Supporting Information

Supporting Information for *In Situ* SERS and *In Situ* Raman: Interfacial Phenomena and Processes Deciphering

Jingyi Wei,^{a‡} Sixian Yu,^{b‡} Tianxiang Zhou,^a Jing Shang,^a Songling Liu,^c Feng Han*,^a Xiaodong Li*,^d and Qi An*^a

Supporting Information

To facilitate the reference of researchers, we have compiled an appendix on the Raman peaks and their corresponding behaviors under *in situ* systems. Within the in situ detection system, by correlating the Raman shift of the spectral peak to the ranges in our SI, researchers can identify vibrations relevant to their study system. Alternatively, if the species are known, researchers can search for the species name in the SI to obtain reference Raman shifts. However, it's important to note that the sequence of peak significance in the longitudinal order does not directly correlate with the transverse order found in the references. And this table should be used as a general guide rather than a definitive resource.

Raman Shift (cm ⁻¹)	Page	Raman Shift (cm ⁻¹)	Page
50 - 149	2	675 - 765	11
150 - 243	3	770 - 851	12
249 - 334	4	860 - 979	13
336 - 418	5	980 - 1050	14
420 - 468	6	1051 - 1188	15
469 - 501	7	1200 - 1370	16
502 - 549	8	1375 - 1581	17
550 - 604	9	1581.2 - 1668	18
605 - 673	10	1669 - 3000	19
		3004 - 3600	19

CONTENTS FOR SUPPORTING INFORMATION

^{*a*} Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China. E-mail: hanfeng@cugb.edu.cn, an@cugb.edu.cn

^b International Energy College, Jinan University, Guangdong 519070, China.

^c School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

^d School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. E-mail: 18901029020@189.cn

[‡] These authors contributed equally to this work.

50.0 cm⁻¹:1 Raman active vibrational bands of iodine species (begin) 1 60.0 cm⁻¹:² Orthorhombic BiF₃ (o-BiF₃) 1 62.0 cm⁻¹:² Metallic Bi 1 72.0 cm⁻¹:³ 1 NiTe₂ 76.0 cm⁻¹:² o-BiF3 1 88.0 cm⁻¹:² Metallic Bi 1 99.0 cm⁻¹:⁴ E₂ (low) of ZnO₁₀₀ 1 110.0 cm⁻¹:^{1,5-7} 1 I_3 2 Raman active vibrational bands of I3⁻ (begin) 3 The symmetric stretching mode of I₃. 4 Vibration mode of I3 115.0 cm⁻¹:² 1 o-BiF3 120.0 cm⁻¹:¹ Raman active vibrational bands of I_3^- (end) 1 123.0 cm⁻¹:8 AlSeCl 1 133.0 cm⁻¹:⁸ Al_2Se_3 1 135.0 cm⁻¹:^{9,10} 1 NiSe₂ The interaction between S²⁻ and nickel 2 142.0 cm⁻¹:8 AlSeCl 1 143.0 cm⁻¹:⁸ 1 E₁ mode of trigonal-phase Se 145.0 cm⁻¹:^{11,12} The Eg mode of anatase TiO₂ 1 146.0 cm⁻¹:¹³ Surface Cu₂O (Cu₂O_{surf}) 1 148.0 cm⁻¹:¹⁰ Elemental Sulfur (S₈) 1 149.0 cm⁻¹:14 S_8^{2-} peak of graphene/S 1 Continued on next page

150.0 cm⁻¹:^{2,3,15–17} cubic BiF₃ (c-BiF₃) 1 Bending or torsional vibrational modes of S-S bonds in el-2 emental sulfur (S₈) (begin) 3 Roman peak of Li²S₈ 4 α -S₈ 5 Vibration mode of S₈²⁻ 151.0 cm⁻¹:¹⁸ 1 Symmetric bond stretching of S₈ 152.0 cm⁻¹:¹¹ The Eg mode of anatase TiO₂ (More defects) 1 155.0 cm⁻¹:^{8,19,20} Symmetric bond stretching mode of S₈²⁻ 1 2 TA (transverse acoustic) of graphite electrodes coated with 3 Si layers of different thicknesses 156.0 cm⁻¹:⁸ Al₂Se₃ 1 160.0 cm⁻¹:⁵ 1 I_5 161.0 cm⁻¹:²¹ AlF₃ crystal 1 The interaction between S²⁻ and nickel 2 163.0 cm⁻¹:⁶ 1 Symmetric stretching mode of I5-165.0 cm⁻¹:7 1 Vibration mode of I5-174.0 cm⁻¹:²² Reactive chloride ion species formed by electrochemical 1 CER on Ru/RuO2 electrode in Cl electrolyte 185.0 cm⁻¹:⁸ AlSeCl 1 187.0 cm⁻¹:²³ Ag mode of monoclinic ZrO₂ 1 192.0 cm⁻¹:²⁴ 1 F1 2g mode of spinel Co_3O_4 194.0 cm⁻¹:10 The vibration of Ni-S in rhombohedral Ni₃S₂ 1 199.0 cm⁻¹:16 S42-1 200.0 cm⁻¹: 1,15,18,25,26 Bending or torsional vibrational modes of S-S bonds in el-1 emental sulfur (S₈) (end) 2 Vibration of Ni-S Bond in Ni₃S₂ 3 Vibration mode of Li₂S₂ Raman active vibrational bands of I3-4 F2g modes of AO4 units in AB2O4 spinel structure 5

200.8 cm⁻¹:16 S_6^{2-}/S_4^{2-} Species 1 202.0 cm⁻¹:14 1 Bending mode of S_4^{2-} 206.0 cm⁻¹:8 Al_2Se_3 1 210.0 cm⁻¹:²⁷ Solvated Mg-Cl cation species 1 212.0 cm⁻¹:²⁸ Ag vibrational modes of Se-Se bonds in selenides 1 215.0 cm⁻¹:16 1 α -S₈ 216.0 cm⁻¹: 10,29 Ag mode of Se-Se stretching in Ru-NiSe₂ 1 2 Vibration of Ni-S in rhombohedral Ni₃S₂ 217.0 cm⁻¹:²⁵ Vibration of Ni-S Bond in Ni₃S₂ 1 218.0 cm⁻¹:^{3,10,15} 2 Elemental sulfur (S₈) 3 Raman peaks of Li2S8 219.0 cm⁻¹:^{14,17–19,30} Bending of symmetric bonds in S_8 1 2 Cu_2O 3 Symmetric bond stretching mode of S₈²⁻ 4 S_8^{2-} peak of graphene/S Vibration mode of S₈²⁻ 5 223.0 cm⁻¹:¹⁵ 1 Hematite, Fe₂O₃ 225.0 cm⁻¹:^{8,12} Solid electrolyte interface (SEI) layer of aluminum 1 chlorochalcogenide The Eg vibration mode of anatase TiO2 2 235.0 cm⁻¹:⁸ A₁ mode of trigonal-phase Se 1 236.6 cm⁻¹:³¹ The Eg phonon mode of Ni 1 240.0 cm⁻¹:²⁸ Tg vibrational modes of Se-Se bonds in selenides 1 242.0 cm⁻¹:²⁵ Fe-O bond of α -FeOOH 1 243.0 cm⁻¹:^{32,33} NO₂ species 1 Longitudinal mode of surface oxygen 2 S-Ag stretching vibration between H₂SO₄ component and 3 Ag

Continued on next page

249.0 cm⁻¹:³⁴ Lepidocrocite (γ -FeOOH) 1 250.0 cm⁻¹:^{9,21,35} 1 NiSe₂ The characteristic peak of Co(OH)2 2 3 Al-F bonds in Na₅Al₃F₁₄ crystal (vs) Terminal SS bond (begin) 4 251.0 cm⁻¹:³⁶ The second-order effect (SOE) of anatase TiO₂ 1 256.0 cm⁻¹:8 Amorphous Se 1 258.0 cm⁻¹:37 Second order transverse acoustic mode of CeO2 lattice 1 (2TA) 259.0 cm⁻¹:³⁸ Bending vibration of O-W-O 1 260.0 cm⁻¹:³⁹ 1 Eg mode for Co(OH)₂ 262.0 cm⁻¹:40 The second-order transverse acoustic mode of FCC fluorite 1 phase of CeO₂ 268.0 cm⁻¹:⁴¹ 1 The Eg mode of Co-O bonds 269.0 cm⁻¹:²³ The E_g mode of Co-O bonds 1 273.0 cm⁻¹:42 1 CuO 281.0 cm⁻¹:43 Ag translation mode 1 2 Symmetric stretching mode of FeS (begin) 282.0 cm⁻¹:15 Amorphous Mackinawite/Mackinawite 1 285.0 cm⁻¹:44 Ag mode of CuO 1 288.94 cm⁻¹:45 The E_g mode of metal sulfur bonds in Co(Zn)S₂/CC 1 289.0 cm⁻¹: 15,46 CuO 1 Hematite 2 290.0 cm⁻¹:47 E-type vibrations of h-Co_{0.34}Fe_{0.33}Ni_{0.33}-LDH 1 292.0 cm⁻¹:⁴⁸ Frustrated rotation of Cu-CO 1 296.0 cm⁻¹: 13,49 1 2 Crystalline CuO nanoparticles

298.0 cm⁻¹:^{15,16,44}

Ferrites 1

2

- ${S_6}^{2-} \\ {S_4}^{2-}$ 3
- 4 Restricted rotation of adsorbed CO
- Symmetric stretching mode of FeS (end) 5
- 300.0 cm⁻¹:^{10,17}
- Vibration of Ni-S in rhombohedral Ni₃S₂ 1
- 2 The vibration mode of mid-length LiPS
- 303.0 cm⁻¹:^{13,30}
- CuC stretching and rotation mode of adsorbed CO (end) 1

304.0 cm⁻¹:²⁵

Vibration of Ni-S Bond 1

305.0 cm⁻¹:²³

 δInO_6 structural units (δInO_6) 1

306.0 cm⁻¹:³⁸

- δ (W[=O]₂) of crystalline Na₂WO₄ phase 1
- 310.0 cm⁻¹:^{20,50}
- Adsorbed phosphate ions 1
- LA (longitudinal acoustics) of graphite electrodes coated 2 with Si layers of different thicknesses

312.66 cm⁻¹:⁵¹

1 A1g peak of SnS2

319.0 cm⁻¹:³⁸

Bending vibration of O-W-O 1

320.0 cm⁻¹:⁵⁰

- Adsorbed phosphate ions 1
- 321.0 cm⁻¹:^{21,22,52}
- Reactive chloride ion species formed by electrochemical 1
- CER on Ru/RuO2 electrode in Cl⁻ electrolyte
- 2 Ni-LDH
- Symmetric stretching vibration B_{2g} mode of Al-F bonds in 3 $Na_5Al_3F_{14}$ crystal (v_s)

324.0 cm⁻¹: 19,53

Asymmetric deformation modes of VO₄³⁻ 1

Li₂S₆ 2

325.0 cm⁻¹:10

The interaction between S²⁻ and nickel 1

326.0 cm⁻¹:18

1 Vibration mode of Li₂S₆

330.0 cm⁻¹:4

E₂ (High) - E₂ (low) of ZnO₁₀₀ 1

331.0 cm⁻¹:³⁰ 1 CuO

334.0 cm⁻¹:²³ Monoclinic ZrO₂ 1

Continued on next page

336.0 cm⁻¹:43 E_{2g} mode of La(OH)₃ 1 339.0 cm⁻¹:²¹ Bg mode of Al-F bonds in Na₃AlF₆ (Calculation) 1 342.0 cm⁻¹:10 1 Vibrations of Ni-S in rhombohedral Ni₃S₂ 343.0 cm⁻¹:42 Ni oxide NiO 1 345.0 cm⁻¹:²³ Stretching vibrations of the InOIn structures 1 346.0 cm⁻¹:²² Reactive chloride ion species formed by electrochemical 1 CER on Ru/RuO₂ electrode in Cl⁻ electrolyte 351.0 cm⁻¹:^{25,54} Vibration of Ni-S Bond in Ni₃S₂ 1 Mn-OH is deuterated to Mn-OD 2 352.0 cm⁻¹:44 Restricted rotation of Cu-CO stretching 1 355.0 cm⁻¹:13 CuC stretching and rotation mode of adsorbed CO 1 359.0 cm⁻¹:²¹ Symmetric stretching vibration Eg mode of Al-F bonds in 1 Na₅Al₃F₁₄ crystal (vs) 360.0 cm⁻¹:⁵⁴ MnOH is deuterated to MnOD 1 360.51 cm⁻¹:⁵¹ Ag¹ peak of black phosphorus (BP) 361.0 cm⁻¹:²¹ 1 Ag mode of Al-F bonds in Na₃AlF₆ (Calculation) 363.0 cm⁻¹:35 1 The characteristic peaks of CoOOH 365.0 cm⁻¹:55 1 Cu-CO stretching vibration 367.0 cm⁻¹:⁴⁸ Stretch of Cu-CO 1 374.0 cm⁻¹:^{56,57} Peak of $MoO_{3-x}(0 \le x \le 1)$ 1 Formation of $Na_2O(UO_3 \cdot H_2O)$ x precipitation 2 375.0 cm⁻¹:⁵⁸ 1 Active CoOOH intermediate species 376.0 cm⁻¹: 59 1 Terminal Mn-O (H) tunnel or surface expansion 378.0 cm⁻¹:³⁴ Lepidocrocite (γ -FeOOH) 1

380.0 cm⁻¹:²³ Monoclinic ZrO₂ 1 383.0 cm⁻¹:⁶⁰ SrTiO₃ unit cell via La and Co doping (STLC) 1 384.0 cm⁻¹:⁴⁹ 1 Anatase vibration of TiO₂ 386.0 cm⁻¹:^{21,25} 1 Fe-O bond of α -FeOOH 2 AlF₃ crystal 390.0 cm⁻¹:⁴⁵ Ag mode of metal-S in Co(Zn)S2/CC 1 398.0 cm⁻¹:^{3,14} 1 Long chain LiPSs (Li_2S_6) 2 Characteristic Raman peaks of long-chain Li₂S₆ 399.0 cm⁻¹:^{12,61} Ag-O vibration 1 2 B_{1g} vibration mode of anatase TiO₂ 399.5 cm⁻¹:¹⁶ S_6^{2-}/S_4^{2-} Species 1 400.0 cm⁻¹:^{15,17,20,62,63} corundum 1 2 H₂SO₄ electrolyte LO (longitudinal optics) of graphite electrodes coated with 3 Si layers of different thicknesses Vibration mode of short chain LiPS 4 5 Bending vibration of C-S bonds 6 Stretching vibration of S₈ (begin) 401.9 cm⁻¹:¹⁸ Vibration mode of Li₂S₆ 1 404.0 cm⁻¹:¹⁵ 1 Hematite 405.0 cm⁻¹:⁶⁴ Vibration of Au-O bonds 1 409.0 cm⁻¹:⁶⁵ 1 NiO 410.0 cm⁻¹:⁶⁶ Characteristic Raman peaks of α -FeOOH phase 1 412.0 cm⁻¹:¹³ 1 Cu₂O (Cu₂O_{surf}) 415.0 cm⁻¹:^{20,67,68} 1 The vibration mode of Cu₂O S_n^{2-} 2 Raman peaks of amorphous silicon (a-Si) 3 416.0 cm⁻¹:^{19,21} 2 Li_2S_4

