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I. COMPUTATIONAL DETAILS

A. Impact of the On-Site Coulomb Interactions on Structure, Electron and Phonon Properties

Generally, generalized gradient approximation (GGA) functionals within the single-particle approximation provide
satisfactory results for the crystal structure, band structure, and superconducting properties of most systems. How-
ever, for systems including localized d and f orbitals, particularly transition metal oxides or nitrides, deviations arise
owing to the strong correlation effect of electron. In Cu4H3, a part of the Cu 3d orbitals lies near the Fermi level (EF ).
Therefore, we account for the on-site Coulomb interactions and investigate their impact on the structure and electron
properties of Cu4H3 using the GGA+U method implanted in the Quantum ESPRESSO package. To determine the
Hubbard U value for Cu, we note that the linear response method is unsuitable for the closed-shell Cu-3d10 orbital
in Cu4H3 [1], since our Bader charge calculation shows that the individual vertex Cu atoms lose only 0.32 electrons
and the three face-center Cu atoms only lose 0.19 electrons per Cu. Therefore, we adopt a well-established empirical
parameters: U = 4.0 eV [2] and investigate their impact on Cu4H3.
After structural optimization, the crystal structure with a Hubbard U = 4.0 eV correction exhibits negligible

differences compared to the structure without correction, with the lattice constant expanding by approximately
0.42%, while the atomic positions remain unchanged during the optimization.

The impact of on-site Coulomb interactions on the electronic properties including band structure and electronic
density of states (DOS) of Cu4H3 is shown in Figs. S1(a)-S1(c). It turns out that the impact of on-site Coulomb
interactions on electronic properties is primarily concentrated in the Cu-3d orbitals, which causes the dominant energy
distribution of the Cu-3d orbitals to shift from the range of -6 to 1 eV down to -7 to -2 eV, as shown in the zoomed-in
electronic DOS of Fig. S1(c). The trend is consistent with that observed in CuTe, where the Cu bands, originally
ranging from -2 to -4 eV, shift to -4 to -6 eV when considering PBE+U [3]. The on-site Coulomb interactions have
negligible impact on the Cu-4s and H-1s orbitals near the EF . As for the Cu-3d orbitals at EF , their percentage
decreases from 45.22% to 29.17% when the Hubbard U = 4.0 eV correction is applied. In turn, the percentage of
Cu-4s and H-1s orbitals at EF increase from 26.03% and 28.74% with U = 0 to 36.38% and 34.45% with U = 4.0 eV,
respectively. In fact, the decrease in the relative percentage of Cu-3d orbital electrons at EF along with the increased
proportion of H-1s and Cu-4s orbital electrons at EF is beneficial for superconductivity [4], as discussed in detail in
Sec. IV A and IV B.

At last, we investigate the influence of the electronic correlation effect on phonon spectra of Cu4H3, as shown
in Fig. S1(d). When taking the Hubbard U = 4.0 eV into consideration for Cu-3d orbitals, the main feature is
that more phonon softening points occur, specifically points X and M. Since the subsequent self-consistent harmonic
approximation (SSCHA) calculation demonstrates that the imaginary frequency of point M can be suppressed by
finite temperature, the structure stability will not be affected by the correlation effect of Cu-3d orbitals. The trend
is also similar to CuTe, where it is the strong correlation effect of electrons that leads to phonon softening or the
imaginary frequency [3]. For Cu4H3, the softening of phonon is generally accompanied by an increase in the EPC
constant λ (see Sec. IV C for details), which might be beneficial for superconductivity to some extent.

Supplementary Information (SI) for Materials Horizons.
This journal is © The Royal Society of Chemistry 2025



2

FIG. S1. (a) Calculated bulk band structures, (b) global, (c) zoomed-in electronic DOS, and (d) phonon spectra of cubic Cu4H3

using GGA (U = 0) and GGA+U = 4.0 eV methods. The band structures calculated by GGA and GGA+U = 4.0 eV are
denoted by red and blue lines, respectively. The electronic DOS of Cu-4s, Cu-3d and H-1s orbitals are colored blue, green and
red in panels (b) and (c). The DOS calculated using GGA and GGA+U = 4.0 eV are represented by solid and dotted lines,
respectively in panels (b) and (c). The percentage DOS of Cu-4s, Cu-3d and H-1s orbitals at EF are marked in panel (c). The
phonon spectra calculated by GGA and GGA+U = 4.0 eV methods are denoted by black and red lines, respectively.
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B. Band Structures

FIG. S2. Calculated bulk band structures of cubic Cu4H3, where the blue lines are calculated using the first-principles PBE
functional, and the red dotted lines are simulated using the Wannier interpolation technology, respectively.

