Supporting Information

Enhanced selective gold recovery from e-waste via synergistic hetero-atom controlled quasi-planar benzoxazine-based covalent organic frameworks

Sushil Kumar^a⁺, Mahira Bashri^a⁺, Safa Gaber^a, José I. Martínez^b, Matthew J. O'Connor^c, Sabu Varghese^c, Blaž Belec^d, Gisha Elizabeth Luckachan, and Dinesh Shetty^{*a,e}

^a Department of Chemistry, Khalifa University, Abu Dhabi 127788, United Arab Emirates

^b Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), C/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain

^c Core Technology Platform, New York University Abu Dhabi (NYUAD), Saadiyat Island, 129188, Abu Dhabi, United Arab Emirates

^d Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, Slovenia

^e Center for Catalysis & Separations (CeCaS), Khalifa University of Science & Technology, Abu Dhabi 127788, UAE

*Corresponding author.

E-mail address: dinesh.shetty@ku.ac.ae (Dr. Dinesh Shetty)

Contents

Section S1. Materials and methods	3
Section S2. Synthesis of PGBpy and PGBD	4
Section S3. Gold adsorption studies	5
Section S4. FTIR spectroscopic characterization studies	7
Section S5. PXRD and Pawley refinement studies	9
Section S6. Fractional atomic coordinates and unit cell parameters	11
Section S7. SEM images	23
Section S8. X-ray photoelectron spectroscopic (XPS) studies	24
Section S9. Nitrogen gas uptake and pore size distribution profiles	28
Section S10. Crystallite size calculation using Debye Scherrer equation	30
Section S11. Additional characterization data	31
Section S12. Gold adsorption studies	33
Section S13. Particle size distribution and EDS mapping characterization studies	38

Section S1. Materials and methods

The precursor materials 1,3,5-triformyl-2,4-dihydroxybenzene (Tra) and1,3,5-Trifrormyl-2hydroxybenzene (Tpa) were synthesized using the previously reported literature protocols.1 All other commercially available reagents and solvents purchased from Sigma-Aldrich, TCI chemicals and Fisher Scientific chemical suppliers were used as received. The reactions were performed in oven-dried glassware under ambient atmosphere.

Instruments details and sample preparation

Powder X-ray diffraction (PXRD) data collection was performed using a Bruker D8 ADVANCE equipped with high-intensity Microfocus rotating anode X-ray generator and Cu K α (α = 1.54 Å) with a Ni filter as a radiation source. PXRD data were recorded in the $2\theta = 5 - 400$ using a Quartz holder at a scan speed of 1° min-1 and a step size of 0.01° with the help of Diffrac Plus XRD commander software. Fourier transform infrared (FTIR) spectra were recorded against wavenumber (cm-1) scale using a ThermoScientific Nicolet iS10 spectrometer equipped with a universal Zn-Se ATR (attenuated total reflection) accessory. Solid state 13C Cross Polarization Magic Angle Spinning (CP-MAS) NMR were measured on BrukerAvance III 400 MHz Wide Bore instrument. Thermogravimetric analyses (TGA) were carried under N2 atmosphere at a heating rate of 10 °C min-1 within a temperature range of 30-900 °C using a TGA 209 F1 analyzer (Netzsch). Prior to the measurement the samples were dried under high vacuum for 12 h. Before collecting TGA data the samples were activated by heating at 100 oC for \sim 1 h at TGA instrument only. Morphology of the membranes was determined from SEM measurements performed with a Magellan FEI 400 scanning electron microscope. For sample preparation, a isopropanol suspension of COFs were drop casted on a clean unit of Silicon wafer. To avoid charging during SEM analyses, we coated all the ICONs samples with a 3 nm thick layer of Iridium using Q150T S sputter prior to analyses. N2 gas uptake analyses were performed at 77K using a liquid nitrogen bath (77 K) on a Micromeritics ASAP 2420 BET instrument. Samples were thoroughly outgassed for 12 h at 140 °C under high vacuum prior to the gas adsorption studies. The surface areas were evaluated using Brunauer-Emmett-Teller (BET) model applied between P/P0 values of 0.05 and 0.3. The pore size distributions were calculated using the non-localized density functional theory (NLDFT) method.

