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1. Size Effect Analysis

To verify whether our constructed model exhibits size effects, we performed a 

finite element simulation to analyze the influence of unit cell quantity on mechanical 

performance. As shown in Figure xa, we first constructed array models of various sizes 

based on Model I (2×2, 4×4, 6×6, 8×8, and 10×10 unit cells), and applied identical 

boundary conditions (fixed at the bottom, with 20% tensile strain applied at the top). 

The resulting stress-strain curves under the same loading direction were then compared 

to assess the variations across different model sizes.

As shown in Figure S1b, the stress-strain curves exhibit a noticeable size effect as 

the number of unit cells increases. Overall, under the same applied strain, the nominal 

stress of the simulated model decreases with the increase in the number of unit cells, 

although the rate of decrease gradually diminishes. As illustrated in Figure xc, the 2×2 

unit cell model is significantly influenced by boundary effects, displaying a stress-strain 

response that differs markedly from those of models with more unit cells, clearly 

indicating its inaccuracy. To minimize the impact of size effects, it is necessary to select 

models with a sufficiently large number of unit cells to better approximate the stress-

strain response of an infinite planar structure. When the unit cell count reaches 6×6 or 

greater, the mechanical response tends to stabilize, and the stress deviation at 20% strain 

remains within 1% even as the unit cell number continues to increase. This indicates 

that while the 6×6 model exhibits some size effects, it is sufficiently accurate for the 
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purpose of investigating the isotropic stress-strain response in this study. Therefore, the 

6×6 unit cell model used in this work is both reliable and representative for exploring 

the overall deformation and mechanical response of the structure.

Fig. S1. (a) Array models with different sizes. (b) Stress-strain responses under different 
sizes. (c) Comparison of response variation with size.

This size effect analysis method refers to the approach used by Chan et al.1 in their 

study of chiral three-dimensional isotropic lattices with negative Poisson’s ratio.

2. Adaptability of Different Hyperelastic Constitutive Models to Experimental Results

We attempted to fit our experimental results using other hyperelastic constitutive 

models, including the Yeoh, Neo-Hookean, Arruda-Boyce, Gent, and Ogden models. 

However, the fitting accuracy of the Mooney-Rivlin model was significantly superior 

to these alternatives.2



(a) Yeohconstitutive model (b) Neo-Hookeanconstitutive model

(c) Arruda-Boyceconstitutive model (d) Gentconstitutive model

(e) Ogdenconstitutive model (f) Mooney-Rivlinconstitutive model
Fig. S2. Uniaxial Tensile Test Fitting Results for PCL Specimens Under Different 
Constitutive Models



3. Comparison between KAN and Other Deep Learning Methods

KAN enhances the model’s ability to capture complex functional relationships 

through hierarchical nonlinear mappings. Its design is inspired by the Kolmogorov-

Arnold theorem, which states that any multivariate continuous function can be 

represented using a finite number of nonlinear basis functions. Therefore, KAN 

possesses strong functional approximation capabilities. Compared to traditional neural 

networks, KAN can represent complex mappings with fewer parameters and shallower 

architectures, thereby reducing computational redundancy. Through nonlinear 

transformations, KAN is able to more compactly extract deep features from the data. 

Due to its architectural properties, KAN also demonstrates improved training stability 

compared to conventional neural networks. This is particularly evident in large-scale 

datasets, where KAN shows a reduced tendency to overfit.

The following table summarizes the comparison between KAN and other methods:

Table S1. Comparison between KAN and Other Deep Learning Methods
Feature KAN3 MLP4 CNN5 GAN6

Expressive 
Power

Strong, suitable 
for complex 
nonlinear 
mappings

Moderate, 
limited to linear 
combinations

Strong, suitable 
for processing 
image data

Strong, suitable 
for generative 
tasks

Training 
Stability

High, avoids 
overfitting 
issues

Prone to 
overfitting

High, especially 
for image tasks

Unstable, prone 
to mode 
collapse

Suitable Tasks High-
dimensional, 
complex data, 
especially 
nonlinear tasks

Basic 
classification 
and regression 
tasks

Image, video, 
and spatial data

Generative 
models, 
especially 
adversarial 
training tasks

Interpretability High, symbolic 
representation 
and structured 
explanation 
through pruning

High, simple 
model structure

High, 
convolutional 
and pooling 
layers are easy 
to explain

Low, complex 
interactions 
between 
generator and 
discriminator

4. Comparison Between Conventional Design Methods and Inverse Design Strategies

Our method incorporates inverse design combined with a data-driven approach, 

allowing the introduction of more degrees of freedom during optimization. This 



strategy considers geometric symmetry and isotropic stress-strain responses of the 

material, thereby enabling the design of materials with greater accuracy and efficiency. 

Through this approach, we can not only identify optimal solutions within the predefined 

design space but also validate and refine the design process itself, significantly 

enhancing design feasibility and efficiency.