FIG. S3. Calculated surface states of Cu4H3 using (a) 30-layer (210 atoms), (b) 50-layer (350 atoms), and (c) 100-layers (700
atoms) thick slabs on the (001) surface, with a vacuum thickness set to 20 Å.

C. SSCHA Calculations

During the SSCHA minimization procedure, H atoms consistently occupied the octahedral (Oh) interstitial sites in
face-centered-cubic (fcc) Cu. In this way, an additional SSCHA quantum pressure [5]

pq = − 1

Ω

∂F
∂ϵ

∣∣∣∣
ϵ=0

(S1)

can be evaluated using the volume of the cell Ω, the SSCHA free energy F and the strain ϵ of the harmonic lattice
constant.

The key of combining SSCHA phonons with the electron-phonon matrix elements to calculate superconducting Tc
lies in: using the harmonic electron-phonon coupling (EPC) matrix elements, SSCHA phonon frequencies ωqν and
polarization vectors êqν obtained by diagonalizing the Fourier interpolated SSCHA force constants to evaluate the
Eliashberg spectral function [6]

α2F (ω) =
1

2πN(EF )Nq

∑
qν

δ(ω − ωqν)
γqν
h̄ωqν

, (S2)
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where γqν denotes the phonon linewidth

γqν =
2πωqν

Nk

∑
kmn

∣∣gmn
k,qν

∣∣2 × δ(Ek+q,m − EF )δ(Ek,n − EF ), (S3)

Nk and Nq denote the number of electron and phonon momentum points in Brillouin zone sampling. The double
delta function is

ξ(q) =
1

Nk

∑
kmn

δ(Ek+q,m − EF )δ(Ek,n − EF ). (S4)

The EPC matrix element is

gmn
k,qν = (

h̄

2Mωqν
)1/2

∣∣∣∣⟨ψm,k+q|
dVSCF

dûqν
· êqν |ψn,k⟩

∣∣∣∣ , (S5)

where ψn,k and ψm,k+q denote electronic wavefunction with band index m, n and wavevector k and k+ q. M denotes
the atomic mass and ν is phonon index. ωqν and êqν represent the vibrational frequency and the polarization vector

of the ν-th phonon mode at wavevector q, respectively. The dVSCF

dûqν
term describes the variation of the self-consistent

potential caused by atomic vibrations. In this way, spectral function can be expressed as

α2F (ω) =
1

Nq

∑
qνmn

êmqν∆
mn
q ên∗qν

2
√
Mm

√
Mnωqν

δ(ω − ωqν). (S6)

The harmonic matrix element ∆mn
q is defines as

∆mn
q =

1

N(EF )Nk

∑
km′n′

⟨ψm′,k+q|
dVSCF

dûm′
qν

|ψn′,k⟩ ⟨ψn′,k|
dVSCF

dûn′
qν

|ψm′,k+q⟩

× δ(Ek+q,m′ − EF )δ(Ek,n′ − EF ).

(S7)

In this way, once the harmonic ∆mn
q , SSCHA phonon frequencies ωqν and SSCHA polarization vectors êqν are

obtained, the spectral function α2F (ω) can be determined. The EPC constant and logarithmic average frequency can
be represented as

λ = 2

∫
dω

ω
α2F (ω), (S8)

ωlog = exp

[
2

λ

∫
dω

ω
α2F (ω) log(ω)

]
, (S9)

respectively. The anharmonic McMillan-Allen-Dynes Tc can thus be obtained using

Tc =
h̄ωlog

1.2kB
exp

[
−1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
. (S10)

.