Theoretical methods and atomistic modelling

Density Functional Theory (DFT) calculations were conducted to study the structural and electronic properties, including the Electron Localization Function (ELF), of PGBpy-COF and PGBD-COF systems, as well as their interaction with the $[AuCl_4]^-$ ion. The molecular building blocks involved in the COF systems and the $[AuCl_4]^-$ ion were pre-optimized using DFT as implemented in the localized basis set Gaussian16 package [1] within M06-2X/6-311++G(d,p) [2-4] theory level, allowing full geometric flexibility and confirming equilibrium configurations via frequency calculations. Periodic boundary conditions were applied to model 2D layered systems, followed by structural and cell optimizations for stacked 3D models. The 2D networks were constructed using the plane-wave QUANTUM ESPRESSO atomistic simulation code [5] with the GGA-PBESol exchange-correlation functional [6], Grimme DFT-D3 vdW corrections [7], and ultra-soft pseudopotentials [8]. Brillouin zone sampling employed optimal Monkhorst-Pack grids of [2×2×1] (2D) and [2×2×8] (3D) [9], with plane-wave cutoffs of 50 Ry (for wave functions) and 350 Ry (for electron density). Atomic relaxations and cell optimizations used a conjugate gradient algorithm, reducing forces below 0.02 eV Å⁻¹ and the net cell strain below 0.1 GPa.

- 1. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, G. Petersson, H. Nakatsuji, Gaussian 16, Gaussian, Inc, Wallingford, CT (2016).
- Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc., 120 (2008), 215-241.
- R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys., 72 (1980), 650-654.
- A. McLean, G. Chandler, Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z= 11–18, J. Chem. Phys., 72 (1980), 5639-5648.
- P. Giannozzi, S. Baroni, N. Bonini, M.Calandra, R.Car, C. Cavazzoni, D. Ceresoli, G. L Chiarotti, M. Cococcioni, I. Dabo, J. Phys.: Cond. Matter, 2009, 21, 395502.
- Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, 293 L.A., Zhou, X., Burke, K. Phys. Rev. Lett. 100, 136406 (2008).
- 7. S. Grimme, J. Comput. Chem. 2006, 27, 1787-1799.
- 8. A. M. Rappe, K. M. Rabe, E. Kaxiras, J. D. Joannopoulos, Phys. Rev. B, 1990, 41, 1227.
- 9. J. D. Pack, H. J. Monkhorst, Phys. Rev. B, 1977, 16, 1748.

Section S2. Synthesis of PGBpy and PGBD

PGBpy or PGBD: To a thick-walled pressure tube, Bpy (0.22 g, 1.18 mmol) or BD (0.21 g, 1.18 mmol) and phloroglucinol were (0.10 g, 0.79 mmol) were mixed together in 5 mL of ethanol. After sonication for 5 minutes, 50 μ L of 6 M acetic acid was added followed by addition of 37% of aqueous formaldehyde (2.37 mmol) solution. After performing sonication for 15 minutes, the tube was subjected to heating at 100 °C for 12 h to afford PGBpy as solid. The obtained material was purified by Soxhlet using THF and methanol. The obtained COFs were dried in an oven at 90 °C for 12 h prior to characterization studies. Yield (62%).

Scheme 1. Synthesis procedure of PGBpy and PGBD.

Section S3. Gold adsorption studies

Adsorption isotherm: 20 mL AuCl₃ solutions with concentrations ranging from 1 to 2000 mg L⁻¹ was allowed to adsorb with 2 mg of COF until reaches equilibrium. The samples were filtered using 0.45 μ m Nylon syringe filters and change in metal concentrations were monitored *via* ICP-MS analysis.

Adsorption constant was calculated using the following equation.

$$Q_e = (C_0 - C_e) \times V/M$$

Where C_0 and C_e are the initial and equilibrium concentrations, M is the mass of adsorbent in g, and V is the volume of solution in litre.

