Supplementary Information

Van der Waals antiferromagnetic proximity effect at FePS₃/Pt

uncompensated interface

Yinchang Ma^{1#}, Shijie Xu^{1#}, Zhuo Chen¹, Chen Liu¹, Tao Yang¹, Yuan Yan², Jefferson Zhe Liu², Fei Xue^{3,4}, Xixiang Zhang^{1*}

¹Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia

²Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia

³Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 311215, China

⁴ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China

*Email: xixiang.zhang@kaust.edu.sa

[#]Contributed equally

List of contents:

Figure S1: TEM image of Fe vacancies **Figure S2**: Raman spectra of the bulk and exfoliated FePS₃ samples **Figure S3**. Spin charge density in defective FePS₃ **Figure S4**. Temperature dependence of R_{xx} showing metallic conductivity. **Figure S5**. AHE of FePS₃/Pt heterostructures with reduced FePS₃ thickness (8 nm) **Figure S6**. SMR measurements **Figure S7**. AMR measurements **Figure S8**. Spin charge density distribution of FePS₃ with different Fe vacancy concentrations **Table S1**. Peak fitting results for Fe 2p XPS spectra **Table S2**. Peak fitting results for Fe 3p XPS spectra **Table S3**. Calculated SMR and AMR values **Supplementary Note:** Relation between vacancy concentration and net magnetization

Figure S1. High-resolution transmission electron microscopy image of ultra-thin FePS₃ viewed from [001] showing Fe vacancies on the surface. Yellow dashed circles with a zoomed-in inset highlight specific vacancy sites in the lattice.

Peak	Area %	FWHM	Max Height	Center (eV)	Fe ²⁺ to Fe ³⁺ ratio	
$Fe^{2+} 2p_{3/2}$	24.711	2.5098	2041.7741	710.2318	5 490	
$Fe^{3+} 2p_{3/2}$	4.5301	1.7573	534.5905	711.9424	5.409	
Satellite	31.626	7.0626	928.6428	715.4293		
$Fe^{2+} 2p_{3/2}$	17.544	2.8748	1265.5453	723.6843	4 972	
$Fe^{3+} 2p_{3/2}$	3.624	3.5198	213.5180	726.3806	4.8/3	
Satellite	17.963	5.6094	664.1388	731.0499		

Table S1. Peak fitting results for Fe 2p XPS spectra

 Table S2. Peak fitting results for Fe 3p XPS spectra

Peak	Area %	FWHM	Max Height	Center (eV)	Fe ²⁺ to Fe ³⁺ ratio	
$Fe^{2+} 2p_{3/2}$	75.289	2.7579	622.7195	54.7266	3.048	
$Fe^{3+} 2p_{3/2}$	24.710	3.2222	174.9275	57.9421		

Figure S2. Top panel: Raman spectra of the bulk and exfoliated (20 nm) FePS₃ samples. Bottom panel: Strain and bond stiffening around a vacancy resulting in Raman blue shift.

Figure S3. Spin charge density in defective FePS₃ viewed from [001]. The yellow and cyan bubbles represent net spin-up and spin-down charge densities, respectively.

Figure S4. Temperature dependence of R_{xx} showing metallic conductivity.

Figure S5. Temperature and magnetic field dependence of transport properties of FePS₃/Pt heterostructures with reduced FePS₃ thickness (8 nm). (a) R_{xy} –H at various temperatures with the fields applied OOP. (b) R_{xy} as a function of magnetic field showing the reversal of the sign of the Hall resistance near 100 K. (c) Variations of the AHE resistance with temperature. (d) R_{AHE} –H plot from 2 to 200 K.