D. Electron-Phonon Coupling and Superconductivity

The fully anisotropic Migdal-Eliashberg (M-E) equations [7–9] can be describes as follows,

Z (k, iωn) = 1 +
πT

N(EF)ωn

∑
k′n′

ωn′√
ω2
n′ +∆2 (k′, iωn′)

× δ(Ek′ − EF )λ (k,k
′, n− n′) ,

(S11)

Z (k, iωn)∆ (k, iωn) =
πT

N(EF)

∑
k′n′

∆(k′, iωn′)√
ω2
n′ +∆2 (k′, iωn′)

× δ(Ek′ − EF ) [λ (k,k
′, n− n′)− µ∗] ,

(S12)
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where Z(k,iωn) and ∆(k, iωn) are the mass renormalization function and superconducting gap function, respectively.
The k, n and µ∗ denote the electronic wave vector, band index, and the Morel-Anderson semiempirical Coulomb
repulsion pseudopotential [10], respectively. The anisotropic EPC strength λ(k, k

′
, n – n

′
) can be written as,

λ (k,k′, n− n′) = N(EF)
∑
qν

2ωqν

(ωn − ωn′)
2
+ ω2

qν

|gνkk′ |2 , (S13)

where N(EF), q and ν represent the electronic density of states (DOS) at the Fermi energy, the wave vector, and
the branch of phonon, respectively. Further, ωn represents the Matsubara frequencies, which is represented as ωn

= (2n + 1)πT , and gνkk′ represents the EPC matrix element. Using these parameters, the coupled M-E equations
(Eqs. (S11) and (S12)) can be solved self-consistently along the imaginary axis at Matsubara frequencies ωn for each
temperature T .

Calculations of the specific heat difference, as well as the entropy difference were as follows,

∆C(T ) = −T ∂
2∆F

∂T 2

∣∣∣∣
V

, (S14)

∆S(T ) = −∂∆F
∂T

∣∣∣∣
V

= −
∫

∆C(T )

T
dT. (S15)

Here, ∆F denotes the free energy difference between the superconducting and normal states and can be written as
follows [11, 12],

∆F = −πT
∑
nkj

[√
ω2
j +∆2

nk (iωj)− |ωj |
]
× δ (Enk − EF )

×

Znk (iωj)− ZN
nk (iωj)

|ωj |√
ω2
j +∆2

nk (iωj)

 , (S16)

where ZN represents the mass renormalization function of the normal state N , calculated by setting ∆ (k, iωn) = 0
in Eq. (S11).
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II. SYNTHESIS STRATEGIES

A. The Nudged Elastic Band (NEB) Simulations and Kinetic Stability

FIG. S4. The nudged elastic band (NEB) simulations and kinetic stability. The calculated total energy, accounting for quantum
zero-point energy (ZPE), for a single H atom in fcc Cu with a lattice constant of (a) 3.52 Å (60 GPa) and (b) 3.87 Å in a
conventional cell, along the [111] diagonal direction Td-Oh-Td. The inset of (b) shows the octahedral interstitial site Oh (gray
pink ball) and tetrahedral interstitial site Td (green ball). (c) The total free energy as a function of ab initio molecular dynamics
(AIMD) simulation time for a 4 × 4 × 4 supercell containing a single H atom in fcc Cu, with a lattice constant of 3.87 Å at
80 K in an NVT ensemble. The insets display corresponding structure snapshots at 0 and 10 ps, respectively.

Two competitive interstitial positions of hydrogen in fcc copper are the Oh and tetrahedral (Td) interstitial sites [13],
as shown in the inset of Fig. S4(b). Here, we take the quantum zero-point energy (ZPE) into consideration and compare
the total energy of the two interstitial sites for different lattice constant of Cu, as displayed in Figs. S4(a) and S4(b).
It turns out that as the lattice constant of Cu changes from 3.52 to 3.87 Å, the Oh interstitial site consistently remains
the most stable position for H, with an energy advantage of 0.533 eV per unit lower than that of the Td site at a
lattice constant of 3.52Å. At 3.87 Å, the energy of the two sites becomes comparable. This suggests that when the
lattice constant is less than 3.87 Å and Cu retains its fcc framework, the Oh interstitial sites are more stable for H
atoms. This is consistent with experimental reports [13]. Furthermore, the energy barrier from the Oh to Td site
varies from 0.856 eV/unit at a lattice constant of 3.52 Å to 0.225 eV/unit at a lattice constant of 3.87 Å, indicating
the local stability of H against thermal fluctuations.

The results of the NEB simulations above are consistent with the kinetic ab initio molecular dynamics (AIMD)
simulations of H in different lattice constants of fcc Cu, as displayed in Figs. 1(d) and S4(c). Here, the lattice constant
of the focused cubic Cu4H3 is 3.83 Å at ambient pressure, indicating that during the kinetic depressurization process
from 60 GPa to 1 atm, H is expected to consistently occupy the Oh interstitial sites, as tested in Fig. 1(d).