418.0 cm⁻¹:⁶⁹

1 Lattice vibrations of Mo-O bonds

Continued on next page

- 420.0 cm⁻¹:^{58,70-72} 1 Bending of symmetric oxygen cages 2 F_{2g} symmetric vibration of CeO₂ Metal adsorbate stretching vibration of linear CO bonds 3 (AuNi COL) 4 Network bending mode of SiO₂ 422.0 cm⁻¹:³⁶ The Eg vibration mode of anatase TiO₂ 1 426.0 cm⁻¹:⁷³ The vibration mode of Co-O 1 431.39 cm⁻¹:⁵¹ 1 B_{2g} peak of BP 432.0 cm⁻¹:⁷⁴ The vibration mode of RuO₂ 1 437.0 cm⁻¹:75 E₂ high mode of ZnO 1 439.0 cm⁻¹:⁴ 1 E₂ (High) of ZnO₁₀₀ 440.0 cm⁻¹:⁶¹ Bulk oxygen 1 441.0 cm⁻¹:76 1 Au-Bi2O3-3 443.0 cm⁻¹:⁶⁸ S_n^{2} 1 S₂O₃²⁻ 2 445.0 cm⁻¹:14,76-78 1 Au-Bi2O3-3 2 β -Ni(OH)₂ 3 Na₃Al₃CF₈ Bending mode of S42-4 446.0 cm⁻¹:^{12,18,79} The Eg bending vibration mode of MO bonds in MOH 1 species 2 Vibration mode of Li₂S₄ 3 Bg vibration mode of anatase TiO2 450.0 cm⁻¹:^{47,76,80-83} h-Co_{0.34}Fe_{0.33}Ni_{0.33}-LDH 1 2 Ni (II) - OH 3 Bi₂O₃ 4 Bonding between Mo atom and top S atom (v (Mo₃-S)) CoII-OH vibration of Co(OH)₂ 5 MII-OH of Co and Fe 6 7 ClO₄⁻ ions in polycarbonate solution 451.0 cm⁻¹: 35,76,84</sup> The Ni-O vibration peak of NiFeLDH 1 2 Bi₂O₃
- 3 Asymmetric breathing mode of oxygen atoms surrounding cerium ions in CeO_2

452.0 cm⁻¹:^{18,25,85}

- 1 F_{2g} symmetric vibration (Ce-O-Ce stretching)
- 2 Ni-O bond stretching vibration
- 3 Vibration mode of Li_2S_2

453.0 cm⁻¹:^{52,85}

- 1 Ce-O bond
- 2 Ni-LDH

455.9 cm⁻¹:¹⁶

1 S₆²⁻/S₄₂₋ Species

456.0 cm⁻¹:⁷⁹

1 The stretching vibration of M-O bonds

457.0 cm⁻¹:^{86,87}

- NiFe-LDH@NF Ni-O vibration in Ni(OH)₂ phase on the surface
- 2 Bending and stretching vibration of Ni-O in NiOOH

457.97 cm⁻¹:⁵¹

1 Ag² peak of BP

458.0 cm⁻¹:⁸⁵

1 Symmetric tensile vibration of Ce-O

460.0 cm⁻¹:^{41,77,88–91}

- 1 Eg-CO²⁺-OH
- 2 Triple Degeneracy Mode of F_{2g} Mode in CeO₂
- 3 O-Co-O bending mode
- 4 O-Co-O
- 5 α-Ni(OH)₂
- 6 Perchlorate electrolyte
- 7 The Eg vibrational modes of Co-O species

460.9 cm⁻¹:⁹²

1 CoO₂

461.0 cm⁻¹:³

1 Long chain LiPSs $(Li_2S_5+Li_2S_4)$

462.0 cm⁻¹:³⁷

 $1 \qquad \begin{array}{l} \mbox{Vibration model of octahedral local symmetry from the} \\ \mbox{CeO}_2 \mbox{ lattice } (F_{2g}) \end{array}$

463.0 cm⁻¹:^{35,93}

- 1 The characteristic peaks of CoOOH
- 2 Ni-O vibration of defective NiCoLDH nanocrystals

464.0 cm⁻¹:⁴⁹

1 Vibration of CeO₂ nanoparticles

465.0 cm⁻¹:^{40,80}

- 1 Ni-O bond
- 2 The first-order F_{2g} symmetric vibration of CeO₂

465.5 cm⁻¹:³¹

1 Ag phonon modes of Ni

467.0 cm⁻¹:⁹⁴

1 The peak of β -Ni(OH)₂ phase

467.6 cm⁻¹:⁴⁶ 1 Cu₂O

468.0 cm⁻¹:⁹⁵

1 Ni-O vibration in γ-NiOOH

Continued on next page

469.0 cm⁻¹:^{28,93}

- 1 High valence nickel iron hydroxide (NiFe)OOH
- 2 Characteristic peaks of NiCoOOH

470.0 cm⁻¹: ^{19,20}

- 1 Li₂S₆/Li₂S₄ mixture
- 2 Vibration modes of TO (transverse optic) in graphite elec-
- trodes coated with Si layers of different thicknesses

472.0 cm⁻¹:^{3,10,96}

- 1 Elemental sulfur (S₈)
- 2 The E_g band of LiNiO₂(LNO)
- 3 Raman peaks of Li₂S₈

473.0 cm⁻¹:^{25,62,80,84,97}

- 1 C-C_{ring} vibration of 4-AP and 4-NP(4-nitrophenol)
- 2 Active NiOOH species (γ-NiOOH)
- 3 Metal (M) O Vibration in Metal OOH
- 4 *γ*-NiOOH
- 5 Eg Ni-O bending vibration mode in NiOOH
- 474.0 cm⁻¹:^{18,29,98}
- 1 NiOOH
- 2 F_{2g} vibration mode of NiCo₂O₄
- 3 Anti-symmetric bond bending of S_8

475.0 cm⁻¹:^{9,10,16,25,43,70}

- Depolarized E_g mode of γ -NiOOH phase (bending vibration
- ¹ of oxygen atoms on a plane) of γ -NiOOH phase
- 2 NiOOH
- 3 Ni-O vibration in NiOOH
- 4 The E_g , Ni-O bending vibration modes of γ -NiOOH
- 5 (Co/Fe) O (OH) structure

476.0 cm⁻¹: 35,86,99</sup>

- 1 Ni-OOH vibration
- 2 Ni-O vibration of NiOOH
- 3 The characteristic peak of CoO₂

477.0 cm⁻¹: ^{14,89,100}

- 1 Ni-O bending vibration of γ -NiOOH phase
- 2 The Eg band of NiOOH
- 3 S_8^{2-} peak of graphene/S

478.0 cm⁻¹:^{17,19,101}

- 1 The E_g bending mode of γ -NiOOH
- 2 Symmetric bond stretching mode of S_8^{2-}
- 3 Vibration mode of S_8^{2-1}

479.0 cm⁻¹:⁶⁵

1 Eg bending vibration in NiOOH

480.0 cm⁻¹:^{35,63,66,88,91,102–104}

- 1 Formation of CoOOH
- 2 Eg Ni²⁺-O bending
- 3 Ni(III)-O bending (δ) in NiOOH
- 4 Polarized A_{1g} mode (stretching) of Ni^{III}-O in NiOOH
- 5 Characteristic Raman peaks of γ -NiOOH phase
- 6 The characteristic peak of CoO₂
- 7 The stretching vibration of S-S bonds
- 8 The Eg vibrational modes of Co-O species

```
Continued on next page
```

481.0 cm⁻¹:¹⁸

1 Depolarization of γ -NiOOH in E_g mode (Bending)

482.0 cm⁻¹:¹⁰⁵

1 Typical bending δ (NiIII-O)

483.0 cm⁻¹:⁸⁷

- 1 Vibration of Co(OH) x
- 485.0 cm⁻¹:^{24,30,96}
- 1 Co(OH)₂-phase
- 2 The E_g mode of spinel Co_3O_4
- 3 The Eg band of LNO
- 4 NiOOH species

487.0 cm⁻¹:^{30,106}

- 1 Bending of Ni³⁺-O
- 2 NiOOH species
- 3 Tri- and tetra-cycloxiloxane rings of SiO₂
- 488.0 cm⁻¹:^{58,72}
- 1 F_{2g} symmetric vibration mode of CeO₂
- 2 DI and D2 defect modes of tri- and tetra-cyclotrisiloxane in SiO_2

489.0 cm⁻¹:^{35,57}

- 1 The characteristic peaks of CoOOH
- 2 Adsorbed uranyl

494.0 cm⁻¹:¹⁰⁷

1 Characteristic of vibrational modes directly involving Fe species in MOFs catalyst

494.84 cm⁻¹:⁴⁵

1 The stretching vibration of Co-O bonds

495.0 cm⁻¹:^{45,100}

- 1 Disordered Ni-OH
- 2 Co(Zn)OOH

497.0 cm⁻¹:¹⁰⁸

 $1 \qquad \begin{array}{c} V\text{-}O\text{-}Ag \text{ bonds with different coordination structures in} \\ Ag_{1,2}V_3O_8 \end{array}$

497.8 cm⁻¹:⁹²

1 CoOOH species

498.0 cm⁻¹:³⁰

1 Cu(OH)₂

500.0 cm⁻¹:^{22,24,54,78,80,83,91,109,110}

- 1 CoOOH
- 2 Terminal SS bond (end)
- 3 Defective NiOOH or Ni(OH)₂
- 4 Interplanar vibration of adjacent MnO₂ nanosheets
- 5 The E_g mode of nanocrystalline RuO_2
- 6 The bending mode of Co-O-Co
- 7 Raman spectra of molten NaF-AlF₃-Al₄C₃ salts
- 8 Uncoordinated Si atoms near the surface of poly-c Si thin films
- 9 The E_g vibrational modes of Co-OOH species

501.0 cm⁻¹:³⁵

1 The characteristic peaks of CoOOH

Continued on next page

- 502.0 cm⁻¹:²³
- 1 $v(InO_6)$ of InO_6 structural units

```
506.0 cm<sup>-1</sup>:<sup>35</sup>
```

1 The characteristic peak of Co(OH)₂

```
507.0 cm<sup>-1</sup>:<sup>59</sup>
```

- Out of plane symmetric stretching vibration of Mn-O in MnO₆
- 507.7 cm⁻¹:¹⁸

1 Vibration mode of Li₂S₃

- 509.0 cm⁻¹:^{14,42,58}
- 1 Active CoOOH intermediate species
- 2 NiO
- 3 Characteristic Raman peaks of long-chain Li₂S₆

510.0 cm⁻¹:⁸¹

1 Terminal $[S_2]^{2-}$ (v(S-S)_{te})

512.0 cm⁻¹:^{12,49}

- 1 The vibration mode of anatase
- 2 A_{1g} vibration mode of anatase TiO₂

515.0 cm⁻¹:^{35,44}

OH group

- 1 Characteristic peaks of Co₃O₄

2

517.0 cm⁻¹:³⁰ 1 The vibration of Ni

The vibration of Ni(OH)₂

518.0 cm⁻¹:^{65,74,77}

- 1 Fe-free and the Fe-containing electrolyte
- 2 β -Ni(OH)₂
- 3 Ru-O characteristic peaks belonging to RuO₂
- 519.0 cm⁻¹:⁷⁹
- 1 A_{1g} stretching vibration mode of M-O bonds in MOH species

520.0 cm⁻¹:^{20,83}

- 1 Crystalline peak of Si
- 2 Bulk c-Si
- 521.0 cm⁻¹:^{93,111}
- 1 Ni-O vibrations of defective or disordered NiCo LDH
- nanocrystals
- 2 Li Si alloy

522.0 cm⁻¹:⁸⁷

1 Co-O vibration in NCMO

523.0 cm⁻¹:^{35,112}

- 1 The characteristic peak of Co(OH)₂
- 2 Nafion molecule

524.0 cm⁻¹:³⁵

1 The characteristic peak of Co(OH)₂

525.0 cm⁻¹: ^{13,24,31,34,67}

- 1 $CuO_x/(OH)_y$ species
- 2 Lepidocrocite (γ-FeOOH)
- 3 The characteristic peaks of M(metal)-OOH
- 4 F2 2g mode of spinel Co_3O_4
- 5 The vibration mode of Cu_2O (begin)

526.0 cm⁻¹:^{41,47,55,88,100,101,113}

- 1 The vibration mode of Cu₂O
- 2 Adsorption of primary intermediates (such as $CO_{2 ad}$) on Cu
- 3 M-O vibration of h-Co_{0.34}Fe_{0.33}Ni_{0.33}-LDH
- 4 $A_{1g} \operatorname{Ni}^{2+}$ -O stretching
- 5 Formation of FeOOH intermediates
- 6 Co-O symmetric stretching mode of Co(OH)₂
- 7 Co-O
- 8 FeOOH

527.0 cm⁻¹:⁹³

1 Characteristic peaks of NiCoOOH

528.0 cm⁻¹:^{13,65,95}

- 1 Surface Cu_2O (Cu_2O_{surf})
- 2 Thin, disordered NiFe-LDH
- 3 α-Ni(OH)₂

530.0 cm⁻¹:^{26,66,80,91}

- 1 Defective NiOOH or Ni(OH)₂
- 2 Ni(II)-O
- 3 Typical Raman features of Ni-Fe-LDH
- 4 T_{2g} mode of CoO/rGO
- 5 Ag vibrational modes of CoOOH species (begin)

531.0 cm⁻¹:²⁵

1 Ni-O stretching vibration

532.0 cm⁻¹:²¹

- 1 Ag mode of Al-F bond in Na₃AlF₆ (Calculation)
- 534.0 cm⁻¹:⁶⁷
- 1 The vibration mode of Cu_2O (end)

536.0 cm⁻¹:²¹

1 A_{1g} mode of Al-F bonds in Na₅Al₃F₁₄ crystal(v_s)

538.0 cm⁻¹:⁸⁶

- 1 Ni-O vibrations in surface Ni(OH)₂ phase of NiFe-LDH@NF
- 541.0 cm⁻¹:⁸⁴
- 1 The Ni-O vibration peak of NiFe LDH

542.0 cm⁻¹:⁸¹

- 1 Bridging type $[S_2]^{2-}(v(S-S)_{br})$
- 543.0 cm⁻¹:⁵⁸
- 1 Vibration peak of Ni-O bond in NiOOH

