
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Figure S16. Histogram of edge composition of the MOF subset having strong binding sites with lower 

than -10 kJ/mol binding energy with hydrogen. The x axis shows the edge id.

10 Unsupervised learning of underlying structure–property relationships.
To better recognize the underlying patterns in high dimensional data, we used dimension reduction 

techniques for data visualization. One of the modern dimension reduction techniques is Uniform 

Manifold Approximation and Projection (UMAP).10 It works by identifying a lower dimensional 

structure that approximates the manifold structure of the data points. Compared to other techniques such 

as t-SNE, the major advantage and why it has been increasingly popular is its ability to effectively 

preserve both local and global structures. It is also faster and more scalable.

We investigated the relationship between the underlying nets and hydrogen deliverable capacity using 

UMAP. Instead of using net names as labels, we employed a set of numerical net descriptors available 



37

on the RCSR database11 and listed in Table S14 to describe the nets. For the full dataset of MOF 

structures, we conducted UMAP reduction using only the net descriptors, and then with both net 

descriptors and porosity descriptors. Different normalization and scaling procedures were applied to the 

descriptors as appropriate to their mathematical nature (Table S14).

Table S14. Normalization and scaling of the net descriptors and the porosity descriptors for UMAP 

analysis. Normalization is not conducted on net descriptors where the numerical distance has meaning. 

Max absolute scaling is conducted for those which have physical meaning at zero.

Normalization Scaling
Net descriptors:

Net type / NA (binary)

Coordination of V1 / Min-max

Coordination of V2 / Min-max

Net density Power transform
(Yeo-Johnson)

Max absolute

td10 Power transform
(Yeo-Johnson)

Max absolute

Genus / Min-max
D-size / Min-max

Average vertex order / Max absolute
Smallest ring size / Min-max

Porosity descriptors:
Pore volume Power transform

(Yeo-Johnson)
Max absolute

Density Power transform
(Yeo-Johnson)

Max absolute

VSA Power transform
(Yeo-Johnson)

Max absolute

GSA Power transform
(Yeo-Johnson)

Max absolute

We first explored how nets were related based on the net descriptors using UMAP. The net data points 

were colored with statistical measures computed from the MOF data samples of each net. The UMAP 

analysis on the 529 nets, colored according to the average predicted VDC (Figure S17) and  maximum 

predicted VDC (Figure S18), showed a distinguishable cluster of nets that are mathematically similar 



38

(Table S15), and this subset consists mostly of theoretically derived 6-c nets. Additionally, we noticed 

clusters of nets with darker color (lower upper VDC) and a qualitative transition from the brighter color 

to darker color on the left island in the visualization. 

Table S15. Details of a cluster of nets identified with UMAP which have similar net descriptors.

net type v1C v2C Net 
density

td10 Genus D-size Average 
vertex 
order

Smalles
t ring 
size

ana-e di 6 0 0.70 1825 97 48 1 3
pcu-m di 6 0 0.68 1394 97 40 1 3

sxl di 6 0 0.71 1317 97 52 1 3
sxm di 6 0 0.99 2177 97 44 1 3
sxn di 6 0 0.64 1189 97 36 1 3
sxo di 6 0 1.08 1553 97 68 1 3
sxp di 6 0 1.15 2657 97 44 1 3
sxq di 6 0 0.95 2269 97 0 1 3

We then conducted UMAP reduction on the MOF structures with only net descriptors as features. MOFs 

formed clusters of varying sizes (Figure S19). Interestingly, we also see big clusters with black dots 

(nonporous MOFs) and yellow dots (best performing MOFs), which corroborates our earlier observation 

that the crowded nets yield nonporous MOFs but also the best performing MOFs. Coloring in the net 

type or index, the clusters of MOF data points corresponded to the single- and multi-vertex nets (Figure 

S21).

