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Fig. S1 Charge capacities of a-WO3 films cycling in different electrolytes within 2.0- 4.0 V vs. 

Li/Li+. a, LiClO4-PC. b, LiClO4-EC/DEC. c, LiTFSI-PC. The concentration of the electrolyte was 

kept to be 1 mol L-1.

Fig. S2 Potential profiles during the detrapping processes of a-WO3 films in different 

electrolytes. a, LiClO4-PC. b, LiClO4-ECDEC. c, LiTFSI-PC. The constant current was set to be 

3μm cm-2 in all electrolytes.



Fig. S3 The electrochromic performance of a-WO3 film under cycling within the electrolyte of 

LiClO4-DEC. a, CV curves and b, in -situ transmittance variation at specific wavelengths of WO3 

during cycling in LiClO4-DEC were recorded. c, The color of the LiClO4-DEC electrolyte after 

electrochemical cycling. The LiClO4-DEC electrolyte underwent a color change from its initial 

transparency to orange as a result of a side reaction between the DEC solvent and the lithium sheet 

electrode.[1] The color alteration of the electrolyte indicates its deterioration and can not be used as 

an electrolyte alone in our study.



Fig. S4 XPS results of a-WO3 films after cycling in different electrolytes. a, XPS depth profiles 

and b, corresponding normalized concentrations of O concentration of the a-WO3 film cycling in 

LiClO4-EC/DEC. c, XPS depth profiles and d, corresponding normalized concentrations of F 

concentration of the a-WO3 film cycling in LiTFSI-PC.

Fig. S5 Electrochromic performance of the a-WO3 film cycling in the electrolyte of 1M LiOTF-

PC. a, Charge capacities of the a-WO3 film upon cycling. b, In-situ optical transmittances @ 350- 

1600 nm of the a-WO3 film at different states.



Fig. S6 Electrochromic performance of the a-WO3 film cycling in the electrolyte of 1M LiPF6-

PC. a, CV curves and b, in-situ transmittance variations monitored upon cycling. The severe 

degradation of the a-WO3 film within LiPF6-PC can be discerned. The rapid attenuation of a-WO3 

in the LiPF6-PC solution is attributed to the fact that Li+ has a relatively large charge-to-radius ratio, 

it can easily separate fluorine from hexafluorophosphate (PF6
−). Therefore, the ion-paired LiPF6 can 

be easily decomposed into phosphorus pentafluoride (PF5) and lithium fluoride (LiF) when it is not 

completely dissociated.[2] The generated PF5 not only catalyzes the ring-opening reaction of cyclic 

carbonates to form carbonate polymers at the interface [2,3], but also reacts with trace amounts of 

water to produce aggressive hydrogen fluoride (HF). This HF will damage the integrity of the 

interface and subsequently trigger a variety of parasitic side reactions[4].



Fig. S7 Electrochemical results and optical spectral of a-WO3 film cycling and rejuvenation 

in 1M LiFSI-PC. a to c, CV curves, In-situ optical transmittances profiles of single wavelength at 

550 nm and of full spectrum @ 350-1600 nm of the a-WO3 film upon cycling and detrapping in the 

electrolyte of LiFSI-PC. 

Fig. S8 Optical spectral and electrochemical results of the a-WO3 film cycling and detrapping 

in the 1M LiTFSI-PC electrolyte. a, In-situ optical transmittances @ 350- 1600 nm of the a-WO3 

film at different states. b, Charge capacities of the a-WO3 film while cycling and detrapping in the 

LiTFSI-PC electrolyte.



Fig. S9 Optical spectral and electrochemical results of the a-WO3 film cycling and detrapping 

in the LiTFSI-PC and the LiClO4-PC electrolyte. a, In-situ optical transmittances @ 350- 1600 

nm of the a-WO3 film at different states as marked. b, Charge capacities of the a-WO3 film while 

cycling and detrapping in the LiTFSI-PC and the LiClO4-PC electrolyte.

Fig. S10 NiO cycling in LiBF4-PC, showing an activation. The potential window is 2.0-4.0 V vs 

Li, and the sweep rate is 20 mV s-1, which is kept to the same for a-WO3.
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