545.0 cm⁻¹:^{89,95}

1 Characteristic peaks of Ni₃N

2 Ni-O vibration in γ -NiOOH

548.0 cm⁻¹:⁸⁷

1 Bending and stretching vibration of Co-O in CoOOH

549.0 cm⁻¹:^{35,96}

- 1 The characteristic peaks of CoOOH
- 2 A_{1g} band of LNO

Continued on next page

550.0 cm⁻¹: ^{10,20,24,33,70,78,80,82,91}

- 1 Ni-O vibration in NiOOH
- 2 (Co/Fe) O (OH) structure
- 3 Fe and Ni species, such as α -FeOOH, α -Fe₂O₃, NiO (begin)
- 4 Oxygen defect related band
- 5 A_{1g} vibration mode of Mn-O nanosheets
- 6 CoII-O vibration
- 7 Boron (B) (begin)
- 8 The Raman spectra of molten NaF-AlF₃-Al₄C₃ salts
- 9 A_g vibrational modes of CoOOH species (end)

552.4 cm⁻¹:⁶²

1 Metal-O Vibration in Metal-OOH

553.0 cm⁻¹:^{9,80,96}

- 2 A_{1g}Ni-O stretching vibration mode in NiOOH
- 3 A_{1g} band of LNO

554.0 cm⁻¹:^{29,98,101,114}

- 1 NiOOH
- 2 Formation of Ni(III)OOH on the surface of NiCo₂O₄
- 3 Polarized A_{1g} mode (stretching) of Ni^{III}-O
- 4 A_{1g} stretching mode of γ -NiOOH

555.0 cm⁻¹:^{28,65,99}

- 1 Ni-O vibration of NiOOH
- 2 Polarized A_{1g} stretching mode of Ni-O(H) in NiOOH
- 3 High valence Nickel iron hydroxide (NiFe)OOH

556.0 cm⁻¹:^{25,84,86}

- 1 Active NiOOH species (β -NiOOH)
- 2 Ni-OOH vibration
- 3 A_{1g} , Ni-O stretching vibration mode of γ -NiOOH
- 4 γ-NiOOH

558.0 cm⁻¹:^{43,100}

- 1 Ni-O of γ -NiOOH phase
- 2 Polarized A_{1g} mode of γ -NiOOH (stretching vibration of oxygen atoms perpendicular to the plane)

560.0 cm⁻¹:^{62,66,103,104}

- 1 Ni(III)-O stretching vibration (*v*) modes in NiOOH
- 2 Depolarized E_g mode (bending) of NiIII-O in NiOOH
- 3 H₂SO₄ electrolyte
- 4 Characteristic Raman peaks of γ-NiOOH phase

561.0 cm⁻¹:³⁰

1 NiOOH species

564.0 cm⁻¹: ¹⁰⁵

1 Typical extension of NiOOH (NiIII-O)

565.0 cm⁻¹:³⁰

- 1 Tensile Vibration of Ni³⁺-O
- 2 NiOOH species

566.0 cm⁻¹:^{59,101}

- 1 In-plane stretching vibration of octahedral layers in δ MnO₂
- 2 Peak value of NiFeLDH system

568.0 cm⁻¹:⁴

1 Peaks of oxygen vacancies in Pd/ZnO₁₀₀ samples

569.0 cm⁻¹:³⁵

1 The characteristic peaks of CoOOH

570.0 cm⁻¹:²⁰

1 Formation of Li₂O

571.0 cm⁻¹:¹¹⁵

1 Formation of Co-OH on Co₂V₂O₇ and Co₃O₄

573.0 cm⁻¹:^{41,58}

- 1 Tensile vibration of Ag-Co-OH
- 2 Active CoOOH intermediate species

574.0 cm⁻¹:⁹⁰

1 MnO lattice vibration of the basal plane of the MnO_2 sheets

575.0 cm⁻¹:⁵⁴

1 In-plane MnO stretching

577.0 cm⁻¹:^{90,107}

1 FeOOH

2 MnO lattice vibration of the basal plane of the MnO₂ sheets

579.0 cm⁻¹:⁹²

1 The peak of MnO₂

580.0 cm⁻¹:^{35,61,85}

Oxygen vacancies creation because of the entry of CeO_2

¹ into the lattice of CuO (end)

- 2 v(O-Ag-O) in surface and subsurface oxygen motifs
- 3 The characteristic peak of CoO₂

581.0 cm⁻¹:⁵⁶

1 Peak of MoO_{3-x}(0<x<1)

589.0 cm⁻¹:^{4,73}

- $1 \qquad E_{1L} \text{ of } ZnO_{100}$
- 2 The vibration mode of Ni-O in Ni-OH

596.0 cm⁻¹:⁷⁹

1 The stretching vibration of the M-O bond, suggesting the presence of a layered metal hydroxide phase

598.0 cm⁻¹:^{37,40}

1

2 (D) mode caused by defects in CeO₂

600.0 cm⁻¹:^{15,24,45,80,85,102,109}

- 1 Amorphous cobalt oxide
- 2 Formation of CoOOH
- 3 Oxygen vacancy of Fe2O3
- 4 corundum

5 Fe and Ni species, such as α -FeOOH, α -Fe₂O₃, NiO (end)

6 The E_g mode of $Co(OH)_2$

7 Co(Zn)OOH

601.0 cm⁻¹:³⁰

1 Cu^{III}

604.0 cm⁻¹:³⁶

1 A_{1g} vibration mode of anatase TiO₂

Continued on next page

- 605.0 cm⁻¹:72,106
- 1 Symmetric stretching of the bridging SiOSi in SiO₂
- $2 \qquad SiOSi \ symmetrical \ stretching \ of \ SiO_2$

606.0 cm⁻¹:³⁵

1 The characteristic peaks of CoOOH

608.0 cm⁻¹:²⁴

- 1 Co(OH)₂-phase
- 610.0 cm⁻¹:^{85,101}
- 1 Oxygen vacancies creation because of the entry of CeO_2
- into the lattice of CuO (begin)
- 2 Formation of β -FeOOH

612.0 cm⁻¹:^{35,69,97}

- 1 C-H bond of 4-NP and 4-AP
- 2 Lattice vibrations of Mo-O bonds
- 3 The characteristic peaks of CoOOH
- 4 Ce-O stretching mode
- 613.0 cm⁻¹: ^{12,116}
- Vibration modes of specific bonds in R6G on cavity-based
- ¹ particle-in-quasicavity(PIQC) ZnO
- 2 A_{1g} vibration mode of anatase TiO₂

614.0 cm⁻¹:³⁵

1 The characteristic peaks of CoOOH

- 614.8 cm^{-1: 54} 1 MnO stretching of the MnOOH intermediate
- 615.0 cm⁻¹:⁷⁸
- 1 The Raman spectra of molten NaF-AlF₃-Al₄C₃ salts

618.0 cm⁻¹:³²

- 1 SO₃ species
- 2 SAg stretching
- 619.0 cm⁻¹:^{13,22}
- 1 Surface Cu_2O (Cu_2O_{surf})
- 2 A_{1g} mode of nanocrystalline RuO₂

620.0 cm⁻¹:^{67,70,106}

- 1 The vibration mode of Cu_2O
- 2 Stretching of symmetric oxygen cages of A_{2g}
- 3 Surface MnO_x oligomers
- 4 Grafting MnOSi bonds in MnO_x/SiO₂

620.3 cm⁻¹:44

1 Bg mode of CuO

621.0 cm⁻¹:^{88,89}

- 1 F_{2g}-Co²⁺-OH
- 2 Double degeneration into longitudinal optical mode of oxide, suggesting that abundant oxygen vacancies in CeO₂

623.0 cm⁻¹:^{49,87}

- 1 Co-O vibration in NCMO
- 2 The vibration mode of anatase

624.0 cm⁻¹:92

1 The peak of MnO₂

628.0 cm⁻¹:¹¹³

1 The vibration mode of Cu₂O

630.0 cm⁻¹:^{59,90,114}

- $1 \qquad { Out of plane symmetric stretching vibration of Mn-O in } \\ { MnO_6 }$
- 2 Presence of oxygen vacancies on NiGe film (end)
- 3 Symmetric stretching vibration of MnO band in MnO₆ octahedra

635.0 cm⁻¹:^{30,58}

1 A_{1g} vibration of NiCo₂O₄

2 CuO

636.0 cm⁻¹:¹¹⁰

 $1 \qquad \mbox{The E_g vibrational mode of Pd-O bonds} \\$

638.0 cm⁻¹:¹²

1 The E_g vibration mode of anatase TiO_2

643.0 cm⁻¹:^{34,60}

- 1 Lepidocrocite (γ-FeOOH)
- 2 VCo/TiO stretching frequencies (along c axis) of STLC

645.0 cm⁻¹:^{20,54,58,117}

1 The out-of-plane MnO stretching

2 A_{1g} vibration of NiCo₂O₄

- second order of the LA (longitudinal acoustic) mode and the overtone of TA (transverse acoustic) and TO optical modes of a-Si
- 4 The vibrational modes of Pd-O bonds on Pd-based catalyst

650.0 cm⁻¹:⁹⁰

1 Mn-O bonds of mixed valence manganese

 $2 Mn^{3+}/Mn^{4+}$

660.0 cm⁻¹:^{107,114}

- 1 Characteristic of vibrational modes directly involving Co species in MOFs catalyst
- 2 Presence of oxygen vacancies on NiGe film (begin)

663.0 cm⁻¹:⁶⁸

 $1 S_2 O_3^{2-}$

665.0 cm⁻¹:⁴⁹

1 Crystalline Cu₂O nanoparticles

667.0 cm⁻¹:³⁵

1

Characteristic peaks of Co₃O₄

668.0 cm⁻¹:¹¹⁸

1 the bending out-of-plane mode of -CH, OH, and OC=O in MOF-AgNC(nanocube)

670.0 cm⁻¹:^{82,98,119,120}

1 A_{1g} vibration mode of NiCo₂O₄

- 2 Octahedral-coordinated CoIIO stretch
- 3 CoII-O stretching vibration of Ag/iron oxide-doped NiO-CoO hollow spheres (FNCO-HSs)
- 4 Symmetric stretching modes of DMSO molecules
- 5 Guanine ring stretching vibration of single-stranded DNA

673.0 cm⁻¹:⁹⁷

1 NO₂ bending of 4-NP

Continued on next page

675.0 cm⁻¹:⁷⁰

 $1 \qquad \begin{array}{l} \mbox{Internal motion of oxygen within the Co(Fe)O_6 octahedra} \\ \mbox{in the BSCF } (Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_3 {\bf \cdot}\delta) \mbox{ lattice} \end{array}$

676.0 cm⁻¹:^{106,110}

- 1 B_{1g} vibrational mode of Pd-O bond
- 2 Surface MnO_x oligomers

679.0 cm⁻¹:¹²⁰

1 Guanine ring stretching vibration of duplex DNA

680.0 cm⁻¹:^{20,22,26,35,61,66,115}

- 2 Typical Raman features of Ni-Fe-LDH
- 3 B_{2g} mode of nanocrystalline RuO₂
- 4 Vibration of Co₃O₄
- 5 Characteristic peaks of Co₃O₄
- 6 Boron (B) (end)
- 7 A_{1g} mode of CoO/rGO

684.0 cm⁻¹:⁴²

1 NiO

685.0 cm⁻¹:^{24,106}

- 1 A_{1g} mode of spinel Co₃O₄
- 2 Mn-O-Mn vibration of MnOx-containing catalysts
- 686.0 cm⁻¹:³⁵
- 1 Characteristic peaks of Co₃O₄

690.0 cm⁻¹:^{85,91,109}

- 1 Co (II) O vibration mode
- 2 T-vibration of Fe₂O₃
- 3 A_{1g} vibration mode of Co-O

694.0 cm⁻¹:²⁴

1 A_{1g} vibrational modes of Co-O in octahedra

696.0 cm⁻¹:⁸⁸

```
1 A_{1g}-Co<sup>3+</sup>-O vibration
```

697.0 cm⁻¹:¹²¹

1 Symmetric stretching mode of O-W-O in WO₆ octahedra

698.0 cm⁻¹:106

1 Surface MnO_x oligomers

700.0 cm⁻¹:^{50,55,64,94,101,119,120}

- 1 AuOH species at the surface
- 2 Surface hydroxyl species on Cu (CuOH)
- 3 Copper (hydrated) oxide peak (below 700)
- 4 Tensile vibration of Ni in nickel hydrate (begin)
- 5 Peak value of NiFeLDH system
- 6 Anti symmetric stretching mode of DMSO molecules
- 7 Silica framework vibrational modes (begin)

704.0 cm⁻¹:³⁸

1 The stretching vibration of O-W-O

706.0 cm⁻¹:⁶⁷

1 Cu-OH_{ad}

710.0 cm⁻¹:^{25,72,122}

- 1 The Fe-O bond of β -FeOOH
- 2 *O-O tensile vibration of OOH bridging adsorption structure
- 3 the WO₃ nanoparticles on the SiO₂ substrate
- 715.0 cm⁻¹:⁷⁸
- 1 The characteristic peaks of Na₃Al₃CF₈
- 725.0 cm⁻¹:^{72,101}
- 1 Small peak of β -FeOOH
- 2 v_{as} W-O-W bridging mode
- 727.0 cm⁻¹:¹²⁰
- 1 Adenine ring stretching vibration of single-stranded DNA
- 730.0 cm⁻¹:^{71,120}
- 1 In plane bending vibrations (δCO_2^{-})
- 2 Adenine ring stretching vibration of single-stranded DNA
- 737.0 cm⁻¹:¹²³
- 1 The interaction between $Na_{1+x}V_3O_8$ and silicon oxide
- 740.0 cm⁻¹:⁷²
- 1 v_{as} W-O-W bridging mode

742.0 cm⁻¹:¹²⁴ 1 In-plane vibration mode of *CO₂⁻

- 743.0 cm⁻¹:¹²⁵ 1 Ni (IV) - Oxo species
- 745.0 cm⁻¹:¹²⁰
- 1 Thymine ring stretching vibration of single-stranded DNA
- 749.0 cm⁻¹:¹²⁰
 Thymine ring stretching vibration of single-stranded DNA
- 750.0 cm⁻¹:¹²⁶ 1 V-O-V (begin)
- 751.0 cm⁻¹:⁵⁶ 1 Peak of MoO_{3-x}(0<x<1)
- 752.0 cm⁻¹:⁶⁰ 1 Co/TiO₆ octahedral rotation of STLC

753.0 cm⁻¹:⁷² 1 W-O-W group

- 760.0 cm⁻¹:^{59,123}
- The stretching vibration mode of MnIV=O species
 Mapping of Na_{1+x}V₃O₈/SiO₂ phase

761.0 cm⁻¹:¹¹⁸

1 Vibration of O-C=O

- 762.0 cm⁻¹:⁹⁰
- 1 Carboxylate bending mode

765.0 cm⁻¹:¹²⁷ 1 υ(ΟΟΗ*)