When both topological descriptors and porosity descriptors (PV, crystal density, VSA and GSA) are 

used as features for UMAP reduction, we observed a different relationship between the best performing 

MOFs and the nonporous MOFs. As shown in Figure S20, there are two major clusters of nonporous 

MOFs; one (upper left) cluster crosses with the best performing MOFs, whereas the other cluster is not 

adjacent to any best performing MOFs in the lower left region.
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Figure S17. UMAP representation of the net data points, colored by the average VDC of each net.
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Figure S18. UMAP representation of the net data points, colored by the upper VDC of each net.
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Figure S19. UMAP representation of the MOF data points based only on the topological descriptors.
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Figure S20. UMAP representation of the MOF data points based on topological descriptors and pore 

descriptors (crystal density ρ, PV, VSA and GSA). Dark purple denotes MOFs with low VDC, and 

bright yellow denotes MOFs with high VDC.
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Figure S21. UMAP representation of the MOF data points based only on topological descriptors, colored 

by topology types. Purple: MOFs with single-vertex nets. Yellow: MOFs with multi-vertex nets. Data 

points are set to be half-transparent.
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Figure S22. UMAP representation of the MOF data points based only on topological descriptors, colored 

by the topology index.
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11 Additional data analysis

Figure S23. Overview of the top 10% of MOFs with the highest VDC. Top six panels: distribution of 

topologies and building blocks in the dataset. The first panel shows the structure count of each single-

vertex and multi-vertex nets. The bottom six panels show the distribution of void fraction (VF), largest 
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cavity diameter (LCD), pore limiting diameter (PLD), pore volume (PV), volumetric surface area (VSA) 

and gravimetric surface area (GSA).

Figure S24. Textural property correlations of overall dataset (grey) and top 10% of the MOFs (red). 

Diagonal plots are frequency histogram of the respective property and the other plots are scatterplots. 
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Additional range-based plots

Figure S25. Distribution of textural properties of MOFs grouped by the underlying nets, for (a) pore 

volume (PV), (b) gravimetric surface area (GSA), (c) volumetric surface area (VSA). Zero denotes the 
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net with the highest mean value. The grey line represents the range of the property, dark blue represents 

the 25/75 quartile, light blue bubbles denotes the median, and yellow line denotes the average.

Figure S26. VDC as function of topological descriptors of MOFs grouped by the underlying nets for (a) 

net density, (b) genus, (c) D-symbol size, and (d) average vertex order. Zero indicates the net with the 

highest mean value. Grey represents the range of VDC, dark blue represents the 25/75 quartile, light 

blue denotes the median, and yellow denotes the average for each topology.
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Figure S27. VDC as function of topological descriptor, td10. 
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The p-values for the correlation heatmap
Table S16. P-values corresponding to the correlation heatmap in Figure 8. This table details the p-values 

for each Spearman correlation coefficient, with color intensity indicating the statistical significance. 

White: no statistical significance. Light yellow: p<0.05; medium yellow: p<0.01; deep yellow: p<0.001.
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Additional figures of MOF data points segregated by net density

Figure S28. Analysis of MOF data points in Figure 9 segregated by net density with only the MOFs 

having net density between 0–1 plotted.
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Figure S29. Analysis of MOF data points in Figure 9 segregated by net density with only the MOFs 

having net density between 1–2 plotted.
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Figure S30. Analysis of MOF data points in Figure 9 segregated by net density with only the MOFs 

having net density between 2–3 plotted.
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Figure S31. Analysis of MOF data points in Figure 9 segregated by net density with only the MOFs 

having net density between 3–4 plotted.
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Analysis based on the surface area landscape of the dataset

Figure S32. Surface areas of 105,206 MOFs colored by the pore volume. The pore volume of MOFs 

with high VSA increases as GSA increases.
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Effect of metal clusters on deliverable capacity

Figure S33. Surface areas of the MOFs with 6-c nets, colored by the metal clusters. Different metal 

clusters result in multiple volcano patterns.
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Identifying the MOF topology using MOFid

Table S17. Mismatch between MOFid topology and the actual topology in the dataset. The folder 

column denotes subdirectories used to store the MOFs in the Zenodo repository.1 The MOFid count 

indicates the number of structures for which a MOFid was successfully generated, and the mismatch 

count denotes the number of structures where the topology from MOFid did not match the topology used 

for construction.