B. Comparison with Experimental Data

A comparison of the volume-pressure (V -P ) curves and points of copper hydrides, derived from experimental data,
with our theoretical calculations is displayed in Fig. 1(a). (1) First, the V -P curve we calculated for cubic-CuH
with known rock-salt structure (solid purple line) closely matches the equations-of-stat (EOS) curve for fcc-CuH from
Ref. [14](dotted cyan line). This serves as a benchmark for further analysis of the unclear hydrogen concentration in
cubic CuHx , as displayed in Fig. 1(a). (2) The diffraction data (open light green squares) for fcc CuHx [14] fall between
the curves for cubic-Cu4H3 (solid blue line) and cubic-CuH (solid purple line) calculated in this work, as displayed in
Fig. 1(a). This suggests that various concentrations of CuHx , from CuH0.75 to CuH, can be synthesized under different
pressure and temperature. (3) The diffraction data (open red triangles) and EOS (dashed red line) for fcc-CuHx , with
so-called x ∼ 0.65 reported in Ref. [15], seem to align with our calculated V -P curve of cubic-Cu4H3 (solid blue line),
as shown in Fig. 1(a). To clarify this discrepancy and figure out the actual hydrogen concentration in CuHx with
unknown structure, we use the data derived from fcc Cu and cubic Cu4H3 with known structures calculated at 1 atm
in this work, and perform a linear fit to establish the relationship between volume (V ) and hydrogen concentration

(n), given by V = 2.70n+12.00, as displayed in Fig. S5. Here, the slope of 2.70 Å
3
per H denotes that each additional

H atom makes the volume expand by 2.70 Å
3
, which is smaller than the slope of 2.90 Å

3
per H used in Ref. [15]. The
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FIG. S5. Variation of volume with H concentration. The solid black squares denote the calculated results for fcc-Cu and
cubic-Cu4H3 at 1 atm. Solid blue line is the linear fitting for the points, V = 2.70n + 12.00, where V denotes volume per
formula unit of Cu and n denotes H concentration.

underestimation of the H concentration in fcc-CuHx as 0.65 [15] arose from using the average slope of the volume
(V )-H concentration relationship (n) curve for d-metal hydrides [16], rather than that of the actual copper hydrides.
In fact, the focused cubic-CuH0.75 phase may have been synthesized by two independent groups: one at 30-50 GPa
and 1000-3000 K (open red triangles) [15], and the other synthesized at pressures exceeding 60 GPa and temperatures
above 2000 K, which was then quenched to 300 K at fixed pressure (open light green squares) [14].

C. Kinetic Simulations of Cubic CuH

FIG. S6. Flowchart of the experimental synthesis routes and simulations of the kinetic processes for cubic CuH. The starting
point is the experimentally synthesized cubic CuH at around 60 GPa and room temperature [14], as displayed in Fig. 1(a).
The AIMD simulation of the kinetic stability of cubic-CuH with NpT ensemble at 60 GPa and 300 K is displayed below. The
insets display the snapshots of the trajectories of cubic-CuH at 0 (left) and 10 ps (right), respectively. Next, an isobaric cooling
process with pressure fixed at 60 GPa while temperature varying from 300 to 80 K is designed to reduce the kinetic energy of H
atoms to prevent them from escaping during the subsequent decompressing process. Note that the annealing process lasts for
10 ps, with a temperature interval of 25 K and time interval of 1 ps. Each cooling step is also conducted with NpT ensemble and
screenshot of structures at 2, 4, 6, 8 and 10 ps are displayed in the insets. Then, kinetic stability of cubic-CuH is tested with
NpT ensemble at 80 K with pressure of around 60 GPa, lasting for 10 ps. The insets display the snapshots of the trajectories
of cubic-CuH at 0 (left) and 10 ps (right), respectively. Furthermore, kinetic process of decompressing at 80 K is simulated,
with pressure varying from 60 GPa to atmospheric pressure. The pressure is reduced by 5 GPa per step (1 ps) lasting for
13 ps. The insets display the snapshots of cubic CuH at 1, 7, 9, 10, 11, 12 and 13 ps. It turns out that cubic-CuH can stay
stable at 80 K when the pressure exceeds 20 GPa (9 ps). However, when further decreasing pressure to 15 GPa at 10 ps, the
lattice displays distortion, with hydrogen atoms showing a trend to escape from the Oh interstitial sites of fcc-Cu. Moreover,
at 10 GPa (11 ps), phase segregation between H and Cu occurs, with H atoms accumulating in the top left corner of the inset
at 11 ps. When further decreasing the pressure below 10 GPa, the lattice gradually transforms into hexagonal wurtizite-CuH
(wz-CuH). Finally, at 80 K and ambient pressure, the AIMD simulation indicates that cubic-CuH phase completely transforms
into wz-CuH and can remain stable.
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III. STRUCTURE