Continued on next page

```
770.0 cm<sup>-1</sup>:<sup>2</sup>
```

1 Tetraglyme in the electrolyte

```
774.0 cm<sup>-1</sup>:<sup>116</sup>
```

```
1 Vibration modes of specific bonds in R6G
```

```
779.0 cm<sup>-1</sup>:<sup>121</sup>
```

1 Symmetric stretching mode of O-W-O in WO₆ octahedron

```
780.0 cm<sup>-1</sup>:<sup>126</sup>
```

1 W-O-W

```
783.0 cm<sup>-1</sup>:<sup>112</sup>
```

```
1 *O-O stretching vibration of OOH adsorption structure
```

784.0 cm⁻¹: ^{106,108}

- 1 V-O-Ag bonds in edge shared triangular bipyramids (V is five coordinated)
- $2 ~~ V\mbox{-}O\mbox{-}Ag$ bonds with different coordination structures in $Ag_{1,2}V_3O_8$
- 3 W-O vibration of WO_6 unit in Mn- WO_3

785.0 cm⁻¹:¹¹⁹

1 O-O stretching mode of Li₂O₂

788.0 cm⁻¹:⁷²

1 Symmetric stretching of SiO₂ bridging Si-O-Si

```
790.0 cm<sup>-1</sup>:<sup>20</sup>
1 LiPF<sub>6</sub>
```

```
LIPP6
```

796.0 cm⁻¹:⁷² 1 The combined vibration of v_{as} (W-O-W) and v_{as} (W-O-Pt)

800.0 cm⁻¹:^{50,72,128}

- 1 The vibrational mode of adsorbed phosphate ions (begin)
- 2 Bridge W-O-W
- 3 Lateral Acoustic (TA) Branch of Graphite
- 802.0 cm⁻¹:³⁸

```
1 The stretching vibration of O-W-O
```

```
804.0 cm<sup>-1</sup>:<sup>123,129</sup>
```

1

- vCu-H
- 2 V-O-V bonds bridge VO₅ and VO₆ units through co angular oxygen atoms

805.0 cm⁻¹:⁴⁹

1 Crystalline WO₃

807.0 cm⁻¹:¹³⁰

```
1 Bending vibration of outer ring C-H
```

808.0 cm⁻¹:⁷²

1 the WO_3 nanoparticles on the SiO_2 substrate

810.0 cm⁻¹:^{57,106}

1 Si-O-Si symmetric stretching of SiO₂

2 U(V) signal

811.0 cm⁻¹:^{9,131}

1 SeO₃²⁻

2 Crystalline Na₂WO₄ phase

812.0 cm⁻¹: 132 Surface bound peroxymonosulfate (PMS) 1 813.0 cm⁻¹:112 *O-O stretching vibration of OOH adsorption structure 1 815.0 cm⁻¹:^{61,72,123} v(0-0) in surface atomic-molecular hybrid structure: Ag₂-O-O-Ag₂, v(O-O) in surface Ag₄-O-O structure, v(O-O) in 1 molecular oxygen complex Agx-O-O stabilized by subsurface atomic oxygen 2 Mapping of Na1+xV3O8/SiO2 Phase 3 WOW 816.0 cm⁻¹: 133 CH₃ shear vibration 1 2 dimethyl phthalate (DMP) 823.0 cm⁻¹:134 the vibrational mode of δ C-H rocking of metronidazole 1 (MNZ) 825.0 cm⁻¹:103 1 Mo-O stretching mode from MoO₄²⁻ 826.0 cm⁻¹:^{53,133}

1 The stretching mode of the V-O

2 Characteristic peaks of interfering substance diisodecyl ophthalate (DIDP) (+)

830.0 cm⁻¹:41,126

1 V-O-V (end)

2 Short symmetric V-O vibration (A_{1g} mode)

831.0 cm⁻¹:⁴⁰ 1 Stretching vibration of OO bonds of peroxo species (O₂²)

- 832.0 cm⁻¹:^{122,135}
- 1 S₂O₈²⁻
- 2 The O-O stretching vibration frequency of peroxide species

834.0 cm⁻¹:^{9,136} 1 SeO₄²⁻

2 Ni-PMS*

836.0 cm⁻¹:¹²⁰

1 PO₂⁻¹ stretch

840.0 cm⁻¹:⁷⁴

1 Stretching vibrational mode of the V-O

848.0 cm⁻¹:47

1 4,4-biphenyldicarboxylic ion (Bpdc²⁻) ligand dissociated from MOFs

850.0 cm⁻¹:^{94,114,115}

- 1 Tensile vibration of Ni in nickel hydrates (end)
- Vibration of Co₂V₂O₇ caused by surface oxidation of VN
 v(O-O) of an active oxygen species (NiOO⁻) in oxyhydrox-
- 3 ide structure

851.0 cm⁻¹:¹³⁷

1 The formation of O_{ad}^*

Continued on next page

```
860.0 cm<sup>-1</sup>:<sup>49</sup>
CeVO<sub>4</sub> nanoparticles
```

1

```
874.0 cm<sup>-1</sup>:<sup>106</sup>
```

1 W-O vibration of WO₆ unit in MnWO₄

```
880.0 cm<sup>-1</sup>:61,125
```

- 1 Reactive oxygen species
- 2 Stable molecular oxygen complex structure
- 3 Metastable PMS adsorbed species formed by PMS molecules (*HSO₅⁻, NiN₄-PMS*)

882.0 cm⁻¹:¹³²

1 SO₅²⁻

```
884.0 cm<sup>-1</sup>:<sup>108</sup>
```

```
1 V-O-Ag linkages in AgVO<sub>3</sub> (V is five-coordination)
```

```
885.0 cm<sup>-1</sup>:<sup>106</sup>
```

1 Surface MnO_x oligomers

886.0 cm⁻¹:⁸⁷

1 O-Mo-O stretching vibration in NiCoMo oxides (NCMO) phase

890.0 cm⁻¹:^{2,49}

- 1 Tetraethyl ether
- 2 Cu_xV_yO_z nanoparticles

```
900.0 cm<sup>-1</sup>:<sup>20,65</sup>
```

```
1 NiO
```

2 EC and DEC solvents

```
908.0 cm<sup>-1</sup>: <sup>133</sup>
```

```
1 interference diallyl phthalate (DAP) (-)
```

910.0 cm⁻¹:⁴⁹

- 1 CuWO₄ nanoparticles
- 912.0 cm⁻¹:²⁷

1 Asymmetric stretching of C_{α} - C_{β}

```
913.0 cm<sup>-1</sup>: <sup>103</sup>
```

```
1 Mo-O stretching vibration mode of MoO<sub>4</sub><sup>2-</sup>
```

```
915.0 cm<sup>-1</sup>:<sup>97,130</sup>
```

- 1 Bending vibration of NO₂
- 2 Ring skeletal vibration of radial orientation

918.0 cm⁻¹: ¹⁰⁷

1 -CN

922.0 cm⁻¹:¹⁰⁸

1 VOAg linkage in Ag_{1.2}V₃O₈

```
2 VAgO_x/\alpha-Al_2O_3
```

923.0 cm⁻¹:³⁹

1 Co(OH)₂

926.0 cm⁻¹: ³⁸ 1 Crystalline Na₂WO₄ phase

927.0 cm⁻¹:¹³⁸

1 Raman peaks of crystalline Na₂WO₄

928.0 cm⁻¹:³²

1 SO₃ species

930.0 cm⁻¹:^{49,119,139,140}

- 1 The vibrational modes of v_{O-Cr-O} bonds
- 2 Ce₂(WO₄)₃ nanoparticles
- 3 Asymmetric modes of VO_2^+
- 4 Cl-O scaling mode of LiClO₄

933.0 cm⁻¹:^{122,141}

- 1 $v_{\rm s}({\rm ClO_4}^-)$
- 2 Symmetric stretching vibration mode of ClO₄-

935.0 cm⁻¹:^{140,142}

1 Perchlorate ion

2 Additional modes of VO₂HSO₄

- 936.0 cm⁻¹:¹¹²
- 1 Symmetric stretching mode of perchlorate ion (ClO₄⁻)
- 937.0 cm⁻¹:¹²³
- 1 β -NaVO₃ species (begin)

942.0 cm⁻¹:^{106,123}

- 1 β -NaVO₃ species (end)
- 2 W=O stretching vibration of isolated Na-WO₄ surface sites
- 945.0 cm⁻¹:¹²³
- 1 VO₂ symmetric stretching of crystal state β -NaVO₃

950.0 cm⁻¹:^{131,138}

- 1 W=O bond in WO₄ (F) unit
- 2 Raman peaks of Na-WO₄

958.0 cm⁻¹:^{32,72}

SO₄ species
 v_s(W=O) vibration of bridging W

960.0 cm⁻¹:⁷²

1 v_s (W=O) vibration of bridging W

970.0 cm⁻¹:^{38,106}

- 1 The peak of W=O bond
- 2 SiOH stretching mode of the surface hydroxyls

973.0 cm⁻¹:⁷²

1 v_s (W=O) vibration of terminal W

975.0 cm⁻¹:^{72,143}

1 ReO_4^-

- 2 Terminal SiOH vibration
- 3 Terminal W=O bands

977.0 cm⁻¹:⁷²

979.0 cm⁻¹:^{59,132} 1 SO₄²⁻

Continued on next page

980.0 cm⁻¹:^{15,72,144}

1 Vibration of SO₄²⁻ ion

```
2 Na<sub>2</sub>SO<sub>4</sub>
3 W4/SiO
```

- W4/SiO₂
- 4 $v_{\rm s}$ (W=O) vibration of terminal W

```
981.0 cm<sup>-1</sup>: <sup>138,145</sup>
```

- 1 Sulfate radical species
- 2 Mn-WO₄

982.0 cm⁻¹: ^{125,136}

1 SO4²⁻

985.0 cm⁻¹:¹³⁸ 1 WO₄ species

986.0 cm⁻¹:⁸⁸

1 NiOOH peak

988.0 cm⁻¹:⁵⁹

1 Symmetric stretching vibrational mode of PO₃ in HPO₄²⁻

990.0 cm⁻¹: ^{140,146}

- 1 Reduced form of PPy (CC ring deformation)
- 2 V=O stretching vibration
- 992.0 cm⁻¹:¹²³

1 V=O stretching vibration in VO₅ polyhedra

```
993.0 cm<sup>-1</sup>:<sup>68</sup>
1 S_2O_3^{2-}
```

995.0 cm⁻¹:¹⁴³

Re-O-Ti vibration of isolated four coordinated rhenium oxide monomers

996.0 cm⁻¹:²⁷

1 The ring-breathing mode of the phenyl groups in the $[AlPh_4]^-$ anions

997.0 cm⁻¹:⁴⁹

```
1 Crystalline V<sub>2</sub>O<sub>5</sub>
```

998.0 cm⁻¹:147

- 1 In plane bending of benzene ring in TP molecule (δ -CCC)
- 2 Benzol Toroidal Bend (δ -CCC) in PMBA Molecules

```
1000.0 cm<sup>-1</sup>: 120,143</sup>
```

- 1 Re-O-Ti of isolated four coordinated rhenium oxide monomers
- 2 Silica framework vibrational modes (end)

1003.0 cm⁻¹: ¹²⁰

1 Phenyl ring breathing

1007.0 cm⁻¹:¹³⁵

1 SO4²⁻

1010.0 cm⁻¹:^{73,128}

- Superoxide (O-O) species adsorbed on the surface of high-
- entropy alloy (HEA)
- 2 Symmetric C-O stretching vibration of HCO₃⁻⁻

```
1012.0 cm<sup>-1</sup>:<sup>49</sup>
         Raman peaks of surface WOx on TiO2 support
1
  1014.0 cm<sup>-1</sup>:<sup>48</sup>
        Bicarbonate
1
 1015.0 cm<sup>-1</sup>:<sup>137,138,148</sup>
         CO<sub>2</sub><sup>2-</sup> adsorbed on electrode surface in electrolyte
1
         Formation of O<sub>2</sub>*
2
3
         W=O bond in WO<sub>x</sub> mono-oxo species
  1022.0 cm<sup>-1</sup>:<sup>147</sup>
        CH in-plane bending (\delta_{CH})
1
  1025.0 cm<sup>-1</sup>:143
         Surface sulfate
1
  1026.0 cm<sup>-1</sup>:<sup>105,149</sup>
         C-O bonds of methylol groups
1
2
         MeOH
  1027.0 cm<sup>-1</sup>:142
         Stretching of linear dimers and/or high polymers
1
  1028.0 cm<sup>-1</sup>:<sup>27,58</sup>
         C_{\alpha} - C_{\beta} symmetric stretching
1
         The A<sub>1g</sub> mode of Ni-O in NiCo<sub>2</sub>O<sub>4</sub>
2
  1029.0 cm<sup>-1</sup>:110
         \alpha-NiH vibration mode
1
  1030.0 cm<sup>-1</sup>: 49,79,119</sup>
         Vibration of pyridine ring
1
2
         Raman peaks of surface VOx on TiO2 support
         CH<sub>3</sub> rocking mode
3
  1035.0 cm<sup>-1</sup>: <sup>140,142</sup>
         v(S=O)
1
         HSO<sub>4</sub><sup>-</sup>..H<sub>3</sub>O<sup>+</sup> sulfur oxygen bond stretching vibration
2
  1039.0 cm<sup>-1</sup>:<sup>123</sup>
        Isolation vanadium oxo (V=O) in [VO<sub>4</sub>]/SiO<sub>2(500-air)</sub>
1
  1040.0 cm<sup>-1</sup>:<sup>142</sup>
        In-phase S=O stretching mode
1
 1041.0 cm<sup>-1</sup>:<sup>127</sup>
1
        υ(OH*)
  1044.0 cm<sup>-1</sup>:<sup>32</sup>
         SO<sub>4</sub> species
1
  1046.0 cm<sup>-1</sup>:<sup>32</sup>
        NO<sub>3</sub> species
1
  1047.0 cm<sup>-1</sup>:<sup>88,140,144</sup>
         The formation of O* on the Co sties (C-O*)
         Stretching of NO37
2
3
         HSO<sub>4</sub>-
  1050.0 cm<sup>-1</sup>:<sup>62,146,150</sup>
1
         H<sub>2</sub>SO<sub>4</sub> electrolyte
         C-H in-plane deformation in neutral PPy units
2
3
         NO3<sup>-</sup> ion
```