Folder MOFid count Mismatch count Error rate

f1 19514 983 5.04%

f2 3946 251 6.36%

f3 1853 97 5.23%

f4 20477 119 0.58%

f5 18110 170 0.94%

f6 22308 332 1.49%

f7 19556 329 1.68%

(Total) 105764 2281 2.16%
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12 Topology related illustrations

Figure S34. The cuboctahedron shape of the vertex of fcu.
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Figure S35. The icosahedron shape of the 12-coordinated vertex of ith. Green: 12-coordinated vertex. 

Red: 4-coordinated vertex.
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Figure S36. Illustration of ild net highlighting the connectivity of one reference vertex. Vertices are 

shown in red. There are two types of the neighboring vertices, which are 8.964 Å apart (shorter edge, 

whose center is shown as blue sphere) and 11.036 Å apart (longer edge, whose center is shown as green 

sphere).

Figure S37. The polyhedral shape of the 12-coordinated vertex of ild.
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Figure S38. Illustration of ild net with all vertices shown as spheres. Vertices are shown in red. When 

the central left vertex and the top left vertex touch each other, the central left vertex and the bottom left 

vertex overlap as a result of different edge lengths.
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Figure S39. Illustration of pcu net with all vertices shown as spheres. Vertices are shown in red. It is the 

densest 6-c sphere-packing net possible.12
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Figure S40. Illustration of fcu net with all vertices shown as spheres. Vertices are shown in red. It is the 

densest 12-c sphere-packing net possible.12

Figure S41. Illustration of hxg net with all vertices (blue) shown as polyhedra based on the coordination. 

Edge centers are shown in yellow.
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Figure S42. Illustration of non-sphere packing nature of the (a) crs net and (b) bcs net. (a) Connected 

vertices are shown as red polyhedra where connection points are shown as grey dots. Red spheres 

without polyhedra represent the neighboring six vertices unconnected to the central vertex. They are at 

the same distance from the central vertex as the six connected vertices. (b) The neighboring two 
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unconnected vertices are highlighted, with annotations denoting their distance of 10 Å , which is the 

same unit distance between the connected vertices.

13 Figures to validate the correlation of net density and deliverable 

capacities and surface areas
The following figures accompany the discussion of controlling the variance in net coordination, organic 

node, and metal cluster. Additional plots colored based on td10 are available in the Zenodo repository.1

We also recognized that higher coordinated metal clusters (namely, 12-connected Zr-cluster) had fewer 

compatible nets (Table S18), and, vice versa, nets based on higher coordinated vertex had fewer 

compatible metal nodes (Table S19). For example, among the 4,12-c nets, the ith net is experimentally 

observed with icosahedron shaped Zr cluster (Figure S35) in MOF-81213, a metal cluster that is not 

considered in the dataset.
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Table S18. The count of MOFs and corresponding nets by organic nodes and metal cluster nodes. The 
columns denote the metal cluster nodes and their coordination, and the rows denote the organic nodes 
and their coordination. Each entry shows the count of MOFs designed with the specific node 
combinations, with the number of the compatible topologies (nets) indicated in brackets.
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Table S19. The count of MOFs and corresponding nets grouped by the net coordination. The columns 
and rows denote the vertex coordination of the nets. The row NA denotes single-vertex nets where the 
vertex coordination is denoted in the column. Each entry denotes a group of nets of the same vertex 
coordination, and shows the count of MOFs, with the number of included topologies (nets) indicated in 
brackets.

vertex 
coordination NA 3-c 4-c 6-c 8-c 12-c

NA 0
[0]

3406
[57]

18249
[185]

33325
[216]

859
[9]

112
[2]

3-c -- 1225
[3]

2370
[4]

10926
[19]

366
[1]

183
[1]

4-c -- -- 13308
[10]

15411
[11]

3846
[5]

1139
[3]

6-c -- -- -- 360
[2]

121
[1]

0
[0]

8-c -- -- -- -- 0
[0]

0
[0]

12-c -- -- -- -- -- 0
[0]
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Subgroups divided by the coordination of nets