A. Simulated X-Ray Diffraction and Neutron Diffraction Pattern

Neutron diffraction (ND) plays an important role in characterizing H atoms in metal hydrides. Figure S7 displays
the ND and x-ray diffraction (XRD) pattern for fcc Cu and cubic Cu4H3. The patterns of ND and XRD for fcc-Cu
in Figs. S7(a) and S7(b) display negligible difference. For cubic Cu4H3 displayed in Figs. S7(c) and S7(d), the signals
of hydrogen are clearly characterized by ND, while the signals of copper are more easily characterized by XRD.

FIG. S7. Simulated neutron diffraction (ND) and x-ray diffraction (XRD) pattern for (a)-(b) fcc Cu and (c)-(d) cubic Cu4H3.

IV. ELECTRON-PHONON COUPLING AND SUPERCONDUCTIVITY

A. Gaspari-Gyorffy Theory

In McMillan’s strong coupling superconductor theory [17], the EPC constant is given by,

λ =
N(EF )⟨I2⟩
M⟨ω2⟩

, (S17)

whereM , N(EF ) and ⟨I2⟩ denote the atomic mass, the DOS at Fermi level and the square of the EPC matrix element
averaged over the Fermi surface, respectively; ⟨ω2⟩ is an average of the square of the phonon frequency,

⟨ω2⟩ =
∫
dωωα2F (ω)∫
dω/ωα2F (ω)

. (S18)

For a metal-hydrogen system with a large mass difference and perfect separation of vibration modes between metal
and hydrogen, the EPC constant λ can be further divided into two parts,

λ = λMetal + λH =
ηMetal

MMetal⟨ω2⟩Metal
+

ηH
MH⟨ω2⟩H

, (S19)

where the Hopfield parameter [18] η is given by

η = N(EF )⟨I2⟩. (S20)

To further estimate the Hopfield parameter and derive the EPC constant λ, Gaspari, Gyorffy and Hopfield all take
the assumption that the local effects, like the extra scattering due to the displacement of an ion, are dominated by the
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local potential [18, 19]. By further assume the potential is spherically symmetric, the Bloch function can be expanded
in the angular-momentum representation,

ψk(r) =
∑
l

l∑
m=−l

alm(k)Rl(r, Ek)Y
m
l (θ, ϕ), (S21)

where the coefficient alm(k) is determined by the scattering properties of the crystal structure, Rl(r, Ek) is the
scattering solution of the radial Schrödinger equation which includes the ion effect, Ek is the eigenvalue of one-
electron Bloch funciton ψk(r), and Y

m
l (θ, ϕ) denotes the spherical harmonic function [19]. Finally, the central result

of the Gaspari-Gyorffy theory [19] is,

η = N(EF )⟨I2⟩ =
2MEF

h̄2π2

1

N(EF )

∑
l

2(l + 1) sin2(δl+1 − δl)Nl(EF )Nl+1(EF )

N
(1)
l N

(1)
l+1

, (S22)

where Nl(EF ) and N
(1)
l denote the lth partial DOS and the free-scatter DOS, respectively; δl is the phase shift of

angular character l of the potential.
Using the rigid-ion approximation, it is found that in transition metal hydride system, the potential of H is char-

acterized by large s-wave phase shifts, with the phase shift δ0 of H close to a resonance, δ0 ∼ π/2. Therefore, the
Hopfield constant of H, ηH, is expected to be dominated by an s-p scattering mechanism. The variation of ηH will be
determined by the magnitude at the H site and the partial DOS of s and p states at EF , relative to the total DOS,
as reported in Ref. [20]. This is the reason why we emphasize the importance of H-1s and Cu-4s orbital electrons at
EF in facilitating a large EPC in Cu4H3. In the next subsection, we further demonstrate that H-1s and Cu-4s orbital
electrons in cubic Cu4H3 are more likely to couple with the vibration of H by examining the band structures modified
by H vibration.
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B. Band Structures Modified by H Vibration