1051.0 cm⁻¹:^{42,142} Out-of-phase S=O stretching mode 1 2 Ni oxide NiO 1054.0 cm⁻¹:³⁴ Lepidocrocite (γ -FeOOH) 1 1057.0 cm⁻¹:⁷³ Symmetric stretching vibration mode of SO₄²⁻ 1059.0 cm⁻¹: ¹³² SO₅²⁻ 1 1060.0 cm⁻¹:136 Vibration mode of HSO₅ 1 1062.0 cm⁻¹: 110,125 1 2PLO of NiO vibrational modes 2 HSO₅-1064.0 cm⁻¹:^{88,101,151} Active oxygen species (O*) at the Ni sites 1 C-O stretching vibration of CO₃²⁻ 2 3 Carbonate ions inserted into D-NiFeAlLDH 1065.0 cm⁻¹:⁵⁵ 1 Adsorbed carbonate 1069.0 cm⁻¹:48 1 Carbonate 1071.0 cm⁻¹: 147,152 In plane bending and C-S stretching of benzene ring in p-1 mercaptobenzoic acid (PMBA) molecules ($\delta_{CCC} + \gamma_{CS}$) 2 C-S vibration (δ_{CS}) Aromatic ring breathing, symmetric C-H plane bending and 3 C-S extension 1072.0 cm⁻¹: 105 [O-O] Vibration 1 1073.0 cm⁻¹:¹²² *OH species in Pt3Co@Pt-SAC 1 1074.0 cm⁻¹: 135 $S_2O_8^{2-}$ 1 1077.0 cm⁻¹:130 Peak value of 4-aminothiophenol (4-ATP) 1 1080.0 cm⁻¹:146,153 1 4-ATP C-H in-plane deformation in polarons 2 1083.0 cm⁻¹: ¹⁵⁴ C-S vibration in p-nitrothiophenol (PNTP) and DMAB 1 1084.0 cm⁻¹: 130 C-S telescopic vibration 1 1087.0 cm⁻¹:⁷⁹ Surface OOH* intermediate 1

Continued on next page

1090.0 cm⁻¹:65 NiO 1 1 2 1094.0 cm⁻¹:¹⁴³ 3 v_{asym}(S-O) of surface sulfates 1 1100.0 cm^{-1} : 20,50,120 The vibrational mode of adsorbed phosphate ions (end) 1 1 2 Li₂CO₃ 3 C-H mode 1 1120.0 cm⁻¹:⁹⁰ Vibration of $v_{\text{C-O}}$ and $\delta_{\text{c-O-H}}$ 1 1 1124.0 cm⁻¹:¹²⁴ Symmetric stretching mode of *CO2-1 1130.0 cm⁻¹:44 1 1 Multi phonon (MP) transition mode of CuO 1139.0 cm⁻¹:^{150,155} Head-to-Head Coupling Product 1 p,p-1 dimercaptoazobenzene (DMAB) 2 -NH₂ 1 1144.0 cm⁻¹:130 C-N symmetric stretching 1 1 1150.0 cm⁻¹: 143 Surface sulfate on the catalyst 1 1 1152.0 cm⁻¹:156 -NH₂ 1 1 1158.0 cm⁻¹:118 CH wagging of HCOO 1 1160.0 cm⁻¹:¹⁴⁸ 1 Symmetric stretching vibration of $*CO_2^-$ ($v_sCO_2^-$) 1 1161.0 cm⁻¹:¹⁵⁷ 1 In-plane C-H bending 2 1 1170.0 cm⁻¹:³³ 2LO overtone 1 1 1174.0 cm⁻¹:³⁷ 1 Second order longitudinal mode of CeO₂ lattice (2LO) 1 1178.0 cm⁻¹:¹³⁰ In-plane ring CH bending 1 1 2 1180.0 cm⁻¹:⁴⁰ 3 The second-order longitudinal optical mode of the fcc flu-1 orite phase of CeO₂ 1 1181.0 cm⁻¹: 158 Bending vibration mode of C-H stretching vibration 1 1 1188.0 cm⁻¹: 134 The in-plane bending mode of metronidazole (MNZ) 1 molecules 1 Continued on next page

```
1200.0 cm<sup>-1</sup>:<sup>94,107,114</sup>
      -OH (begin)
      Tensile vibration of nickel in nickel hydrates
      Vibration of reactive oxygen species (NiOO<sup>-</sup>) in the struc-
     ture of oxygen hydrides
1220.0 cm<sup>-1</sup>: 159
     Disordered graphite lattice with A1g symmetry
1221.0 cm<sup>-1</sup>: 157
     C-N stretching
1225.0 cm<sup>-1</sup>:155
     Head-to-tail
                          coupling
                                           product
                                                           4-mercapto-N-
      phenylquinone diimine (NPQD)
1227.0 cm<sup>-1</sup>: 118
      The stretching vibrational mode of CO and rocking mode
      of -CH
1240.0 cm<sup>-1</sup>: 120
     Thymine pattern
1250.0 cm<sup>-1</sup>:<sup>33</sup>
     The presence of the salt form of flexible-chain PAMPSA
1255.0 cm<sup>-1</sup>: 146
      The presence of the salt form of flexible-chain PAMPSA
1257.0 cm<sup>-1</sup>: 120
     Amide III stretching mode
1270.0 cm<sup>-1</sup>:118
      Fermi resonance of CO2 and -CH rocking vibration of MOF-
      801
1280.0 cm<sup>-1</sup>:47
      Bpdc<sup>2-</sup> ligand dissociated from MOFs
1283.0 cm<sup>-1</sup>:<sup>58,134</sup>
      Twisting of MNZ molecule
      Symmetric tensile vibration of C-O
1288.0 cm<sup>-1</sup>: 124
     OH- deformation in *COOH
1290.0 cm<sup>-1</sup>:160
     -NO<sub>2</sub> peak
1300.0 cm<sup>-1</sup>: 34,107,130</sup>
      Ring C-C stretching vibration
      Lepidocrocite (\gamma-FeOOH)
      -OH (end)
1308.0 cm<sup>-1</sup>: 129
     Stretching vibration (v_s CO_2^-)
1310.0 cm<sup>-1</sup>:15
     Hematite
1317.0 cm<sup>-1</sup>:<sup>73</sup>
      D-bands in carbon nanofibers (CNFs)
```

1320.0 cm⁻¹:^{75,159} Disordered graphite lattice with A1g symmetry 1 2 Amorphous layer of C@ZnO sample 1330.0 cm⁻¹:¹⁶⁰ Adsorption on Au-2 1 1333.0 cm⁻¹:130 O-N-O stretching vibration 1 1335.0 cm⁻¹:^{3,119,144} Graphitic carbon (D band) 1 Stretching vibration of N=O in NO2⁻ 2 D-bands related to lattice structure defects in carbon mate-3 rials 1336.0 cm⁻¹:⁹⁷ Bending vibration of NO₂ 1 1337.0 cm⁻¹:¹² sp³ disordered carbon in TiO₂-CNT (carbon nanotube) film 1 1340.0 cm⁻¹: ^{19,127,149,160} C-H bonds of methylol groups 1 2 $v(NO_2)$ 3 Vibration modes of disordered carbon (D) Structural defects in graphene (D-band) 4 1342.0 cm⁻¹:⁵⁴ O-O stretching and contraction of Mn-OOD 1 1344.2 cm⁻¹:¹⁶¹ D peak of C-C (related to defects) 1 1346.0 cm⁻¹:1 D-band of graphite 1 1347.0 cm⁻¹:⁵⁸ Water bending 1 1350.0 cm⁻¹:^{20,54,90,162} Breathing patterns of *K*-point A_{1g} phonons Structural defects of graphite electrodes 2 Breathing modes of sp² hexagonal ring in multilayer 3 graphene foam 4 Carboxyl group 1352.0 cm⁻¹:¹⁶² Defects in carbon fiber structure 1 1354.0 cm⁻¹:⁵⁴ 1 O-O stretching vibration of Mn-OOH intermediate 1360.0 cm⁻¹:⁶³ D-band of organic matrix 1 G-band of carbon nanotubes 2 1364.0 cm⁻¹:¹¹⁶ 1 Vibration modes of specific bonds in R6G 1370.0 cm⁻¹:160 -NO2 peak 1 Continued on next page

1375.0 cm⁻¹: 144 -NH₂ bending vibration 1 1389.0 cm⁻¹: 163 C=N bonds in organic ligands of MOFs 1 1390.0 cm⁻¹:160 Azo group of DMAB 1 1391.0 cm⁻¹: ¹³⁰ N-N stretching 1395.0 cm⁻¹: ¹⁵⁸ Vibration of C=C_{wing} 1 1411.0 cm⁻¹: 144 The NO₂ stretching of NO₃-1 1416.0 cm⁻¹:79 In- and out-of-phase stretching modes of the carboxylate 1 group 1420.0 cm⁻¹:107 COOH functional group 1 1422.0 cm⁻¹:124 1 Symmetric extension of *CO₂-1426.0 cm⁻¹: 142 δ (C-H) mode 1 1435.0 cm⁻¹: 130 C-H in-plane bending mode 1 1438.0 cm⁻¹:118 Vibration of O-C=O 1 1440.0 cm⁻¹:160 azo group of DMAB 1 1441.0 cm⁻¹:¹⁵⁴ N=N vibration in DMAB 1 1442.0 cm⁻¹:155 1 Head-to-head coupling product DMAB 1445.0 cm⁻¹:^{34,133} 1 Methylene deformation mode (δ CH₂) CH₃ shear vibration 2 di(2-ethylhexyl) phthalate (DEHP) 3 1450.0 cm⁻¹: 20,118 CH₂ scissoring of polystyrene (PS) 1 Amorphous carbon 2 1452.0 cm⁻¹:¹⁵⁰ Asymmetric bending vibration of NH₄⁺ 1 1482.0 cm⁻¹: ¹⁵⁷ C=N stretching of quinone (Q) 1 1490.0 cm⁻¹:155 Head-to-tail coupling product NPQD 1

1500.0 cm⁻¹:^{120,159} The presence of amorphous carbon 1 2 C-C mode 1510.0 cm⁻¹:³⁵ $C=C_{ring}$ in DFF 1 1515.0 cm⁻¹:³⁵ C=C_{ring} in HMFCA 1 1517.0 cm⁻¹:³⁰ The disappearance of C=Cring vibration mode in 2,5-1 furandicarboxylic acid (FDCA) 1518.0 cm⁻¹:³⁵ 1 $C=C_{ring}$ in FDCA 1523.0 cm⁻¹:^{30,35} 1 C=C ring in 5-hydroxymethylfurfural (HMF) molecules 1525.0 cm⁻¹:145 Vibration of -NH bonds 1 1526.0 cm⁻¹:156 1 -NH 1528.0 cm⁻¹:35,150 C=C_{ring} in FDCA 1 -NH 2 3 Adsorbed H₂NOH 1538.0 cm⁻¹: 120,130 Ring C-C stretching vibration 1 2 Amide II stretching mode 1540.0 cm⁻¹:^{129,148} Asymmetric stretching vibration of *CO₂⁻ (v_{as}CO₂⁻) 1 1547.0 cm⁻¹:¹²⁹ $v_{as}CO_2$ 1 1550.0 cm⁻¹:118 The O=C=O asymmetric vibration of CO₂ and stretching 1 vibration of polystyrene (PS) 1570.0 cm⁻¹: 130 Phenyl ring mode 1 1577.0 cm⁻¹:147,164 1 C-C stretching mode (γ_{cc}) 2 The stretching of the in-plane CC bonds 1579.0 cm⁻¹:165 In-plane vibration of sp² carbon atoms in graphite 1 1580.0 cm⁻¹:^{3,166} Graphitic carbon (G band) 1 2 The G-band of N-doped porous carbon matrix (NDPCM) 1581.0 cm⁻¹:^{127,152} Aromatic C-C extension, asymmetric C-H in-plane bending 1

2 Graphene carbon (G)

Continued on next page

```
1581.2 cm<sup>-1</sup>:19
        Ordered sp<sup>2</sup> bonded carbon (G-band) of graphene
1
  1581.9 cm<sup>-1</sup>:<sup>161</sup>
1
        G peak of C-C (related to graphitic carbon)
  1582.0 cm<sup>-1</sup>: 147
       C-C stretching mode (\gamma_{cc})
1
  1585.0 cm<sup>-1</sup>:12
        Sp<sup>2</sup> bonded carbon atoms in TiO<sub>2</sub>-CNT films
  1587.0 cm<sup>-1</sup>: 130
1
       Ring C-C stretching vibration
  1590.0 cm<sup>-1</sup>: <sup>19,20,71,79,90,159,160</sup>
        The in- and out-of-phase stretching modes of the carboxy-
1
        late group
        Ring vibration of defect free graphite lattice (E2g symme-
2
        try)
3
        The stretching vibration of -NH<sub>2</sub> groups
        Ordered sp<sup>2</sup> bonded carbon (G-band) of graphene
4
        G band related to sp<sup>2</sup>-linke carbon atoms in uncoated
5
        graphite electrodes
        High-frequency bond stretching of sp<sup>2</sup> carbon pairs in rings
6
        and chains
7
       Adsorbed carboxyl species (*CO<sub>2</sub><sup>-</sup>)
  1592.0 cm<sup>-1</sup>:167
        Characteristic peaks of 4-mercapto-benzonitrile (4-MBN)
1
        molecules
  1593.0 cm<sup>-1</sup>: 130,164
        Peak value of 4-ATP
1
2
        The stretching of the in-plane CC bonds
  1596.0 cm<sup>-1</sup>:<sup>97,162</sup>
1
        G-bands of CFP, CCFC, and FCFC
2
        Crystallinity in Carbon Fiber Structure
  1597.0 cm<sup>-1</sup>: 146
       C=C stretching in the oxidized pyrrole ring
1
  1598.0 cm<sup>-1</sup>:<sup>116</sup>
        Vibration modes of specific bonds in 3,3',4,4-
1
        tetrachlorobiphenyl (one congener of polychlorinated
        biphenyls, PCB-77)
  1600.0 cm<sup>-1</sup>: 47,166,168
        Bpdc<sup>2-</sup> ligand dissociated from MOFs
1
        C=C vibration
2
3
       Peak of H<sub>2</sub>O
  1601.0 cm<sup>-1</sup>:<sup>58</sup>
1
       The bending vibration of water
  1605.0 cm<sup>-1</sup>:<sup>54</sup>
       The G band of the E_{2g} phonon of sp<sup>2</sup> carbons
1
  1606.0 cm<sup>-1</sup>:169
```

1607.0 cm⁻¹:¹²⁰ C=C stretching modes 1 1608.0 cm⁻¹:⁷³ G-band in CNFs 1 1609.0 cm⁻¹:158 Vibration mode of $C = C_{ring}$ 1 1610.0 cm⁻¹:¹⁶² 1 benzene ring 1612.0 cm⁻¹:¹²⁰ C=C stretching peak 1 1617.0 cm⁻¹:163 C=C Bond in Organic Ligands of MOFs 1 1620.0 cm⁻¹:^{130,159,170} Ring C-C stretching vibration 1 2 VIP (Aromatic C-C) 3 the presence of a poorly ordered graphite structure 1632.0 cm⁻¹:¹⁵⁰ Adsorbed H₂NOH 1 1637.0 cm⁻¹:77 1 α -Ni(OH)₂ 1638.0 cm⁻¹:129 $\delta H_2 O$ 1 1639.0 cm⁻¹:155 1 Head-to-tail coupling product NPQD 1639.4 cm⁻¹:171 Bending vibration of H-OH bonds 1 1640.0 cm⁻¹:^{94,120} Vibration of water molecules 1 2 The bending vibration mode of water 1642.0 cm⁻¹:^{118,133} the C=O vibration/OH rocking of HOCO* 1 Characteristic peaks of interfering substance diallyl phtha-2 late (DAP) 1643.1 cm⁻¹:¹⁷¹ 1 Bending vibration of H-OH bonds 1650.0 cm⁻¹:³⁴ The bending mode of NH groups 1 1661.0 cm⁻¹:^{30,118} Vibration of C=C 1 2 Aldehyde groups of HMF molecules 1664.0 cm⁻¹:149 C=O bond of aldehyde group 1 1668.0 cm⁻¹:120 The carbonyl stretching vibration of thymine, guanine, and 1 cytosine