Figure S43. Bivariate plots of the MOFs with the 3,3-c net, colored by the net density: (a) deliverable 
capacities and (b) surface areas. Legends show representative net density values to facilitate 
interpretation.
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Figure S44. Bivariate plots of the MOFs with the 3,4-c net, colored by the net density: (a) deliverable 
capacities and (b) surface areas. Legends show representative net density values to facilitate 
interpretation.
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Figure S45. Bivariate plots of the MOFs with the 3,6-c net, colored by the net density: (a) deliverable 
capacities and (b) surface areas. Legends show representative net density values to facilitate 
interpretation.
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Figure S46. Bivariate plots of the MOFs with the 3,8-c net, colored by the net density: (a) deliverable 
capacities and (b) surface areas. Legends show representative net density values to facilitate 
interpretation.
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Figure S47. Bivariate plots of the MOFs with the 3,12-c net, colored by the net density: (a) deliverable 
capacities and (b) surface areas. Legends show representative net density values to facilitate 
interpretation.
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Figure S48. Bivariate plots of the MOFs with the 3-c net (uninodal net), colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative net density values to facilitate 
interpretation.
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Figure S49. Bivariate plots of the MOFs with the 4,4-c net, colored by the net density: (a) deliverable 
capacities and (b) surface areas. Legends show representative net density values to facilitate 
interpretation.
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Figure S50. Bivariate plots of the MOFs with the 4,6-c net, colored by the net density: (a) deliverable 
capacities and (b) surface areas. Legends show representative net density values to facilitate 
interpretation.
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Figure S51. Bivariate plots of the MOFs with the 4,8-c net, colored by the net density: (a) deliverable 
capacities and (b) surface areas. Legends show representative net density values to facilitate 
interpretation.
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Figure S52. Bivariate plots of the MOFs with the 4,12-c net, colored by the net density: (a) deliverable 
capacities and (b) surface areas. Legends show representative net density values to facilitate 
interpretation.
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Figure S53. Bivariate plots of the MOFs with the 4-c net (uninodal), colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative net density values to facilitate 
interpretation.
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Figure S54. Bivariate plots of the MOFs with the 6,6-c net, colored by the net density: (a) deliverable 
capacities and (b) surface areas. Legends show representative net density values to facilitate 
interpretation.
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Figure S55. Bivariate plots of the MOFs with the 6,8-c net, colored by the net density: (a) deliverable 
capacities and (b) surface areas. Legends show representative net density values to facilitate 
interpretation.
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Figure S56. Bivariate plots of the MOFs with the 6-c net (uninodal), colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative net density values to facilitate 
interpretation.
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Figure S57. Bivariate plots of the MOFs with the 8-c net (uninodal), colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative net density values to facilitate 
interpretation.
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Figure S58. Bivariate plots of the MOFs with the 12-c net (uninodal), colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative net density values to facilitate 
interpretation.
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Subgroups divided by the metal building blocks

Figure S59. Bivariate plots of the MOFs with the 3-c mc1 cluster, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.
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Figure S60. Bivariate plots of the MOFs with the 4-c mc2 cluster, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values. 
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Figure S61. Bivariate plots of the MOFs with the 4-c mc3 cluster, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values. 
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Figure S62. Bivariate plots of the MOFs with the 6-c mc4 cluster, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values. 
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Figure S63. Bivariate plots of the MOFs with the 6-c mc5 cluster, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values. 
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Figure S64. Bivariate plots of the MOFs with the 6-c mc6 cluster, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values. 
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Figure S65. Bivariate plots of the MOFs with the 6-c mc12 cluster, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values. 
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Figure S66. Bivariate plots of the MOFs with the 8-c mc7 cluster, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.
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Figure S67. Bivariate plots of the MOFs with the 8-c mc8 cluster, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.
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Figure S68. Bivariate plots of the MOFs with the 12-c mc10 cluster, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.
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Subgroups divided by the organic building blocks

Figure S69. Bivariate plots of the MOFs with the 3-c on1 node, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.
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Figure S70. Bivariate plots of the MOFs with the 3-c on2 node, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.
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Figure S71. Bivariate plots of the MOFs with the 3-c on3 node, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.
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Figure S72. Bivariate plots of the MOFs with the 4-c on4 node, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.
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Figure S73. Bivariate plots of the MOFs with the 4-c on5 node, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.
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Figure S74. Bivariate plots of the MOFs with the 4-c on6 node, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.
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Figure S75. Bivariate plots of the MOFs with the 4-c on7 node, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.