Figure S6. Angular dependence of R_{xx} in FePS₃/Pt heterostructure with field rotating in the *y*-*z* plane for SMR measurement. (a) Schematic illustration of the measurement setup showing the rotation of the applied magnetic field in the *y*-*z* plane and the angle (β) between the field and the *z*-axis. (b) R_{xx} as a function of the magnetic field angle at different magnetic field strengths (1 T, 3 T, 5 T, 7 T, and 9 T) at a fixed temperature of 2 K. (c) R_{xx} as a function of the magnetic field angle at different temperatures (2 K, 10 K, 40 K, 60 K, and 80 K) at a fixed magnetic field strength of 7 T. (d) Temperature dependence of R_{SMR} extracted from (c) and (e). (e) Angular-dependent R_{xx} at temperatures above 100 K.

Figure S7. Angular dependence of R_{xx} in FePS₃/Pt heterostructures with field rotating in the *x*-*z* plane for AMR measurement. (a) Schematic illustration of the measurement setup showing the rotation of the applied magnetic field in the *x*-*z* plane and the angle (γ) between the field and the *z*-axis. The *x*-axis represents the current flow direction, and the *z*-axis represents the OOP direction. (b) R_{xx} as a function of the magnetic field angle at different magnetic field strengths (1 T, 3 T, 5 T, 7 T, and 9 T) at a fixed temperature of 2 K. (c) R_{xx} as a function of the magnetic field angle at different temperatures (2 K, 10 K, 40 K, 60 K, and 80 K) at a fixed magnetic field strength of 7 T.

	Field (T)	1	3	5	7	9
<i>y-z</i> rotation	$R_1(\Omega)$	318.164	318.172	318.182	318.191	318.205
	$R_{ m SMR}\left(\Omega ight)$	0.0090	0.0240	0.0530	0.0760	0.0910
	SMR ratio	0.00283%	0.00754%	0.0167%	0.0239%	0.0286%
<i>x-z</i> rotation	$R_2\left(\Omega ight)$	317.190	317.199	317.209	317.218	317.227
	$R_{ m AMR}\left(\Omega ight)$	0.002	0.006	0.0110	0.012	0.014
	AMR ratio	0.000631%	0.00189%	0.00347%	0.00378%	0.00441%

Table S3. Calculated SMR and AMR for the angular dependence of R_{xx} displayed in Figure S6b and S7b using Equations 1 and 2, where the field rotates in the *y*-*z* plane and the *x*-*z* plane, respectively.

Supplementary Note

Through DFT calculations, we can identify the numerical relation between vacancy concentration and magnetization. Figure S8 shows the differential spin charge density distribution for FePS₃ with different densities (1/32 and 1/8). It indicates that all Fe spins remain compensated except for the one closest to the vacancy site.

Based on the monolayer vacancy model, we propose the following mathematical expressions to describe the approximate relationship between Fe vacancy concentration (C_v) and magnetization (M):

$$M(C_{\nu}) = M_0 + N\alpha C_{\nu}$$
 Eq. S1

Where $M(C_v)$ is the total net magnetization, M_0 is the net magnetization without Fe vacancies, N is the number of Fe atoms in the layer, α is the magnetization per unit vacancy, and C_v is the Fe vacancy density. From DFT calculations, we estimate that $\alpha \approx 3\mu_B$. For the FePS₃ sheets with two different vacancy densities shown in Figure S8, our proposed equation yields magnetization values below:

$$M\left(\frac{1}{32}\right) = 128 \times 3 \times \frac{1}{32} = 12\mu_{\rm B}; \ M\left(\frac{1}{8}\right) = 32 \times 3 \times \frac{1}{8} = 12\mu_{\rm B}$$

These values closely match the DFT-calculated magnetization values of $13.3\mu_B$ and $12.5\mu_B$ for corresponding models shown in Figure S8, thus supporting the validity of the proposed equation.

Figure S8. Spin charge density distribution of $FePS_3$ with different Fe vacancy concentrations viewed from *c*-axis. Red dashed circles and arrows indicate Fe vacancy sites. The yellow and cyan bubbles represent net spin-up and spin-down charge densities, respectively.