Continued on next page

1 The peak associated with aldehyde oxidation 1727.0 cm⁻¹:⁹⁰ 1 $v_{C=0}$ 1750.0 cm⁻¹: 166 Peak of H₃O⁺ 1 1780.0 cm⁻¹: 120 The stretching vibration peak of thiosuccinimide 1 1800.0 cm⁻¹:^{48,67} Stretching of $C \equiv O$ 1 2 *CO on hollow sites (begin) 1860.0 cm⁻¹: 172 $C \equiv O$ tensile vibration of CO (CO_{bridge}) 1 1900.0 cm⁻¹:⁶⁷ *CO on bridge sites (begin) 1 2 *CO on hollow sites (end) 1939.0 cm⁻¹:44 Adsorbed *CO intermediates on the CuO@C-600 electrode 1 1980.0 cm⁻¹:113 Interactions between CO* intermediates 1 1998.0 cm⁻¹:¹⁷³ CObridge on Cu2O-TiO2 interface 1 2000.0 cm⁻¹:^{67,174} 1 $C \equiv O$ stretching of *CO (begin) *CO on top sites (linearly *CO) (begin) 2 3 *CO on bridge sites (end) 2010.0 cm⁻¹:¹²⁹ vsCO 1 2056.0 cm⁻¹:¹²⁸ Expansion and contraction vibration of C=O 1 2070.0 cm⁻¹:113 C-O stretching vibrational mode of absorbed *CO on a Cu 1 top site (*CO_{atop}) 2085.0 cm⁻¹:129 1 vC≡O 2100.0 cm⁻¹:48 1 Stretching of $C \equiv O$ 2120.0 cm⁻¹:^{67,173} *CO on top sites (linearly *CO) (end) 1 2 COatop on Cu2O-TiO2 Interface 2180.0 cm⁻¹:¹⁷⁵ The characteristic peak of cyanide bridge ($C \equiv N$) 1 2200.0 cm⁻¹:174 $C \equiv O$ stretching of *CO (end) 1

1669.0 cm⁻¹:³⁰

2208.0 cm⁻¹:¹⁵⁸ The vibration mode of $C \equiv N$ 1 2230.0 cm⁻¹:167 Characteristic peaks of 4-MBN molecules 1 2530.0 cm⁻¹:¹²⁷ 1 υ(S-H) 2532.0 cm⁻¹:¹⁴¹ 1 Stretching vibration of S-H, v(S-H) 2541.0 cm⁻¹:¹⁰⁷ -CH₃ 1 2550.0 cm⁻¹:¹⁷⁶ O-D vibration 1 2580.0 cm⁻¹:¹²⁰ 1 The distinctive thiol SH stretching mode 2670.0 cm⁻¹:¹²⁷ Vibration modes of 2D layers 1 2677.0 cm⁻¹:1 2D bands of graphite 1 2700.0 cm⁻¹:⁹⁰ D peak related to the number of graphene layers and ori-1 entation 2800.0 cm⁻¹:³⁴ Antisymmetric (v_s CH₂) stretching mode of methylene 1 groups 2848.0 cm⁻¹:⁶⁷ 1 Intermediate products -CH_x in CO₂RR 2874.0 cm⁻¹:⁶⁷ Intermediate products -CH_x in CO₂RR 1 2900.0 cm⁻¹:177 1 metal-OH band of OH* 2904.0 cm⁻¹:⁶⁷ Intermediate products -CH_x in CO₂RR 1 2934.0 cm⁻¹:168 1 C-H vibration 2936.0 cm⁻¹:⁶⁷ Intermediate products -CH_x in CO₂RR 1 2961.0 cm⁻¹:⁶⁷ 1 Intermediate products -CH_x in CO₂RR 3000.0 cm⁻¹:^{34,90} Antisymmetric (v_aCH_2) stretching mode of methylene 1 groups

2 O-H stretching of hydroxyl groups

Continued on next page

3004.0 cm⁻¹:³⁴

1 The ethylenic elongation (vCH(C=C))

3200.0 cm⁻¹: ^{174,176,177}

- 1 Tetrahedrally coordinated H-bonded water
- 2 Raman peaks of interfacial water
- 3 O-H vibration

3400.0 cm⁻¹:^{174,176}

- 1 Trihedrally coordinated H-bonded water
- 2 O-H vibration

3458.0 cm⁻¹:¹⁶⁹

1 OH stretching mode of water

3500.0 cm⁻¹:^{90,177}

- 1 Raman peaks of interfacial water
- 2 O-H stretching of COOH groups

3600.0 cm⁻¹:174

1 The H-bonding-free water with the dangling OH bonds

Scheme of oFDTD

- 1. **Simulation Software:** The FDTD simulation is conducted using ANSYS Lumerical FDTD 2020 R2.4.
- 2. **Simulation Objects:** The objects under simulation include a silicon wafer and two metallic particles made of noble metal (Fe, Co, Ni, Cu, Rh, Pd, Ag, Os, Lr, Pt, Au).

The life New Series Similari Boacida Province and	n Mely 2. – Mil – End – Lin – Jil – En – Mil – Mere 1999 – Generar – Andelso Inderla Japan – Mild Berner	Alter ind he bears out the set of the first interview of the first interview.
Bigsch Hyse P. 7 VPT microsoft for small to be ************************************		
	22 den	# X XXVer # X
Ensist Ven - 2020 # → Former Ven -		
1, 11 (170.1 Volmárice status 1 status 1 1 autochatolficeri autoch		

The diatomic FDTD simulation model

Table 1 Noble Metals Used in Diatomic FDTD Simulation Model

Metal	Optical Constants Source
Fe	Fe (Iron) - Palik
Со	n: 2.5769, k: 4.6527 ^{178,179}
Ni	Ni (Nickel) - Palik
Cu	Cu (Copper) - Palik
Rh	Rh (Rhodium) - Palik
Pd	Pd (Palladium) - Palik
Ag	Ag (Silver) - Johnson and Christy
Os	n: 4.2664, k: 3.25 ^{178,180}
Ir	n: 2.4852, k: 4.9865 ^{178,181}
Pt	Pt (Platinum) - Palik
Au	Au (Gold) - Johnson and Christy

3. **Silicon Wafer Specifications:** The silicon wafer measures 90nm in length, 45nm in width, and 10nm in height.

- 4. Metallic Particles Specifications: Each metallic particle has a radius of 20nm.
- 5. Light Source: A Gaussian light source with an amplitude of 1 is employed.
- 6. **Wavelength:** The simulation operates at a central wavelength of 532nm and 785nm with a wavelength span of 300nm.
- 7. **Monitor Setup:** The simulation monitors the X, Y, and Z cross-section along the axis defined by the line connecting the centers of the two metallic particles, and exports the data for further analysis.
- 8. **Mesh Size:** The maximum mesh step sizes, dx, dy, and dz, are set to 0.5nm to ensure accurate simulation results.
- 9. **FDTD Region:** The FDTD computational region encompasses all objects within a size of 100nm by 60nm by 85nm.

References

- 1 L. Qiao, C. Wang and X. S. Zhao, *ACS Applied Energy Materials*, 2021, **4**, 7012–7019.
- 2 T. Yamanaka, A. C. Kucuk, Z. Ogumi and T. Abe, *ACS Applied Energy Materials*, 2020, **3**, 9390–9400.
- 3 W. Yao, C. Tian, C. Yang, J. Xu, Y. Meng, I. Manke, N. Chen, Z. Wu, L. Zhan, Y. Wang and R. Chen, *Advanced Materials*, 2022, **34**, 2106370.
- 4 J. Gao, B. Wu, C. Cao, Z. Zhan, W. Ma and X. Wang, ACS Sustainable Chemistry & Engineering, 2021, 9, 6370–6379.
- 5 G. Chen, Y. Kang, H. Yang, M. Zhang, J. Yang, Z. Lv, Q. Wu, P. Lin, Y. Yang and J. Zhao, *Advanced Functional Materials*, 2023, **33**, 2300656.
- 6 L. Ma, G. Zhu, Z. Wang, A. Zhu, K. Wu, B. Peng, J. Xu, D. Wang and Z. Jin, *Nano Letters*, 2023, 23, 5272–5280.
- 7 C. Prehal, H. Fitzek, G. Kothleitner, V. Presser, B. Gollas, S. A. Freunberger and Q. Abbas, *Nature Communications*, 2020, 11, 4838.
- 8 S.-C. Wu, Y. Ai, Y.-Z. Chen, K. Wang, T.-Y. Yang, H.-J. Liao, T.-Y. Su, S.-Y. Tang, C.-W. Chen, D. C. Wu, Y.-C. Wang, A. Manikandan, Y.-C. Shih, L. Lee and Y.-L. Chueh, ACS applied materials & interfaces, 2020, 12, 27064–27073.
- 9 H. Zhang, X. He, K. Dong, Y. Yao, S. Sun, M. Zhang, M. Yue,
 C. Yang, D. Zheng, Q. Liu, Y. Luo, B. Ying, S. Alfaifi, X. Ji,
 B. Tang and X. Sun, *Materials Today Physics*, 2023, 38, 101249.
- 10 Y. Li, Y. Duan, K. Zhang and W. Yu, *Chemical Engineering Journal*, 2022, **433**, 134472.
- 11 R. Belgamwar, R. Verma, T. Das, S. Chakraborty, P. Sarawade and V. Polshettiwar, *Journal of the American Chemical Society*, 2023, **145**, 8634–8646.
- 12 J. Li, J. Ao, C. Zhong and T. Yin, *Applied Surface Science*, 2021, **563**, 150301.
- 13 M. He, X. Chang, T.-H. Chao, C. Li, W. A. Goddard, M.-J. Cheng, B. Xu and Q. Lu, ACS Catalysis, 2022, 12, 6036– 6046.

- 14 B. Yu, A. Huang, K. Srinivas, X. Zhang, F. Ma, X. Wang, D. Chen, B. Wang, W. Zhang, Z. Wang, J. He and Y. Chen, *ACS Nano*, 2021, **15**, 13279–13288.
- 15 W. Zhang, D. Young, B. Brown, C. Shafer, F. Lu, E. Anyanwu and M. Singer, *Corrosion Science*, 2021, **188**, 109516.
- 16 Z. Cheng, M. Wang, Y. Dong, Y. Han, X. Yan, L. Xie, X. Zheng, L. Han and J. Zhang, *Journal of Colloid and Interface Science*, 2023, 649, 86–96.
- J. Xia, W. Hua, L. Wang, Y. Sun, C. Geng, C. Zhang, W. Wang, Y. Wan and Q.-H. Yang, *Advanced Functional Materials*, 2021, 31, 2101980.
- 18 Q. Zeng, X. Li, W. Gong, S. Guo, Y. Ouyang, D. Li, Y. Xiao, C. Tan, L. Xie, H. Lu, Q. Zhang and S. Huang, *Advanced Energy Materials*, 2022, **12**, 2104074.
- 19 J. Zhang, Q. Zhang, X. Qu, G. Xu, B. Fan, Z. Yan, F. Gui and L. Yang, *Applied Surface Science*, 2022, **574**, 151559.
- 20 G. Elomari, L. Hdidou, H. Larhlimi, M. Aqil, M. Makha, J. Alami and M. Dahbi, ACS Applied Materials & Interfaces, 2024, 16, 2193–2203.
- 21 F. Zhang, J. You, X. Tang, J. Wang, X. Gong, A. Canizarès, L. Lu and K. Tang, *Journal of Molecular Liquids*, 2023, 387, 122485.
- 22 K. Zhang, Y. Duan, N. Graham and W. Yu, *Journal of Hazardous Materials*, 2022, 444, 130327.
- 23 C. Yang, C. Pei, R. Luo, S. Liu, Y. Wang, Z. Wang, Z.-J. Zhao and J. Gong, *Journal of the American Chemical Society*, 2020, 142, 19523–19531.
- 24 Y. Pu, L. Wang, L. Jia, X. Li, W. Lu and L. Huang, Applied Surface Science, 2023, 636, 157647.
- 25 M. Chen, Y. Zhang, J. Chen, R. Wang, B. Zhang, B. Song and P. Xu, *Small*, 2024, 2309371.
- 26 W. Guo, H. Luo, D. Fang, Z. Jiang, J. Chi and W. Shangguan, Journal of Energy Chemistry, 2022, 70, 373–381.
- 27 R. N. Samajdar, S. Marchesini, S. A. Brown, S. D. Robertson,
 K. R. Paton, A. J. Pollard and A. J. Wain, ACS Energy Letters,
 2023, 8, 1864–1869.
- 28 J. Zhao, F. Wang, X. Lu, T. Lv, Y. Li, Q. Hao, L. Liang and H. Liu, Journal of Colloid and Interface Science, 2023, 642, 532–539.
- 29 R. Qin, P. Wang, Z. Li, J. Zhu, F. Cao, H. Xu, Q. Ma, J. Zhang, J. Yu and S. Mu, *Small*, 2021, **18**, 2105305.
- 30 Y. Zhou, Y. Shen and H. Li, Applied Catalysis B: Environment and Energy, 2022, 317, 121776.
- 31 Y. Chen, J. Wang, Z. Yu, Y. Hou, R. Jiang, M. Wang, J. Huang, J. Chen, Y. Zhang and H. Zhu, *Applied Catalysis B: Environment and Energy*, 2022, **307**, 121151.
- 32 S. Li, B. Zhao, A. Aguirre, Y. Wang, R. Li, S. Yang, I. Aravind, Z. Cai, R. Chen, L. Jensen and S. B. Cronin, *Analytical Chemistry*, 2021, **93**, 6421–6427.
- 33 M. Ziemba, J. Weyel and C. Hess, *Applied Catalysis B: Environment and Energy*, 2021, **301**, 120825.
- 34 D. Jero, N. Caussé, O. Marsan, T. Buffeteau, F. Chaussec, A. Buvignier, M. Roy and N. Pébère, *Electrochimica Acta*, 2023, 443, 141925.