FIG. S8. The vibrational visualization images of (a) mode α (the 13th mode) and (b) mode β (the 16th mode) in Fig. 4(a) are
shown, with arrows indicating the vibrational directions of the H atoms. The modified band structures due to the vibration
modes of H in (c) mode α and (d) mode β are presented, with the displacement of H in both cases set to 0.58 Å. In the
orbital-projected band structure (left panel) and electronic DOS (right panel) of (c) and (d), the H-1s, Cu-4s and Cu-3d states
are colored red, blue and green, respectively. The modified band structures due to the vibration of H are represented by orange
lines. The electronic DOS of Cu4H3 in the equilibrium and modified atomic positions are shown by solid and dashed lines,
respectively. The total DOS in the equilibrium atomic position of Cu4H3 is shaded grey.

To confirm that the H-1s and Cu-4s orbital electrons in cubic Cu4H3 are more likely to couple with the vibration of
H, we illustrate this by considering two vibration modes of H (mode α and mode β in Fig. 4(a)) and investigating the
band structures of Cu4H3 modified by H vibrations, as shown in Fig. S8. Mode α and mode β correspond to the 13th
and 16th harmonic modes at Γ point of Fig. 4(a). In mode α, all the H atoms vibrate primarily along the [111] direction
with the displacement of H to be 0.58 Å and negligible displacement of Cu atoms. In mode β, three H atoms vibrate
along the [01̄1], [101̄], and [1̄10] directions, with the displacement of H to be 0.58 Å and negligible displacement of Cu
atoms. In Figs. S8(c) and S8(d), it can be seen that for the points where the H-1s orbital dominates (especially in the
energy ranges of -10 to -8 eV and -2 to 4 eV), the vibration of H causes noticeable changes in the electronic structure.
Second to the the H-1s orbital, the Cu-4s orbital-dominated band structures also undergo significant modifications in
the energy ranges of -6 to -4 eV and -2 to 4 eV following the displacement of H. With respect to the Cu-3d orbitals
in the range of -6 to -2 eV, they are only weakly affected by the H vibration, manifesting the weak EPC between
them. In short, the conclusion that the H-1s and Cu-4s orbital electrons in cubic Cu4H3 are more likely to couple
with the vibration of H holds true in Cu4H3, which is also corroborated by the Gaspari-Gyorffy theory in subsequent
subsection.
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C. Discussion on Fermi Surface Nesting

The EPC constant λ can also be expressed as a sum of the EPC strength λqν over the wave vector q and the
phonon branch ν

λ =
∑
qν

λqν , (S23)

where the EPC strength is

λqν =
γqν

πh̄N(EF )ω2
qν

. (S24)

By substituting the phonon linewidth γqν of Eq. (S3) into the EPC strength λqν , we can derive,

λqν =
2

h̄ωqνNkN(EF )

∑
kmn

|gmn
k,qν |2 × δ(Ek+q,m − EF )δ(Ek,n − EF ). (S25)

Equation (S25) indicates that increasing the EPC matrix element gmn
k,qν and the double delta function at Fermi level

ξ(q) = 1
Nk

∑
kmn

δ(Ek+q,m − EF )δ(Ek,n − EF ) will be beneficial to the EPC strength λqν or EPC constant λ, as well

as superconducting Tc.
We further clarify the relationship between FSN and the double delta function in Eq. (1) of the manuscript.

The generalized static electronic susceptibility χq usually leads to the soft/imaginary phonon in charge-density-wave
(CDW) materials according to

ω2
q = Ω2

q − 2Ωqχq, (S26)

where Ωq denotes the bare phonon frequency and ωq denotes the screened/softened phonon under random phase
approximation [21]. The generalized static electronic susceptibility χq also has contributions from FSN and EPC,

χq =
∑
k

|gk,k+q|2
f(ϵk)− f(ϵk+q)

ϵk+q − ϵk
, (S27)

where the EPC matrix element gk,k+q couples electronic states k and k+ q with a phonon of momentum q and the
static Linhard susceptibility of pure electronic contribution is given by,

χ′
q =

∑
k

f(ϵk)− f(ϵk+q)

ϵk+q − ϵk
(S28)

