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Text S1. Formalism of time-dependent density functional theory method

In this work, we employ a newly developed first-principles method to compute the excited states 

that is based on linear-response time-dependent density functional theory (TDDFT) with optimally 

tuned (OT),1, 2 screened and range-separated hybrid (SRSH) exchange-correlation (XC) functionals.3-

6 Unlike the traditional TDDFT methods with local and semi-local XC functionals, the TDDFT-OT-

SRSH method can capture the long-range electron-electron and electron-hole interactions in solids 

correctly by choosing appropriate parameters, and has been extensively used to study optical and 

excitonic properties in solids and vdW bilayers.7-16 Formulated with spinor wavefunctions,17 the 

TDDFT-OT-SRSH method can also capture noncollinear magnetism, including spin-orbital coupling 

(SOC). In this method, the following non-Hermitian eigenvalue equation is solved to determine the 

exciton energies and wavefunctions:18

                                                                                                             (S1)( 𝐴 𝐵
𝐵 ∗ 𝐴 ∗ )(𝑋𝐼

𝑌𝐼) = 𝜔𝐼(1 0
0 ‒ 1)(𝑋𝐼

𝑌𝐼)
where the pseudo-eigenvalue ωI represents the I-th exciton energy. The matrix elements of A and B in 

the basis of two-component spinor orbitals (ijσ) are given by:

                                                                                                               (S2)𝐴𝑖𝑗𝜎,𝑘𝑙𝜏 = 𝛿𝑖,𝑘𝛿𝑗,𝑙(𝜀𝑗 ‒ 𝜀𝑖) + 𝐾𝑖𝑗,𝑘𝑙

                                                          .                                                             (S3)𝐵𝑖𝑗,𝑘𝑙 = 𝐾𝑖𝑗,𝑙𝑘

Here, K is the coupling matrix where indices i and k indicate the occupied Kohn-Sham (KS) orbitals, 

and j and l represent the virtual KS orbitals. According to the assignment ansatz of Casida, the many-

body wavefunction of an excited state I can be written as 
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where ;  is the annihilation operator acting on the i-th KS orbital with spin 𝑍𝐼,𝑖𝑗 = (𝑋𝐼,𝑖𝑗 + 𝑌𝐼,𝑖𝑗)/ 𝜔𝐼 �̂�𝑖𝜎

, and  is the ground-state many-body wavefunction taken to be the single-Slater determinant of the 𝜎 Φ0

occupied KS orbitals. Based on the many-body wavefunctions, we can calculate the charge density 

associated with the exciton states as19

                                           ,                                       (S5)
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where  is KS orbital. In order to reduce the computational cost associated with the Fock-like 𝜙𝑖

exchange on large systems, the first-order perturbation theory to the range-separated hybrid Kohn-

Sham Hamiltonian is used.20

In this noncollinear (TD)DFT-OT-SRSH method, there are three parameters α, β and γ that need 

to be specified. α determines the contribution from the exact exchange and β controls the contribution 

from the long-range exchange terms. γ is the range-separation parameter. α and β satisfy the 

requirement of α+β=1/ε0 where ε0 is the scalar dielectric constant of the solid. According to the high-

frequency dielectric constant calculated in this work (Figure 3b), the optimal set of the parameters 

(α=0.21, ε0=4.0 and γ=0.1) is determined for (PEA)2PbI4. With these parameters, the calculated 

fundamental bandgap (Eg) and optical bandgap (Eopt) is 2.60 eV and 2.20 eV, respectively. The binding 

energy (Eb) is 0.40 eV. These values agree well with the experimentally reported fundamental bandgap 

(Eg = 2.57 ~ 2.65 eV) and optical bandgap (Eopt = 2.3 ~ 2.4 eV)21, 22 as well as the binding energy (Eb 

= 0.16~0.45 eV)23.

Text S2. Formalism of oscillator strength of exciton

To obtain the optical dipole moment for an exciton, we first determine the single-particle electron-

hole transitions involved in the exciton. As mentioned above, the many-body wavefunction of the 
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exciton ΦI is expressed as a linear combination of the single-particle electron-hole transitions, and ZI,ij 

represents the corresponding electron-hole transition amplitude. The polarization-dependent optical 

dipole moment (μI) of the exciton I is calculated as

                                                                                                                             (S6)
𝜇𝐼 = ∑

𝑖,𝑗,𝜎

𝑍𝐼,𝑖𝑗𝑃𝑖𝑗

                                                                                                                              (S7)𝑃𝑖𝑗 = 〈𝜙𝑖|�̂�𝑟 |𝜙𝑗〉

where Pij is the transition dipole moment between the KS occupied state ϕi and unoccupied state ϕj.  �̂�

is the unit vector of the electric field of the polarized light, and r is the position operator of the electron. 