Linear Langmuir isotherm fitting was done using the following equation.

$$C_e/Q_e = (Q_m \times K_a)^{-1} + C_e/Q_m$$

Linear Freundlich isotherm fitting was done using the following equation.

$$\ln Q_e = \ln K_f + 1/n \ln C_e$$

Where Q_m is the maximum adsorption capacity, K_a, n and K_f are the adsorption constants.

Adsorption kinetics: Into a 100 mL, 50 mg L^{-1} AuCl₃ solution, 10 mg of COF was added. Several samplings were collected with respect to time from 0 to 48 hours and filtered using 0.45 µm Nylon syringe filters. The filtrate samples were analysed using ICP-MS to obtain residual metal concentration.

Uptake efficiency was calculated using the following equation.

$$R_{e}$$
 (%) =((C₀-C_e) × 100)/C_e

Pseudo first oder kinetic fittings were done using the following equation.

$$\ln(Q_e - Q_t) = \ln Q_e - k_1 t$$

Pseudo second order fittings were done using the following equation.

$$t/Q_t = (k_2 Q_e^2)^{-1} + t/Q_e$$

Where, t is the time (min) and k_1 and k_2 are the pseudo first and second order rate constants, Q_e and Q_t are the adsorption capacity (mg g⁻¹) at equilibrium and time t respectively.

Selectivity test: 100 mL of mixed metal ions solution with 50 mg L⁻¹ each of Au³⁺, Al³⁺, Cr³⁺, Co³⁺, Cd²⁺, Zn²⁺ and Cu²⁺ was freshly prepared. 10 mg COF was added allowed to adsorb for 48 hours. Samplings were done at specific time intervals. The samples were filtered using 0.45 μ m Nylon syringe filters and change in metal concentrations were monitored *via* ICP-MS analysis.

The distribution co-efficient (K_d) of each metal ions (in L g⁻¹) towards the PGBpy COF was calculated as follows;

$$K_d = ((C_0 - C_e) \times V)/M \times C_e = Q_e/C_e$$

Additionally, the selectivity of COFs towards Au ions were determined by calculating the separation factor ($\alpha_{(Au/M)}$) of Au ions with respect to each competing metal ions.

 $\alpha_{(Au/M)} = K_d(Au)/K_d(M)$

Where, M is the competing metal ion.

*p*H study: 2 mg each of COF were added to 10 mL 50 mg L^{-1} AuCl₃ solutions prepared at varying *p*Hs (2,4,6,8,10 and 12) and stirred for 48 hours. The initial and final concentrations of the AuCl₃ solutions were analysed using ICP-MS after filtering the samples using 0.45 µm Nylon syringe filters. Subsequently, uptake efficiencies were calculated.

Regeneration experiment: First, 50 mL, 20 mg L⁻¹ AuCl₃ solution were added with 10 mg of COF and allowed to stir for 48 hours. The gold adsorbed COF was thoroughly washed and dried. For desorption, the gold adsorbed COF was added into the stripping solution (mixed solution of 50 mL, 1M Thiourea and 1M HCl) and allowed stir for 12 hours. The regenerated COF was washed with DI water for several times and reused for further adsorption cycles. The experiment was repeated for up to 10 cycles for PGBpy and 5 cycles for PGBD. Residual metal concentrations were analyzed after each adsorption and respective uptake efficiencies were calculated.

E-waste analysis: the e-waste leaching solution was prepared by soaking the central processing unit (CPU) in 50 mL aqua regia for 24 hours. The leaching solution was further diluted to a pH = 2. A 20 mL e-waste leaching solution was treated with 2 mg COF with constant stirring for 48 hours. The samples were filtered using 0.45 µm Nylon syringe filters and change in metal concentrations were monitored *via* ICP-MS analysis.

Section S4. FTIR spectroscopic characterization studies

Figure S1. Comparison of FTIR spectra of PGBpy with starting material i.e. Bpy and PG suggest the no contamination from starting material in the final PGBpy product.

Figure S2. Comparison of FTIR spectra of PGBD with starting material i.e. BD and PG suggest the no contamination from starting material in the final PGBD product.

