Electronic Supplementary Information (ESI)

A new twinning mechanism controlled by solute electronic structures

Wenjin Zheng^a, Huasheng Lei^a, Wei Lai^a, Xiaoyuan Ye^a, Junwen Fu^a, Chongze Hu^{b*}, Fu-Zhi Dai^{c*}, Zhiyang Yu^{a*}

^aState Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, P. R. China.

^bDepartment of Aerospace Engineering and Mechanics, The University of Alabama, Tuscaloosa, Alabama 35487, USA.

^cSchool of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.

*Corresponding author Email: hucz@ua.edu (C.H.); dfzshiwo@163.com (F.D.); yuzyemlab@fzu.edu.cn (Z.Y.)

This PDF file includes:

Figs. S1 to S2 Table S1 to S3

Fig. S1. HAADF-STEM image of the W₂C phase and the region where EELS spectra were acquired are shown. a A low-magnification HAADF image of the W₂C phase highlights EELS collection region, marked by a yellow box. **b** The high-resolution HAADF image displays the atomic-scale structure of the W₂C phase.

Fig. S2. Atomic-resolution HAADF images and intensity profiles across the (V, W)C-WC interface with distinct stacking sequences. a-c Stacking sequences of the (V, W)C regions (*ABACBA*, *ABCBCA*, and *ABCABC* sequences, respectively, from bottom layer to top layer) are shown, overlaid with atomic models to highlight structural differences. d-f Corresponding HAADF intensity profiles extracted from the boxed regions, vertically integrated along the P1 \rightarrow P2, P3 \rightarrow P4, and P5 \rightarrow P6 lines.

Layer	3	2	1	0	ī	2	3	4	5
V	4.7	6.5	21.6	57.6	45.6	54.5	63.7	65.8	69.3
Error	0.8	1.0	2.2	3.0	3.1	3.0	2.8	2.8	2.6
W	95.3	93.5	78.4	42.4	54.4	45.5	36.3	34.2	30.7
Error	0.8	1.0	2.2	3.0	3.1	3.0	2.8	2.8	2.6

 Tables S1 Measured chemical compositions of different atomic layers from the P1 in WC side to the P2 in (V, W)C side.

Tables S2 Measured chemical compositions of different atomic layers from the P3 in WC side to the P4 in (V, W)C side.

				Jule 14	ш(•,	n j C 310	0.		
Layer	3	2	1	0	ī	2	3	4	5
V	3.4	8.7	20.4	59.0	59.3	49.5	50.9	66.1	66.8
Error	0.8	1.4	2.1	2.9	2.9	3.1	3.1	2.7	2.7
W	96.6	91.3	79.6	41.0	40.7	50.5	49.1	33.9	34.2
Error	0.8	1.4	2.1	2.9	2.9	3.1	3.1	2.7	2.7

 Tables S3 Measured chemical compositions of different atomic layers from the P5 in WC side to the P6 in (V, W)C side.

Layer	3	2	1	0	ī	2	3	4	5
V	6.1	5.9	13.1	57.6	81.8	86.3	88.3	86.9	87.9
Error	1.0	1.3	2.0	3.0	1.9	1.5	1.3	1.4	1.4
W	93.9	94.1	86.9	42.4	18.2	13.7	11.7	13.1	12.1
Error	1.0	1.3	2.0	3.0	1.9	1.5	1.3	1.4	1.4