Based on the above discussion, we have provided a comparative analysis of 

conventional and inverse design methods under optimization conditions, as 

summarized in the following comparative table:

Table S2. Comparison of conventional design method and inverse design method
Comparison Aspects Conventional Design Method Inverse Design Method

Design Approach

Based on experience and 
intuition; performance is 

optimized by adjusting structural 
parameters (e.g., edge length, 

curvature)

Starts from target 
performance and uses 

algorithms to inversely 
derive the required 

microstructural features for 
precise design.

Optimization Target Macroscopic structural 
parameters, focusing on the 

overall shape.

Microstructural features, 
emphasizing precise control 

at the detailed level.
Design Process Trial and error, often requiring 

multiple iterations to achieve the 
desired outcome.

Numerical optimization and 
computational simulations 

enable rapid convergence to 
the optimal solution.

Interpretability Easy to implement but often 
relies on biomimicry or 
engineering expertise.

The design outcome directly 
corresponds to performance 

metrics, offering clear 
interpretability.

Computational Cost Requires substantial 
computational resources due to 
repeated simulations and tests.

Optimization algorithms 
reduce computational load 

and enhance design 
efficiency.

Applicability Suitable for improving existing 
design frameworks and depends 

on designer experience.

Suitable for applications 
requiring precise 

performance control and 
systematic design space 

exploration.



5. Comparison of testing and simulating process among Model III

Fig. S3. Comparison of (a) testing and (b) simulating process among Model III under 
-90°.

Fig. S4. Comparison of (a) testing and (b) simulating process among Model III under 
-60°.



Fig. S5. Comparison of (a) testing and (b) simulating process among Model III under 
-30°.

Fig. S6. Comparison of (a) testing and (b) simulating process among Model III under 
0°.



Fig. S7. Comparison of (a) testing and (b) simulating process among Model III under 
30°.

Fig. S8. Comparison of (a) testing and (b) simulating process among Model III under 
60°.



Fig. S9. Comparison of (a) testing and (b) simulating process among Model III under 
90°.

6. Comparison of Design Parameters and Stress-Strain Responses of the Three Models

In the final design, Model III exhibits greater consistency in isotropic stress 

responses, and stress concentration issues are significantly mitigated. As a result, Model 

III demonstrates superior mechanical performance, particularly in terms of response 

uniformity under multi-directional loading. Compared with Models I and II, Model III 

outperforms both in experimental and simulation evaluations.

The design parameters for the three models are listed in Table S3.

Table S3. Design parameters of the three models

Model
e1x

(mm)
e1y

(mm)
e2x

(mm)
e2y

(mm)
e3x

(mm)
e3y

(mm)
e4x

(mm)
e4y

(mm)
I 0 0 0 0 0 0 0 0
II 0.2 -1 1 -1 -0.25 -1 1 -0.25
III 1.3048 -0.6511 -1.2426 1.5 -0.8941 -0.1863 0.9578 1.0032

Table S3 presents the stress-strain responses of the three models under different 

loading directions, as well as the mean square error (MSE) between each directional 

response and the average response. As shown, Model III exhibits significantly lower 

MSE values across all directions compared to Models I and II. These results are also 



visualized in the main text through heatmaps in Figures 13b–d.

Table S4. Stress-strain responses of the three models and corresponding MSEs with the 
directional average

Model Direction (°) σ0.1 (MPa) σ0.2 (MPa) MSE
-90 0.5390 1.1560 2.6317%
-60 0.2507 0.5130 3.8124%
-30 0.3837 0.7547 0.2361%
0 0.5389 1.1557 2.6266%
30 0.2506 0.5129 3.8146%
60 0.3836 0.7546 0.2368%
90 0.5389 1.1558 2.6278%

Model I

Average 0.4122 0.8575 2.2837%
-90 0.4857 1.0331 3.6219%
-60 0.2320 0.4703 1.5066%
-30 0.2854 0.5459 0.4966%
0 0.3357 0.6766 0.0006%
30 0.1864 0.3641 3.2639%
60 0.3360 0.6660 0.0047%
90 0.4859 1.0334 3.6314%

Model II

Average 0.3353 0.6842 1.7894%
-90 0.2456 0.4826 0.0023%
-60 0.2379 0.4491 0.0115%
-30 0.2519 0.4754 0.0035%
0 0.2765 0.5519 0.1838%
30 0.2327 0.4424 0.0238%
60 0.2226 0.4165 0.0843%
90 0.2441 0.4795 0.0011%

Model III

Average 0.2445 0.4711 0.0443%

7. Comparison of Stress Distributions of Model III under Varying Strains

As shown in Figure S10, our optimized model exhibits a near-circular response 

similar to that of sixfold or threefold symmetric structures at small strain. This indicates 

that our optimization has effectively enhanced isotropy and suppressed stress 

concentration within that range. However, as the strain increases and approaches the 

material’s performance limits, nonlinear effects may manifest in all structures-

regardless of their symmetry-explaining why, despite high optimization precision, our 

model still shows slight deviations from a perfect circle.



