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1 Supplementary Figures

2

3 Supplementary Fig. 1 | Tape peeling test showing the robustness of Au nanomembrane 

4 on SEBS against mechanical abrasion. a, The Au nanomembrane on SEBS shows high 

5 resistance against tape peeling, while the surface remains nearly unbroken after tape peeling, 

6 due to its interpenetrating structure. b, The conventional Au on PDMS has weak bonding 

7 between AuNPs and substrate, thus the Au was easily peeled off by tape, leaving transparent 

8 substrate. c, Relative resistance changes of the Au nanomembrane on SEBS under tape peeling 

9 compared to the conventional Au on PDMS, which demonstrate the mechanical and electrical 

10 robustness of the Au nanomembrane on SEBS.
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1

2 Supplementary Fig. 2 | TOF-SIMS analysis of AuNPs diffused within the SEBS elastomer 

3 matrix at different deposition rates. a–c, Au dispersion profiles at deposition rate of 5.0 Å s-1 

4 (a), 0.5 Å s-1 (b), and 0.1 Å s-1 (c). d, The Au--to-C- peak ratio. Au- (yellow) and C- (blue) were 

5 selected as the characteristic group during sputtering to evaluate the nano-dispersion of the 

6 AuNPs to SEBS elastomer matrix along the film thickness direction.



1

2 Supplementary Fig. 3 | Normalized resistance changes of Au nanomembrane electrodes 

3 under strain, displayed on a logarithmic scale. a,b, Measurements across strain ranges of 

4 1.0–6.0 (a) and 1.0–1.5 (b). The sample has a width of 1 cm and a length of 3 mm.
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2 Supplementary Fig. 4 | Transmittance of the T-iSPV electrode compared to that of the 

3 SEBS-Au bulk electrode.
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2 Supplementary Fig. 5 | OM images show the as-fabricated mesh electrodes after the wet 

3 etching process (a) and the lift-off process (b).
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1

2 Supplementary Fig. 6 | The sheet resistance distributions of the T-iSPV. Histograms 

3 showing the sheet resistance for 48 individual electrodes.
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1

2 Supplementary Fig. 7 | OM images of patterned PR (a) and Au nanomembrane (b) on 

3 SEBS.
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2 Supplementary Fig. 8 | Transmittance of the T-iSPV electrode as determined by the ratio 

3 of pitch to line width.
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1

2 Supplementary Fig. 9 | Photographs and transmittance of the wet-etched control 

3 electrode and the T-iSPV electrode.
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1

2 Supplementary Fig. 10 | TOF-SIMS analysis of AuNPs diffused within the SEBS 

3 elastomer matrix. a–d, Au dispersion profiles in the control line mesh region (a) and its 

4 adjacent blank region with residual AuNPs (c), compared to the T-iSPV line mesh region (b) 

5 and its blank region without AuNP accumulation at the surface (d). e, The Au--to-C- peak ratio. 

6 Au- (yellow) and C- (blue) were selected as the characteristic group during sputtering to 

7 evaluate the nano-dispersion of the AuNPs to SEBS elastomer matrix along the film thickness 

8 direction.
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1

2 Supplementary Fig. 11 | Photographs of T-iSPV on the forearm skin. The blue dashed 

3 boxes on the right highlight the outer boundary of the electrode, while the red arrows indicate 

4 the directions of compressive and tensile strains. The red dashed box at the top left corresponds 

5 to the field of view shown in the bottom left. After undergoing compressive and tensile strains, 

6 the T-iSPV remained conductive.
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1

2 Supplementary Fig. 12 | OM and AFM images of the T-iSPV line mesh region and its 

3 adjacent blank region, before and after stretching. RMS, root mean square roughness.
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2 Supplementary Fig. 13 | Transmittance changes in T-iSPV electrodes under strain.
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2 Supplementary Fig. 14 | Resistance changes in the T-iSPV electrodes during stretching 

3 cycles at 30% strain. The inset shows magnified resistance changes over 20 stretching cycles.
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2 Supplementary Fig. 15 | Impedance of T-iSPV. 
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2

3 Supplementary Fig. 16 | EIS impedance measurement between the T-iSPV and the skin 

4 surface. a, Schematic illustration of the EIS measurement setup. REF, reference electrode; CE, 

5 counter electrode; WE, working electrode; WS, working sense electrode. b, Impedance 

6 measured on the forearm in contact with the T-iSPV in dry state for normal skin condition 

7 (black) and wet state for skin surface moistened with 1X PBS to mimic sweat exposure (blue). 

8 c, EIS fitting parameters, from the equivalent circuit diagram of the contact impedance, 

9 including the T-iSPV-skin interface resistance (left) and the T-iSPV-skin interface capacitance 

10 (right). Data are expressed as the mean ± s.d. (n = 5 for independent samples). Statistical 

11 significance and P values were determined by two-sided unpaired t-tests; ns, not significant. 

12 [Illustration in (a) was created with BioRender.com]
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1

2 Supplementary Fig. 17 | Schematic illustration of fabrication process of sECD.

3 This revision more precisely describes the vertical stacking and bonding process used to 

4 assemble the sECD. We hope this explanation and the added visual aid address the reviewer’s 

5 concerns thoroughly.
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1

2 Supplementary Fig. 18 | Resistance changes measured from tactile sensors upon finger 

3 touch. a, Sensor configuration based on a short-circuit design, exhibiting negligible resistance 

4 variation due to a direct conductive path. b, Open-circuit sensor configuration with a parallel 

5 resistor, showing a distinct resistance change upon touch, enabling reliable tactile signal 

6 detection.
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2 Supplementary Fig. 19 | Matlab code applied for TIBS.
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1

2 Supplementary Fig. 20 | Arduino code applied for TIBS.
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1 Supplementary Tables

2

3 Supplementary Table 1 | Comparison of T-iSPV with transparent conductive electrodes 



1

2 Supplementary Table 2 | Comparison of T-iSPV with state-of-the-art literature on metal 

3 mesh-based deformable transparent electrodes.
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1 Supplementary Video

2

3 Supplementary Video 1. Real-time demonstration of the integrated bioelectronics system. 

4 A fully assembled wearable platform integrating T-iSPV-based ECG electrodes, a stretchable 

5 electrochromic display (sECD), and a tactile sensor was mounted on human skin. Upon tactile 

6 stimulation, the system activates in real time, toggling the sECD to visually indicate operation. 

7 Concurrently, ECG signals are acquired via the T-iSPV electrode, processed through the data 

8 acquisition module, and used to control the second sECD, which turned on when the measured 

9 heart rate falls below a predefined threshold. This demonstration validates the seamless 

10 integration and functional responsiveness of the system under dynamic conditions.
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