101

Figure S76. Bivariate plots of the MOFs with the 4-c on8 node, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.
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Figure S77. Bivariate plots of the MOFs with the 4-c on9 node, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.
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Figure S78. Bivariate plots of the MOFs with the 4-c on10 node, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.
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Figure S79. Bivariate plots of the MOFs with the 4-c on11 node, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.
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Figure S80. Bivariate plots of the MOFs with the 4-c on13 node, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.
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Figure S81. Bivariate plots of the MOFs with the 4-c on14 node, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.
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Figure S82. Bivariate plots of the MOFs with the 6-c on12 node, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.
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Figure S83. Bivariate plots of the MOFs with no organic node, colored by the net density: (a) 
deliverable capacities and (b) surface areas. Legends show representative values.
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14 Analysis of distributions of MOFs with respect to organic nodes
We observe slight variations in the deliverable capacity landscape between MOFs with different organic 

node coordination (Figure S84). While the MOFs with the 6-c organic node apparently have a lower 

peak performance than the other subgroups, there is only one 6-coordinated organic node (a 6-

substituted phenyl group), and its chemical space may be underexplored.

When comparing the MOFs with different organic nodes that have identical coordination numbers 

(Figure S86 – S89), shifts in the distribution are observed. For example, the distribution of the MOFs 

incorporating the on13 node demonstrates a higher GDC mode (peak of the distribution) but also a 

lower VDC mode than those with other 4-connected organic nodes (Figure S87). However, regarding 

the peak VDC performance, the best performing MOF constructed with on13 still approaches the Pareto 

front with a predicted VDC close to 52 g/L.



110

Figure S84. VDC versus GDC for the 105,206 MOFs, colored by the organic node coordination. The 
figure is truncated at GDC of 1000 mg/g for readability.
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Figure S85. VSA versus GSA for the 105,206 MOFs plotted in VSA against GSA, colored by the 
organic node coordination. 



112

Figure S86. Deliverable capacity landscape of the MOFs with 3-c organic nodes, colored by the organic 
node coordination. The figure is truncated at GDC of 1000 mg/g for readability.
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Figure S87. Deliverable capacity landscape of the MOFs with 4-c organic nodes, colored by the organic 
node coordination. The figure is truncated at GDC of 1000 mg/g for readability.
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Figure S88. Deliverable capacity landscape of the MOFs with 6-c organic nodes, colored by the organic 
node coordination. The figure is truncated at GDC of 1000 mg/g for readability.
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Figure S89. Deliverable capacitylandscape of the MOFs with no organic nodes, colored by the organic 
node coordination. The figure is truncated at GDC of 1000 mg/g for readability.
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15 Exploration of tpt-MOFs
We observe that MOFs with a very dense net tend to have suboptimal pore volume, which prevents the 

MOFs from reaching the volcano peak of volumetric versus gravimetric surface areas or deliverable 

capacities (for example, Figure S50). For instance, the 3,6-c tpt net is a mathematically discovered net14 

with the highest net density in the dataset. To determine the location of its volcano peak in the surface 

area space, we explored 420 new tpt-MOFs using extra long edge building blocks of approximately 15–

25 Å. However, many of the structures showed collapsed pores after geometry optimization and 

therefore reduced VSA and pore volume (Figure S90). Due to intrinsic limitations of the optimization 

algorithm (see Section 2), the results remain inclusive. 

Figure S90. Exploration of structural space for tpt net by generating MOFs with extra long edge 

building blocks. The surface area distributions for all the MOFs with 3,6-c nets are shown colored by the 
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net density. The original MOFs are indicated by circles, and the new MOFs explored are indicated by 

triangles.
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