Section S5. PXRD and Pawley refinement studies

Figure S3. Comparison of experimental PXRD of a) PGBpy and b) PGBD with their respective pxrd pattern generated from simulated model showed good agreement with ABC model while disagreement with eclipsed AA and staggered AB models.

Figure S4. Experimental PXRD pattern of PGBpy after Pawley refinement studies shows a good agreement with the simulated ABC model structure.

Figure S5. Experimental PXRD pattern of PGBD after Pawley refinement studies shows a good agreement with the simulated ABC model structure.

Section S6. Fractional atomic coordinates and unit cell parameters

Figure S6. Unit cell structure of PGBpy calculated for eclipsed AA model.

Table S1. Fractional atomic coordinates and unit cel	l parameters of PGBpycalculated for eclipsed AA model.
--	--

	PGBpy: Model AA; Space groupP1												
	U	Init cell pa	arameters	s: a = 28.6	Å, b = 28	.6 Å, c = 3	.6 Å; α =	90°, β = 90	0°, γ = 120	С			
Atoms	Х	Y	Z	Atoms	Х	Y	Z	Atoms	X	Y	Z		
C1	1.5081	-0.96873	0	N41	1.18937	-0.37759	0	H81	1.78509	-0.56867	-0.25856		
N2	1.56251	-0.93469	0	C42	1.13495	-0.41162	0	H82	1.6488	-0.46482	0		
C3	1.58297	-0.88026	0	C43	1.37276	-0.22141	0	H83	1.58638	-0.42731	0		
C4	1.54902	-0.85987	0	N44	1.42686	-0.18775	0	H84	1.51158	-0.62691	0		
C5	1.4946	-0.89391	0	C45	1.44732	-0.13332	0	H85	1.54718	-0.4038	0		
C6	1.47414	-0.94834	0	C46	1.10099	-0.39123	0	H86	1.48476	-0.36628	0		
N7	1.56916	-0.80581	0	N47	1.04658	-0.42527	0	H87	1.34757	-0.5285	0		
C8	1.62358	-0.77178	0	C48	1.02611	-0.4797	0	H88	1.4273	-0.35385	-0.2522		
C9	1.64404	-0.71734	0	C49	1.06007	-0.50009	0	H89	1.4256	-0.35279	0.25856		
C10	1.69846	-0.68331	0	C50	1.11449	-0.46605	0	H90	1.21294	-0.42556	0.25205		
C11	1.7186	-0.62925	0	O51	1.26393	-0.28949	0	H91	1.21116	-0.42452	-0.25856		
C12	1.68465	-0.60886	0	O52	1.44068	-0.2622	0	H92	1.3556	-0.21103	0.25225		
C13	1.63055	-0.64252	0	O53	1.73241	-0.7037	0	H93	1.35833	-0.2093	-0.25856		
C14	1.61008	-0.69695	0	O54	1.55567	-0.73099	0	H94	1.11809	-0.34568	0		
C15	1.59684	-0.62228	0	O55	1.70511	-0.55443	0	H95	1.04298	-0.54565	0		
N16	1.61673	-0.56808	0	O56	1.29123	-0.43876	0	H96	1.14298	-0.48311	0		
C17	1.58278	-0.54769	0	C57	1.20983	-0.32316	0	H97	1.19266	-0.31277	0.25225		
C18	1.77302	-0.59521	0	C58	1.46082	-0.20814	0	H98	1.1954	-0.31105	-0.25856		
N19	1.80698	-0.6156	0	C59	1.32519	-0.45915	0	H99	1.48839	-0.19088	0.25205		
C20	1.86139	-0.58156	0	C60	1.6714	-0.53419	0	H100	1.48736	-0.19369	-0.25856		
C21	1.60324	-0.49326	0	C61	1.78651	-0.67003	0	H101	1.31481	-0.48673	0.25205		
C22	1.56928	-0.47286	0	C62	1.53521	-0.78542	0	H102	1.31303	-0.48569	-0.25856		
C23	1.51487	-0.5069	0	C63	1.89535	-0.60196	0	H103	1.68183	-0.50658	0.25195		
N24	1.49472	-0.56096	0	C64	1.94977	-0.56792	0	H104	1.68362	-0.50764	-0.25856		
C25	1.52868	-0.58135	0	C65	1.96991	-0.51386	0	H105	1.80368	-0.68041	0.25225		
C26	1.48116	-0.48666	0	N66	1.93595	-0.49347	0	H106	1.80094	-0.68214	-0.25856		
C27	1.50162	-0.43223	0	C67	1.88185	-0.52713	0	H107	1.50765	-0.80263	0.2522		
C28	1.46766	-0.41184	0	C68	1.50174	-0.09928	0	H108	1.50867	-0.79987	-0.25856		
C29	1.41325	-0.44588	0	N69	1.5222	-0.04485	0	H109	1.87826	-0.64751	0		