(f(ϵ) is the Fermi-Dirac function of the eigenvalue ϵ). On the one hand, it is the divergence of the real part of the
susceptibility χ′

q that induces phonon softening/CDW instability while χ′
q is difficult to detect experimentally. On

the other hand, the imaginary part of susceptibility χ′′
q reflects the Fermi surface topology and can be measured

experimentally. Also, χ′′(q, ω → 0) is easier to be calculated as,

lim
ω→0

χ′′(q, ω)

ω
=

∑
k

δ(Ek+q,m − EF )δ(Ek,n − EF ) (S29)

Therefore, the double delta function is often presented in first-principles studies as a quantitative test of the FSN as
reported in Ref [22, 23]. At last, we would like to mention that one of the similar origins of the CDW and high-Tc
superconductivity is that they are generally induced by phonon softening to give rise to either the imaginary frequency
or a large EPC constant λ according to Eq. (S26).
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D. Impact of the Coulomb Repulsion on Superconducting Gap

FIG. S9. Temperature dependent anisotropic superconducting gap ∆nk with the semiempirical Coulomb repulsion pseudopo-
tential (a) µ∗ = 0.07 and (b) µ∗ = 0.13, respectively. The superconducting gap declines smoothly with the temperature and
finally vanishes at around 83 and 73 K, respectively.

E. Impact of the External Strains on Phonon Spectra and Superconductivity

FIG. S10. Calculated phonon spectra of Cu4H3 under (a) uniaxial compressive and (b) uniaxial tensile strain along the z
direction, as well as (c) biaxial compressive and (d) biaxial tensile strain along x and y directions. Specifically, the positive
values indicate tensile strain and negative values indicate compressive strain. The total free energy as a function of AIMD
simulation time for Cu4H3 is presented under (e) uniaxial compressive strain of 1.5%, (f) uniaxial tensile strain of 3.0%, (g)
biaxial compressive strain of 1.0% and (h) biaxial tensile strain of 1.5% in an NVT ensemble, using a supercell size of 4× 4× 4
unit cells. The insets of (e)-(g) exhibit snapshots of Cu4H3 at the corresponding moments.

We determine the stretching and compressive limits of Cu4H3 by gradually increasing external strain and calculating
the corresponding phonon spectra. The results in Figs. S10(a)-S10(d) indicate that Cu4H3 can remain structurally
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TABLE S1. Summary of the calculated McMillan-Allen-Dynes (M-A-D) superconducting Tc (µ∗ = 0.1), the EPC constant
λ, and the logarithmic average frequency ωlog of the free-state Cu4H3, as well as Cu4H3 under different uniaxial and biaxial
strains.

system M-A-D Tc (K) λ ωlog (K)
free state 43.07 1.46 387.79
-3.0% uniaxial strain 36.27 1.48 322.66
+1.5% uniaxial strain 25.77 1.40 241.84
-1.0% biaxial strain 22.46 2.05 153.69
+1.5% biaxial strain 31.60 1.42 293.38

stable within the range of -3.0% to +1.5% for uniaxial strain and -1.0% to +1.5% for biaxial strain, where negative
values denote compressive strain and positive values denote tensile strain. The structures at the stretching and
compressive limits are also tested by AIMD simulations shown in Figs. S10(e)-S10(h).

We further evaluate the superconducting Tc of Cu4H3 at both extremes of external strain using the M-A-D formula,
disregarding the imaginary frequency at point M, which has been shown to be suppressed by finite temperature in
Fig. 4(a). The results reveal that compared to free-state Cu4H3, the superconducting Tc of Cu4H3 under strain
decreases to some extent. Under external strain, when one direction contracts (or stretches), the other two directions
will stretch (or contract) correspondingly. The contraction (or stretching) of the lattice constant typically leads to
the hardening (or softening) of the phonon spectra, a decrease (or increase) in λ, and an increase (or decrease) in
ωlog. On the one hand, the final Tc is the result of the competition between changes of λ and ωlog. On the other
hand, it is worth noting that under external uniaxial or biaxial strain, the crystal symmetry is lowered compared to
the cubic phase Cu4H3. While high-Tc usually favors for highly symmetric structures [24], this may also cause the
decrease of Tc under external strain compared to the free-state Cu4H3. Despite this, when applying uniaxial strain
of around 3%, the relatively high superconducting Tc of around 36.27 K can still be maintained, which decrease by
15.79% compared to the harmonic M-A-D Tc of the free-state Cu4H3. In this way, after solving the M-E equations,
the liquid-nitrogen temperature region superconducting Tc (63-77 K) of Cu4H3 can still be expected under external
strain.
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