Fig. S10. Stress Distributions of Model III under Different Strain Levels

8. Symmetry Analysis

For our classical missing-rib auxetic structure, Model I, the initial geometric 

configuration exhibits symmetry in specific directions (e.g., 0° and 90°), but it is not 

fully isotropic. Its stiffness matrix corresponds to the orthotropic symmetry group (D₂),7 

which includes three independent elastic constants. A representative form of the 

stiffness matrix is given as follows:
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Where  and . This form corresponds to the characteristics 11 22C C 11 12
33 2
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

of the orthotropic symmetry group (D₂), which features three independent elastic 

constants.

In contrast, our target isotropic structure, Model III, was optimized using KAN 

combined with a genetic algorithm, resulting in stress distributions that are uniform in 

all directions (see Figures 12c and 13a). Its stiffness matrix is expected to conform to 

the isotropic symmetry group (O(2)), which requires only two independent parameters:
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In the experiments, the stress distribution of Model III was nearly circular (Figure 

12c), and the average MSE was as low as 0.05%, confirming that its stiffness matrix 

satisfies isotropic symmetry.

9. Simulation and Experimental Evaluation of Poisson’s Ratio

Poisson’s ratio (ν) is typically defined as the ratio of axial strain in one direction 

to the transverse strain perpendicular to that direction. For planar materials, it can be 

considered as the ratio between longitudinal and lateral strain.

As shown in Figure 14a, in our study, Poisson’s ratio was calculated based on the 

displacement of specific nodes measured via digital image correlation (DIC). Four 

approximately square-shaped intersection nodes on the specimen were marked as points 

1, 2, 3, and 4 to facilitate displacement tracking. The stereoscopic high-speed camera 

was configured with appropriate frame rate, exposure time, height, and focal length, 

and images were captured every 0.1 seconds until the structure was damaged to a point 

where tracking was no longer feasible. By tracking the displacement of the selected 

DIC points, the lateral strain was obtained from the horizontal displacement between 

points 1 and 3, while the longitudinal strain was calculated from the vertical 

displacement between points 1 and 2. The Poisson’s ratio was then computed using the 

following formula:

x

y






In the above equation, ν represents the Poisson’s ratio of the structure,  is the x

transverse strain, and  is the longitudinal strain.y

In traditional studies of missing-rib auxetic structures, particularly under standard 



loading directions (e.g., -90°, 0°, and 90°), this point-based measurement method 

allows for selecting three points within a square or rectangular region, which can 

directly characterize the Poisson’s ratio under small strain conditions. However, for 

non-horizontal or non-vertical loading directions explored in this study (e.g., -60°), the 

calculated Poisson’s ratio serves only as an approximate representation.

Fig. 14. Measurement of the Poisson’s ratio of Model I, Model II, and Model III: (a) 
Calculation of Poisson’s ratio changes using the DIC-based point selection and 
displacement measurement method; (b) Poisson’s ratio variation under different 
directions of Model III as the strain increases from 0 to 0.2.

For the simulations, we used COMSOL Multiphysics to build the finite element 

model and apply tensile loads in various directions. The resulting strain distributions 

were used to calculate the Poisson’s ratio.

Specifically, to compute Poisson’s ratio from the finite element model, multiple 

probe points were defined at specific locations within the model. As shown in Figure 

x, three sets of probes were placed to correspond with the DIC marker points 1, 2, and 

3 in Figure 14a. Since it is not possible to directly assign a probe to the central 

intersection node in COMSOL Multiphysics, each probe set consists of four points 

surrounding the intersection. The average of these four points was taken to represent 

the central node.

For example, in probe location 1, four variables were defined for the surrounding 

points: x10, x1, y10, and y1, with expressions root.X, root.X + u, root.Y, and root.Y + 

v, respectively (all in mm). Here, root.X and root.Y represent the initial coordinates of 

the central node, while u and v denote displacements in the x and y directions. 

Therefore, root.X + u and root.Y + v indicate the deformed coordinates of the 



intersection point under a given steady-state displacement.

Similarly, for probe location 2, the variables x20, x2, y20, and y2 were defined; 

and for probe location 3, x30, x3, y30, and y3 were defined. Finally, the variables 

strain_x, strain_y, and nu were defined as shown in Table 6, corresponding to the 

transverse strain , longitudinal strain , and Poisson’s ratio ν, respectively.x y

(a) Probe Location 1 (b) Probe Location 2 (c) Probe Location 3
Fig. S11. Schematic of probe locations

Table S5. Operators for Poisson’s ratio calculation expressions
Name Expression

strain_x ((x3-x1)-(x30-x10))/(x30-x10)
strain_y ((y1-y2)-(y10-y20))/(y10-y20)

nu -strain_x/strain_y

10. Isotropic Analysis of Shear Stress-Strain Responses of Model III

We constructed a finite element model of a 6×6 unit array based on optimized 

geometric parameters and simulated its nonlinear stress-strain response under shear 

across various loading directions. The boundary conditions involved fixing the model’s 

lower end and applying shear displacement (up to 20% strain) at the upper end, covering 

seven loading directions from -90° to 90°.

The shear stress-strain curves indicate that Model III’s responses across multiple 

directions significantly deviate from the average (see Fig. S12), illustrating that 

achieving isotropy in tensile responses does not necessarily translate to isotropy in shear 



responses.

Fig. S12. Shear stress-strain responses of model III under multiple loading directions.
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