Since the position operator r is ill-defined in the periodic boundary conditions, we employ the velocity 

operator  to compute the transition dipole moment,24, 25 where p is the momentum 𝑖[𝐻,𝑟] = 𝑝 + 𝑖[𝑉𝑁𝐿,𝑟]

operator and  is the nonlocal pseudopotential. Considering that the errors by neglecting the 𝑉𝑁𝐿

commutator of nonlocal pseudopotential can be significantly reduced by including d-projectors in the 

PAW potential,26, 27 we have omitted such commutator and only consider the momentum operator in 

the calculation of the transition dipole moment. The oscillator strength is then determined by

                                                                                                                                   (S8)
𝑓 =  

2𝑚𝑒𝜔𝐼

3ℏ2
𝜇𝐼

2

where me is the mass of the electron and ћ is the reduced Planck constant.
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Figure S1. The change of ground-state energy during the ab initio molecular dynamics simulation at 

300 K.
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Figure S2. Exciton charge distributions in 3D lattice (left panel) and along OP direction (middle panel) 

as well as transition amplitude analysis (right panel) for (a) XD, (b) XB1, (c) XB2, (d) XB3 exciton states. 

For the figures in the left panel, the electron and hole densities are shown in red and yellow with the 

iso-surface value being 1.0×10-3 e/Å3, respectively. For the figures in the right panel, the single-particle 

orbitals below (above) valence (conduction) band edge are defined as VB-i (CB+j) in the horizontal 

and vertical coordinate with i (j) being the integer.
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Figure S3. Exciton oscillator strength (f) with orange bars representing excitonic energy levels of XD, 

XB1, XB2 and XB3 exciton states based on the geometric structure used in Figure 2c.
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Figure S4. DOS of (PEA)2PbI4-(1) phase calculated by adopting (a) HSE06 and (b) OT-SRSH XC 

functionals.
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Figure S5. Energy bands of (a) s orbital, (b) px orbital, (c) py orbital and (d) pz orbital of Pb ions in 

(PEA)2PbI4-(1) phase calculated at HSE06+SOC level of theory. 
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Figure S6. Energy bands calculated at the HSE06+SOC level of theory for I ions at equatorial and 

apical positions in (PEA)2PbI4-(1) phase. (a-c) Energy bands of px, py and pz orbitals of equatorial I 

ions; (d-f) Energy bands of px, py and pz orbitals of apical I ions.
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Figure S7. Partial DOS of the supercells of (PEA)2PbI4-(1) phase calculated at PBE+SOC level of 

theory. (a, b) Partial DOS by sampling the Brillouin zone at Γ point for the I species at the equatorial 

and apical sites, respectively. (c, d) Partial DOS by sampling the Brillouin zone with 5◊5ⅹ1 k-point 

mesh for the I species at the equatorial and apical sites, respectively.
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Figure S8. Electronic and excitonic properties of (PEA)2(MA)n-1PbnI3n+1-(1) (n = 2 and 3) RPPs. (a, 

g) Definition for the apical I ions at the outermost of the inorganic sublattice (I-Apical) and the I ions 

locating inside the inorganic sublattice (I-Inside) for n = 2 and 3. (b, h) Photoexcited electron and hole 

densities (shaded regions) as well as the corresponding exciton densities along the OP direction (dotted 

line). (c, i) DOS for Pb ions, I-Inside ions, I-Apical ions, as well as PEA cations. (d, j) DOS resulting 

from s, px, py and pz orbitals of Pb ions. (e, k) DOS for px, py and pz orbitals of I-Inside ions. (f, l) DOS 

for px, py and pz orbitals of I-Apical ions. 
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Figure S9. The oscillator strength as a function of transition dipole polarization direction for (a) XB1, 

(b) XB2 and (c) XB3 exciton state of the stretched (PEA)2PbI4-(1) structure.
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Figure S10. The lattice parameters along a, b and c axis which have been experimentally reported at 

different temperatures.
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Figure S11. The differences (Δ) between the unstretched and stretched structures for the ground-state 

energy and for the DOS(I-OP)/DOS(I) defined in Figure 6c.
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