Supplementary Materials

Guide to propose the trial atomic fluctuations of the internal carbyne at each MCS [19]

 The trial fluctuations (δx, δy, δz) of the randomly selected carbon atom along x, y and z axis:

 $\delta x = \pm v < \delta t > R_c$

$$\delta y = \delta z \sim \frac{k_B T}{\langle E_1 + E_2 + E_3 \rangle} \delta x$$

The free particle velocity is $v = \sqrt{\frac{k_B T}{M}}$.

The average scattering time $\langle \delta t \rangle \sim 10^{-13}$ s

M: The mass of a carbon atom.

 R_c : Random number within 0 and 1

 k_{B} : Boltzmann constant

 $< E_1 + E_2 + E_3 >$: The average energy of single, double and triple bond.

• The stable carbyne chain inside the host should have a shorter mean free path (MFP) and a narrower range of spatial fluctuation compared to an unstable isolated carbyne chain. Hence, the Hooke's factor f(Hooke) is created to refine the trial atomic fluctuation.

$$f(Hooke) = \frac{K_{break} \left(| _{max} - < | _{eq} > \right)}{K_{carbyne@host} \left(| _{carbyne@host} | _{0K} - < | _{eq} > \right)}$$

The refined trial dynamics $(\delta x', \delta y', \delta z') = (\delta x \cdot f(Hooke), \delta y \cdot f(Hooke), \delta z \cdot f(Hooke))$ monitoring from a chain-breaking state to a crystalline form.

Chain-breakage: the maximum C-C length = $I_{max} \sim 1.73$ Å associated with the spring constant K_{break} .

The ground state of an isolated LCC: bond length = $\langle I_{eq} \rangle \sim 1.34$ Å

The average bond length of the internal LCC in the host at $0K = |_{carbyne@host}|_{0K}$ associated with the spring constant $K_{carbyne@host}$.

Figure S1: Guide to propose the trial type of covalent bond of the internal carbyne at each MCS [19]