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Computational details
1. Real-Time Time-Dependent Density Functional Theory in the Kohn-Sham 
Formulation 

Time-dependent (TD) Kohn-Sham (KS) equation
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We can expand the wavefunction  in a basis, .( , )r t ( ; ( ))r R t
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 is TDKS orbitals, and  is the ground-state KS orbital. Substituting ( , )r t ( ; ( ))r R t

the equation (2) into the equation (1) gives
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where nonadiabatic coupling vector 

(4)( ; ) | | ( ; ) .Rd r R r Rkm k m    

2. The Autocorrelation Function, Spectral Density and Decoherence Time
First, the autocorrelation function (ACF)
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where . The  and  are the unnormalized ACF ( ) ( ) ( )ij ij ijE t E t E t     ( )unC t ( )ijE t

and energy gap between electronic states i and j, respectively.
Then, the spectral density is obtained through the Fourier transform of ACF 
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It can identify which frequencies of phonon vibrations are coupled with the electronic 
degrees of freedom. Meanwhile, the amplitude of the phonon vibration mode reflects 
the intensity of the phonon mode of the electron-phonon coupling at a given frequency.

Finally, the decoherence function is calculated as

(7)2 0 0

1( ) exp ( ) .
t t

ij ijD t dt dt C t
     

  h

By fitting the decoherence function to a Gaussian model, we can extract the 
characteristic decoherence timescale.



Figure S1. Variation of the total energy of (a) Pd4S3Te3 and (b) Pd4Se3Te3 with time 
obtained from AIMD simulation at 300 K. Insets in (a) and (b) are the snapshots taken 
from the end of the AIMD simulations.



Figure S2. Phonon spectra of (a) Pd4S3Te3 and (b) Pd4Se3Te3.



Figure S3. (a) Young’s modulus, (b) Possion’s ration of Pd4S3Te3, (c) Young’s 

modulus and (d) Possion’s ration of Pd4Se3Te3 as a function of the angle θ (θ = 0° 

corresponds to the x axis).



Figure S4. Simulated room temperature Hall coefcient RHxyz as a function of chemical 
potential for I and F states of (a) Pd4S3Te3 and (b) Pd4Se3Te3. Simulated room 
temperature Hall coefcient RHyxz as a function of chemical potential for I and F states of 
(c) Pd4S3Te3 and (d) Pd4Se3Te3.



Figure S5. Simulated band structures for paraelastic phase (a) Pd4S3Te3 and (b) 
Pd4Se3Te3.



Figure S6. Simulated orbital-resolved band structures for (a) Pd4S3Te3 and (b) 
Pd4Se3Te3.