- 35 Y. Xie, L. Sun, X. Pan, Z. Zhou and G. Zhao, *Applied Catalysis* B: Environment and Energy, 2023, **338**, 123068.
- 36 J. Chen, S. Xiong, H. Liu, J. Shi, J. Mi, H. Liu, Z. Gong, L. Oliviero, F. Maugé and J. Li, *Nature Communications*, 2023, 14, 3477.
- 37 Y. Xie, J. Chen, X. Wu, J. Wen, R. Zhao, Z. Li, G. Tian, Q. Zhang, P. Ning and J. Hao, ACS Catalysis, 2022, 12, 10587–10602.
- 38 X. Yu, H. Tian, Z. Fu, F. Pei, L. Peng, G. Meng, F. Kong, Y. Chen, C. Chen, Z. Chang, X. Cui and J. Shi, ACS Catalysis, 2023, 13, 2834–2846.
- 39 N. Ferreira, L. Coronel, M. Moreno, L. Cornaglia and J. Múnera, *Fuel Processing Technology*, 2021, 217, 106814.
- 40 Y. Wei, Y. Zhang, P. Zhang, J. Xiong, X. Mei, Q. Yu, Z. Zhao and J. Liu, *Environmental Science & Technology*, 2020, 54, 2002–2011.
- 41 J. Tang, Q. Ruan, H. Yu and C. Huang, *Advanced Sustainable Systems*, 2023, 7, 2200473.
- 42 V. Kamboj, S. Raychowdhury and C. Ranjan, *Applied Catalysis B: Environment and Energy*, 2023, **344**, 123631.
- 43 Z. Chen, H. Yang, S. Mebs, H. Dau, M. Driess, Z. Wang, Z. Kang and P. W. Menezes, *Advanced Materials*, 2022, 35, 2208337.
- 44 L. Zhang, X. Li, L. Chen, C. Zhai and H. Tao, Journal of Colloid and Interface Science, 2023, 640, 783–790.
- 45 J. Wu, Y. Zhang, B. Zhang, S. Li and P. Xu, ACS Applied Materials & Interfaces, 2022, 14, 14235–14242.
- 46 Y. Ren, C. Yu, L. Wang, X. Tan, Z. Wang, Q. Wei, Y. Zhang and J. Qiu, *Journal of the American Chemical Society*, 2022, 144, 10193–10200.
- 47 H. Sun, L. Chen, Y. Lian, W. Yang, L. Lin, Y. Chen, J. Xu, D. Wang, X. Yang, M. H. Rümmerli, J. Guo, J. Zhong, Z. Deng, Y. Jiao, Y. Peng and S. Qiao, *Advanced Materials*, 2020, 32, 2006784.
- 48 Y. Shi, K. Sun, J. Shan, H. Li, J. Gao, Z. Chen, C. Sun, Y. Shuai and Z. Wang, ACS Catalysis, 2022, 12, 8252–8258.
- 49 M. Guo, B. M. Lis, M. E. Ford and I. E. Wachs, *Applied Catalysis B: Environment and Energy*, 2022, **306**, 121108.
- 50 S. Jiang, L. D'Amario and H. Dau, *ChemSusChem*, 2022, 15, e202102506.
- 51 T. Liang, Z. Dai, Y. Liu, X. Zhang and H. Zeng, *Science Bulletin*, 2021, **66**, 2471–2478.
- 52 H. Sun, C.-W. Tung, Y. Qiu, W. Zhang, Q. Wang, Z. Li, J. Tang, H.-C. Chen, C. Wang and H. M. Chen, *Journal of the American Chemical Society*, 2021, **144**, 1174–1186.
- 53 J. Liu, Y. Li, Y. Wang, C. Xiao, M. Liu, X. Zhou, H. Jiang and C. Li, *Nano Research*, 2021, **15**, 1409–1414.
- 54 S. K. Pahari and Y.-T. Chen, *ACS Applied Materials & Interfaces*, 2022, **14**, 5177–5182.
- 55 Y. Yang, Z. Tan, J. Zhang, J. Yang, R. Zhang, S. Wang, Y. Song and Z. Su, *Green Energy & Environment*, 2023, 9, 1459– 1465.
- 56 C. Zhao, C. Wang, H. Xin, H. Li, R. Li, B. Wang, W. Wei, Y. Cui and Q. Fu, ACS Applied Materials & Interfaces, 2022,

14, 26194–26203.

- 57 X. Liu, Y. Xie, M. Hao, Z. Chen, H. Yang, G. I. Waterhouse, S. Ma and X. Wang, *Advanced Science*, 2022, 9, 2201735.
- 58 S. Wen, J. Huang, T. Li, W. Chen, G. Chen, Q. Zhang, X. Zhang, Q. Qian and K. K. Ostrikov, *Applied Catalysis B: Environment and Energy*, 2022, **316**, 121678.
- 59 K. H. Cho, S. Park, H. Seo, S. Choi, M. Y. Lee, C. Ko and K. T. Nam, Angewandte Chemie International Edition, 2021, 60, 4673–4681.
- 60 D. Zhang, Y. Li, P. Wang, J. Qu, Y. Li and S. Zhan, Nature Communications, 2023, 14, 3538.
- 61 H. A. Alzahrani and J. J. Bravo-Suárez, *Journal of Catalysis*, 2023, **418**, 225–236.
- 62 J.-Z. Zhang, Z. Zhang, H.-B. Zhang, Y. Mei, F. Zhang, P.-X. Hou, C. Liu, H.-M. Cheng and J.-C. Li, *Nano Letters*, 2023, 23, 8331–8338.
- 63 W. Chang, J. Qu, W. Li, Y.-H. Liu, X.-Z. Zhai, H.-J. Liu, Y. Kang and Z.-Z. Yu, *Small*, 2021, **17**, 2101857.
- 64 M. Graf, G. B. Vonbun-Feldbauer and M. T. M. Koper, ACS Nano, 2021, 15, 3188–3200.
- 65 F. Yang, M. L. Luna, F. T. Haase, D. Escalera-López, A. Yoon, M. Rüscher, C. Rettenmaier, H. S. Jeon, E. Ortega, J. Timoshenko, A. Bergmann, S. W. Chee and B. R. Cuenya, *Journal* of the American Chemical Society, 2023, **145**, 21465–21474.
- 66 Y. H. Park, S. B. Patil, X. Jin and S.-J. Hwang, *Nano Energy*, 2023, **113**, 108566.
- 67 H. Li, P. Wei, D. Gao and G. Wang, Current Opinion in Green and Sustainable Chemistry, 2022, 34, 100589.
- 68 C. Duan, C. Tang, S. Yu, L. Li, J. Li and Y. Zhou, Applied Catalysis B: Environment and Energy, 2022, **324**, 122255.
- 69 P. F. Wu, Y. Q. Yang, H. Y. Xi1, Y. Si, Y. H. Chu, X. Z. Su, W. S. Yan, T. T. You, Y. K. Gao, Y. Wang, W. X. Chen, Y. Y. Huang and P. G. Yin, *Small*, 2023, **20**, 2306716.
- 70 X. Du, M. Chen, S. Shen, P. Zhou, K. H. Lo and H. Pan, Materials Today Energy, 2022, 27, 101046.
- 71 J. Hao, H. Zhu, Y. Li, P. Liu, S. Lu, F. Duan, W. Dong, Y. Lu, T. Liu and M. Du, *Chemical Engineering Journal*, 2020, **404**, 126523.
- 72 Y. Wu, S. Sourav, A. Worrad, J. Zhou, S. Caratzoulas, G. Tsilomelekis, W. Zheng and D. G. Vlachos, ACS Catalysis, 2023, 13, 7371–7382.
- 73 H. Zhu, Z. Zhu, J. Hao, S. Sun, S. Lu, C. Wang, P. Ma,
 W. Dong and M. Du, *Chemical Engineering Journal*, 2021,
 431, 133251.
- 74 Z. Hou, C. Cui, Y. Yang and T. Zhang, Small, 2023, 19, 2207170.
- 75 H. Xiao, S. Li, J. Zhou, C. Zhao, Y. Yuan, X. Xia, Y. Bao, M. Lourenço, K. Homewood and Y. Gao, *Energy & Environmental Materials*, 2022, 6, e12537.
- 76 X. Wang, W. Wang, B. Liu, Z. Song, Z. Ren and H. Fu, *Small*, 2023, **19**, 2304084.
- 77 E. S. Davydova, M. Manikandan, D. R. Dekel and S. Sunde, ACS Applied Energy Materials, 2021, 4, 3404–3423.
- 78 M. Tan, T. Li, Y. Zhu, B. Shang and J. Dang, Journal of Molec-

ular Liquids, 2021, 331, 115767.

- 79 W. Tang, Z. Yu, H. Chen, R. Jiang, J. Huang, S. Li, Y. Hou, M. Wang, H. Pang and J. Liu, *Journal of Colloid and Interface Science*, 2023, 644, 358–367.
- 80 Y. Fu, D. Zhang, P. Li, Y. Han, J. You, Q. Wei and W. Yang, *Electrochimica Acta*, 2023, 451, 142294.
- 81 F. Xi, F. Bozheyev, X. Han, M. Rusu, J. Rappich, F. F. Abdi, P. Bogdanoff, N. Kaltsoyannis and S. Fiechter, ACS Applied Materials & Interfaces, 2022, 14, 52815–52824.
- 82 P.-C. Liao, R.-H. Jhang, Y.-H. Chiu, J. A. A. Valinton, C.-H. Yeh, V. D. Ebajo Jr, C.-H. Wang and C.-H. Chen, ACS Applied Energy Materials, 2021, 4, 3448–3459.
- 83 H. Wang, Y. Song, V. C. Ferrari, N. S. Kim, S. B. Lee, P. Albertus, G. Rubloff and D. M. Stewart, ACS Applied Materials & Interfaces, 2023, 15, 40409–40418.
- 84 Q. Li, Q. Chen, K. Jiang, S. Lei, Y. Deng and J. Bao, International Journal of Hydrogen Energy, 2023, 48, 17501–17511.
- 85 K. Xu, Z. Wang, C. He, S. Ruan, F. Liu and L. Zhang, ACS Applied Energy Materials, 2021, 4, 13226–13238.
- 86 Y. Zhu, X. Wang, X. Zhu, Z. Wu, D. Zhao, F. Wang, D. Sun, Y. Tang, H. Li and G. Fu, *Small*, 2022, **19**, 2206531.
- 87 D. Li, Y. Qin, J. Liu, H. Zhao, Z. Sun, G. Chen, D.-Y. Wu, Y. Su, S. Ding and C. Xiao, *Advanced Functional Materials*, 2021, **32**, 2107056.
- 88 C. Huang, B. Zhang, Y. Wu, Q. Ruan, L. Liu, J. Su, Y. Tang, R. Liu and P. K. Chu, *Applied Catalysis B: Environment and Energy*, 2021, **297**, 120461.
- 89 X. Ding, R. Jiang, J. Wu, M. Xing, Z. Qiao, X. Zeng, S. Wang and D. Cao, Advanced Functional Materials, 2023, 33, 2306786.
- 90 F. Braga, G. Casano, L. M. Daniels, M. Caffio and L. J. Hardwick, *Electrochimica Acta*, 2023, **455**, 142433.
- 91 C. Fan, X. Wang, X. Wu, Y. Chen, Z. Wang, M. Li, D. Sun, Y. Tang and G. Fu, *Advanced Energy Materials*, 2023, **13**, 2203244.
- 92 X. Zhang, C. Feng, B. Dong, C. Liu and Y. Chai, Advanced Materials, 2023, 35, 2207066.
- 93 W. He, R. Zhang, H. Liu, Q. Hao, Y. Li, X. Zheng, C. Liu, J. Zhang and H. L. Xin, *Small*, 2023, **19**, 2301610.
- 94 M. Pei, T. Li, G. Chen and K. K. Ostrikov, *International Journal of Hydrogen Energy*, 2023, **51**, 975–987.
- 95 J. Zhang, R. Djellabi, S. Zhao, M. Qiao, F. Jiang, M. Yan and X. Zhao, *Journal of Hazardous Materials*, 2020, **394**, 122559.
- 96 C. Lee, Y. Yokoyama, Y. Kondo, Y. Miyahara, T. Abe and K. Miyazaki, ACS Applied Materials & Interfaces, 2020, 12, 56076–56085.
- 97 B. Han, Y. Gao, L. Zhu, Z. Ma, X. Zhang, H. Ding and Y. Zhang, Advanced Materials Technologies, 2020, 5, 1900963.
- 98 C. Liu, G. Zhang, W. Zhou, K. Zhang, J. Qu and H. Liu, ACS Applied Materials & Interfaces, 2021, 13, 18673–18682.
- 99 Z. Tu, X. Liu, D. Xiong, J. Wang, S. Gong, C. Xu, D. Wu and Z. Chen, *Chemical Engineering Journal*, 2023, **475**, 146253.
- 100 J. Choi, D. Kim, W. Zheng, B. Yan, Y. Li, L. Y. S. Lee and

Y. Piao, Applied Catalysis B: Environment and Energy, 2021, 286, 119857.

- 101 Y. Wu, Z. Xie, Y. Li, Z. Lv, L. Xu and B. Wei, International Journal of Hydrogen Energy, 2021, 46, 25070–25080.
- 102 J. Hu, A. Al-Salihy, J. Wang, X. Li, Y. Fu, Z. Li, X. Han, B. Song and P. Xu, *Advanced Science*, 2021, **8**, 2103314.
- 103 Y. Wei, L. Yi, R. Wang, J. Li, D. Li, T. Li, W. Sun and W. Hu, Small, 2023, 19, 2301267.
- 104 L. Li, L. Zhang, L. Gou, S. Wei, X. Hou and L. Wu, *Chemical Engineering Journal*, 2023, **454**, 140292.
- 105 J. N. Hausmann, P. V. Menezes, G. Vijaykumar, K. Laun, T. Diemant, I. Zebger, T. Jacob, M. Driess and P. W. Menezes, Advanced Energy Materials, 2022, 12, 2202098.
- 106 D. Kiani, S. Sourav, J. Baltrusaitis and I. E. Wachs, ACS Catalysis, 2021, 11, 10131–10137.
- 107 Y. Zhang, J. Yang, Z. Yu, Y. Hou, R. Jiang, J. Huang, F. Yang, S. Yao, L. Gao and W. Tang, *Chemical Engineering Journal*, 2021, **416**, 129124.
- 108 Q.-N. Wang, X. Sun, Z. Feng, Z. Feng, P. Zhang, Y. Zhang and C. Li, ACS Catalysis, 2022, 12, 3323–3332.
- 109 H. Yin, H. Xiao, R. Qin, J. Chen, F. Tan, W. Zhang, J. Zhao, L. Zeng, Y. Hu, F. Pan, P. Lei, S. Yuan, L. Qian, Y. Su and Z. Zhang, ACS Applied Materials & Interfaces, 2023, 15, 20100–20109.
- 110 X. Liu, W. Chen, C. Zhang, T. Li, J. Huang, G. Chen, T. Shao, T. Gong and K. Ostrikov, ACS Sustainable Chemistry & Engineering, 2022, 10, 8064–8074.
- 111 Z. Wen, F. Wu, L. Li, N. Chen, G. Luo, J. Du, L. Zhao, Y. Ma, Y. Li and R. Chen, ACS Applied Materials & Interfaces, 2022, 14, 38807–38814.
- 112 K. Wang, H. Yang, Q. Wang, J. Yu, Y. He, Y. Wang, S. Song and Y. Wang, Advanced Energy Materials, 2023, 13, 2204371.
- 113 C. Wei, Y. Yang, H. Ma, G. Sun, X. Wang, Y. Cheng, C. Zhang,
 B. S. Yeo, C. He and A. B. Wong, *Advanced Functional Materials*, 2023, 33, 2214992.
- 114 P. W. Menezes, S. Yao, R. Beltrán-Suito, J. N. Hausmann, P. V. Menezes and M. Driess, *Angewandte Chemie*, 2021, 133, 4690–4697.
- 115 X. Peng, C. Huang, J. Dai and Y. Liu, International Journal of Hydrogen Energy, 2021, 47, 4386–4393.
- 116 J. Yu, M. Yang, Z. Li, C. Liu, Y. Wei, C. Zhang, B. Man and F. Lei, *Analytical Chemistry*, 2020, **92**, 14754–14761.
- 117 Y. Sun, G. Xu, Y. Wang, W. Shi, Y. Yu and H. He, *Environmen*tal Science & Technology, 2023, **57**, 20370–20379.
- 118 J.-J. Liu, Z.-W. Jiang and S.-W. Hsu, *ACS Applied Materials & Interfaces*, 2023, **15**, 6716–6725.
- 119 D. M. Josepetti, B. P. Sousa, S. A. J. Rodrigues, R. G. Freitas and G. Doubek, *Journal of Energy Chemistry*, 2023, 88, 223– 231.
- 120 G. J. Myres and J. M. Harris, Analytical Chemistry, 2023, 95, 3499–3506.
- 121 S. Y. Chun, S. Park, S. I. Lee, H. D. Nguyen, K.-K. Lee, S. Hong, C.-H. Han, M. Cho, H.-K. Choi and K. Kwak, *Nano*

Energy, 2021, 82, 105721.

- 122 B. Liu, R. Feng, M. Busch, S. Wang, H. Wu, P. Liu, J. Gu, A. Bahadoran, D. Matsumura, T. Tsuji, D. Zhang, F. Song and Q. Liu, ACS Nano, 2022, 16, 14121–14133.
- 123 M. Nadjafi, P. M. Abdala, R. Verel, D. Hosseini, O. V. Safonova, A. Fedorov and C. R. Müller, ACS Catalysis, 2020, 10, 2314–2321.
- 124 F. Lyu, B. Ma, X. Xie, D. Song, Y. Lian, H. Yang, W. Hua, H. Sun, J. Zhong, Z. Deng, T. Cheng and Y. Peng, Advanced Functional Materials, 2023, 33, 2214609.
- 125 Q. Zeng, Y. Wen, X. Duan, X. Xu, J. Tan, Q. Zhang, Y. Liu and Q. Zeng, *Applied Catalysis B: Environment and Energy*, 2024, 346, 123752.
- 126 M. Guo, B. M. Lis, M. E. Ford and I. E. Wachs, *Applied Catalysis B: Environment and Energy*, 2022, **306**, 121128.
- 127 Y. Xu, J. Wang, S. Wang, Z. Zhai, B. Ren, Z. Tian, L. Zhang and Z. Liu, *International Journal of Hydrogen Energy*, 2023, 48, 34340–34354.
- 128 M. Li, Y. Hu, W. Fang, S. Xin, Y. Wu, Y. Cao, W. Cui, Z. Li and H. Zhao, *Chemical Engineering Journal*, 2023, **480**, 148014.
- 129 G. Li, Y. Song, C. Zhu, X. Dong, W. Chen, G. Wu, G. Feng, S. Li and W. Wei, *Journal of CO2 Utilization*, 2023, 70, 102446.
- 130 Q. Huang, Z. Xi and W. Wei, *Journal of Alloys and Compounds*, 2020, **843**, 155971.
- 131 S. Sourav, Y. Wang, D. Kiani, J. Baltrusaitis, R. R. Fushimi and I. E. Wachs, Angewandte Chemie International Edition, 2021, 60, 21502–21511.
- 132 J. Liu, J. Jiang, M. Wang, J. Kang, J. Zhang, S. Liu, Y. Tang and S. Li, *Separation and Purification Technology*, 2022, 294, 121082.
- 133 Y. Yang, Y. Li, W. Zhai, X. Li, D. Li, H. Lin and S. Han, *Analytical Chemistry*, 2020, **93**, 946–955.
- 134 C. Liu, F. Lei, M. Gong, X. Zhou, X. Zhao, Z. Li, C. Zhang,
 B. Man and J. Yu, *Energy & Environmental Materials*, 2022,
 7, e12517.
- 135 J. Dou, Y. Tang, Z. Lu, G. He, J. Xu and Y. He, *Environmental Science & Technology*, 2023, **57**, 5703–5713.
- 136 J. Yang, P. Li, X. Duan, D. Zeng, Z. Ma, S. An, L. Dong,
 W. Cen and Y. He, *Journal of Hazardous Materials*, 2022,
 430, 128463.
- 137 W. Qu, Z. Tang, S. Tang, H. Wen, J. Fang, Q. Lian, D. Shu and C. He, *Advanced Functional Materials*, 2023, **33**, 2301677.
- 138 D. Kiani, S. Sourav, W. Taifan, M. Calatayud, F. Tielens, I. E. Wachs and J. Baltrusaitis, ACS Catalysis, 2020, 10, 4580– 4592.
- 139 K. Dang, H. Dong, L. Wang, M. Jiang, S. Jiang, W. Sun, D. Wang and Y. Tian, Advanced Materials, 2022, 34, 2200302.
- 140 N. A. Gvozdik and K. J. Stevenson, *Electrochimica Acta*, 2021, 383, 138300.
- 141 J. Chen, G. Liu, Y.-z. Zhu, M. Su, P. Yin, X.-j. Wu, Q. Lu, C. Tan, M. Zhao, Z. Liu, W. Yang, H. Li, G.-H. Nam, L. Zhang, Z. Chen, X. Huang, P. M. Radjenovic, W. Huang, Z.-q. Tian,

J.-f. Li and H. Zhang, *Journal of the American Chemical Society*, 2020, **142**, 7161–7167.

- 142 W. G. Nunes, B. M. Pires, F. E. D. Oliveira, A. M. de Marque,
 L. F. Cremasco, R. Vicentini, G. Doubek, L. M. D. Silva and
 H. Zanin, *Journal of Energy Storage*, 2020, 28, 101249.
- 143 Y. Yu, D. Wei, Z. Tong, J. Wang, J. Chen and C. He, *Chemical Engineering Journal*, 2022, **442**, 136356.
- 144 T. Li, C. Tang, H. Guo, H. Wu, C. Duan, H. Wang, F. Zhang, Y. Cao, G. Yang and Y. Zhou, ACS Applied Materials & Interfaces, 2022, 14, 49765–49773.
- Y. Wen, Z. Zhuang, H. Zhu, J. Hao, K. Chu, F. Lai, W. Zong, C. Wang, P. Ma, W. Dong, S. Lu, T. Liu and M. Du, *Advanced Energy Materials*, 2021, 11, 2102138.
- 146 A. Nekrasov, O. Iakobson and O. Gribkova, *Electrochimica Acta*, 2021, **390**, 138869.
- 147 Y. Chen, Y. Zhu, H. Sheng, J. Wang, C. Zhang, Y. Chen, W. Huang and G. Lu, ACS Catalysis, 2022, 12, 2938–2946.
- 148 L. Fu, Z. Qu, L. Zhou and Y. Ding, *Applied Catalysis B: Environment and Energy*, 2023, **339**, 123170.
- 149 Y. Tao, S. Fan, X. Li, J. Yang, J. Wang and G. Chen, *Journal* of Colloid and Interface Science, 2024, **654**, 731–739.
- 150 R. Hao, S. Fang, L. Tian, R. Xia, Q. Guan, L. Jiao, Y. Liu and W. Li, *Chemical Engineering Journal*, 2023, 467, 143371.
- 151 S. Dai, W. Zhang, T. Xia, H. Hu, Z. Zhang and X. Li, *Scripta Materialia*, 2022, **215**, 114691.
- 152 D. Kotlarek, S. Fossati, P. Venugopalan, N. G. Quilis, J. Slabý, J. Homola, M. Lequeux, F. Amiard, M. L. de la Chapelle, U. Jonas and J. Dostálek, *Nanoscale*, 2020, **12**, 9756–9768.
- 153 C. Li, S. Li, A. Qu, H. Kuang, L. Xu and C. Xu, *Advanced Functional Materials*, 2020, **30**, 2001451.
- 154 Z. Li, C. Zhang, H. Sheng, J. Wang, Y. Zhu, L. Yu, J. Wang, Q. Peng and G. Lu, *ACS Applied Materials & Interfaces*, 2022, 14, 38302–38310.
- 155 K. K. Rani, Q. Yang, Y.-H. Xiao, R. Devasenathipathy, Z. Lu, X. Chen, L. Jiang, Z. Li, Q. Liu, H. Chen, L. Yu, Z. Li, S. Khayour, J. Wang, K. Wang, G. Li, D.-Y. Wu and G. Lu, ACS Applied Materials & Interfaces, 2023, 15, 57818–57827.
- 156 L. Tian, R. Hao, Y.-X. Zhou, Y. Zhang, Q.-X. Guan, Y.-P. Liu and W. Li, ACS Sustainable Chemistry & Engineering, 2023, 11, 15865–15875.
- 157 H. Yu, Y. Long, D. Chen, X. Dong, X. Ye, Y. Zhang, F. Li, Y. Xu, Y. Tao and Q.-H. Yang, *Small*, 2023, **20**, 2303832.
- 158 P. Shao, Y. Liao, X. Feng, C. Yan, L. Ye and J. Yang, *Journal* of Colloid and Interface Science, 2023, **633**, 199–206.
- 159 P. P. Paalanen, S. H. van Vreeswijk and B. M. Weckhuysen, *ACS Catalysis*, 2020, **10**, 9837–9855.
- 160 X. Zheng, X. Yan, J. Ma, X. Yao, J. Zhang and L. Wang, ACS Applied Materials & Interfaces, 2021, **13**, 16498–16506.
- 161 B. Long, J. Ma, T. Song, X. Wang and Y. Tong, *Electrochimica Acta*, 2021, **374**, 137934.
- 162 A. Kong, M. Liu, H. Zhang, Z. Cao, J. Zhang, W. Li, Y. Han and Y. Fu, *Chemical Engineering Journal*, 2022, **445**, 136719.
- 163 S. Li, T. Wang, D. Tang, Y. Yang, Y. Tian, F. Cui, J. Sun, X. Jing, D. S. Sholl and G. Zhu, Advanced Science, 2022, 9,

2203712.

- 164 J. Li, G. Wang, L. Yu, J. Gao, Y. Li, S. Zeng and G. Zhang, ACS Applied Materials & Interfaces, 2021, 13, 13139–13148.
- 165 A. A. Papaderakis, A. Ejigu, J. Yang, A. Elgendy, B. Radha, A. Keerthi, A. Juel and R. A. W. Dryfe, *Journal of the American Chemical Society*, 2023, **145**, 8007–8020.
- 166 W. Yang, M. Li, B. Zhang, Y. Liu, J. Zi, H. Xiao, X. Liu, J. Lin, H. Zhang, J. Chen, Z. Wan, Z. Li, G. Li, H. Li and Z. Lian, *Advanced Functional Materials*, 2023, **33**, 2304852.
- 167 L. Han, Y. Zhou, Z. Tan, H. Zhu, Y. Hu, X. Ma, F. Zheng, F. Feng, C. Wang and W. Liu, *Analytical Chemistry*, 2023, 95, 6312–6322.
- 168 H. Yan, S. Alayoglu, W. Wu, Y. Zhang, E. Weitz, P. C. Stair and J. M. Notestein, *ACS Catalysis*, 2021, **11**, 9370–9376.
- 169 X. You, D. Zhang, X.-G. Zhang, X. Li, J.-H. Tian, Y.-H. Wang and J.-F. Li, *Nano-Micro Letters*, 2024, **16**, 53.
- 170 Y. Li, C. Li, R. Li, X. Peng, J. Zhang, P. Yang, G. Wang,
 B. Wang, P. Broekmann and M. An, ACS applied materials & interfaces, 2023, 15, 47628–47639.
- 171 Z. Wang, J. Liu, X. Wu, N. Nie, D. Zhang, H. Li, H. Zhao, J. Lai and L. Wang, *Applied Catalysis B: Environment and En*ergy, 2022, **314**, 121465.
- 172 M. P. L. Kang, H. Ma, R. Ganganahalli and B. S. Yeo, ACS Catalysis, 2023, 14, 116–123.

- 173 H. Zhang, Y. Sun, J. Wang, X. Gao, Z. Tang, S. Li, Z. Hou, X. Wang, K. Nie, J. Xie, Z. Yang and Y.-M. Yan, ACS Applied Energy Materials, 2023, 6, 11448–11457.
- 174 S. Mu, L. Li, R. Zhao, H. Lu, H. Dong and C. Cui, ACS Applied Materials & Interfaces, 2021, 13, 47619–47628.
- 175 D. Xiong, X. He, X. Liu, S. Gong, C. Xu, Z. Tu, D. Wu, J. Wang and Z. Chen, *Small*, 2023, **20**, 2306100.
- 176 J. Gao, Y. Meng, A. Benton, J. He, L. G. Jacobsohn, J. Tong and K. S. Brinkman, ACS applied materials & interfaces, 2020, 12, 38012–38018.
- 177 Z. Zhu, L. Luo, Y. He, M. Mushtaq, J. Li, H. Yang, Z. Khanam, J. Qu, Z. Wang and M.-S. Balogun, *Advanced Functional Materials*, 2023, 34, 2306061.
- 178 M. N. Polyanskiy, Scientific Data, 2024, 11, 94.
- 179 W. S. Werner, K. Glantschnig and C. Ambrosch-Draxl, *Journal of Physical and Chemical Reference Data*, 2009, **38**, 1013–1092.
- 180 V. Nemoshkalenko, V. Antonov, M. Kirillova, A. Krasovskii, L. Nomerovannaya et al., Zh. Eksp. Teor. Fiz., 1986, 90, 201– 208.
- 181 P. Schmitt, N. Felde, T. Döhring, M. Stollenwerk, I. Uschmann, K. Hanemann, M. Siegler, G. Klemm, N. Gratzke, A. Tünnermann *et al.*, *Optical Materials Express*, 2022, **12**, 545–559.