C30	1.3931	-0.49993	0	C70	1.48825	-0.02446	0	H110	1.97826	-0.58498	0
N31	1.42706	-0.52033	0	C71	1.43383	-0.0585	0	H111	1.8535	-0.50992	0
N32	1.37929	-0.42549	0	C72	1.41337	-0.11293	0	H112	1.53023	-0.11634	0
C33	1.39975	-0.37106	0	H73	1.62854	-0.85183	0	H113	1.40534	-0.04144	0
C34	1.3658	-0.35067	0	H74	1.46611	-0.87685	0	H114	1.36781	-0.14136	0
C35	1.38626	-0.29624	0	H75	1.42858	-0.97677	0	C1	1.5081	0.03127	0
C36	1.3523	-0.27584	0	H76	1.6408	-0.78212	-0.2521	C48	2.02611	-0.4797	0
C37	1.29788	-0.30988	0	H77	1.64187	-0.77932	0.25856	C65	0.96991	-0.51386	0
C38	1.27742	-0.36431	0	H78	1.56923	-0.63964	0.2518	C70	1.48825	-1.02446	0
C39	1.31138	-0.3847	0	H79	1.5703	-0.63673	-0.25856				
C40	1.22332	-0.39798	0	H80	1.78335	-0.56766	0.2522				

Figure S7. Unit cell structure of PGBpy calculated for staggered ABC model.

Table S 2. Fractional atomic coordinates and 1	init cell parameters of PGBpy	v calculated for staggered AB model.
--	-------------------------------	--------------------------------------

	PGBpy: Model AB; Space group P1											
	U	nit cell pa	arameters	: a = 28.6	Å, b = 28	.6 Å, c = 7	.2Å; α = 9	90°, β = 90	0°, γ = 120)°		
Atoms	X	Y	Z	Atoms	Х	Y	Z	Atoms	Х	Y	Z	
C1	2.03481	-1.0195	-0.76372	H195	1.76163	-0.69104	-0.88969	C111	0.31087	0.61491	0.70833	
C2	2.05509	-0.9651	-0.76372	H196	1.75984	-0.68996	-0.63444	C112	0.22282	0.60164	0.70833	
C3	2.02098	-0.94489	-0.76372	H197	1.54683	-0.7639	-0.63762	N113	0.18886	0.62203	0.70833	
C4	1.9666	-0.97908	-0.76372	H198	1.54508	-0.7629	-0.89299	C114	0.13444	0.58799	0.70833	
C5	1.93249	-0.95886	-0.76372	H199	1.68877	-0.54936	-0.63759	C115	0.37226	0.7782	0.70833	
N6	1.95277	-0.90446	-0.76372	H200	1.69151	-0.54762	-0.89299	N116	0.42636	0.81186	0.70833	
C7	1.91867	-0.88425	-0.76372	H201	1.45116	-0.68445	-0.76372	C117	0.44682	0.86629	0.70833	
C8	1.93895	-0.82984	-0.76372	H202	1.37695	-0.88447	-0.76372	C118	0.10049	0.60838	0.70833	
C9	1.90484	-0.80963	-0.76372	H203	1.47691	-0.82166	-0.76372	N119	0.04607	0.57434	0.70833	
C10	1.85045	-0.84382	-0.76372	H204	1.18835	-0.84946	-0.76372	C120	0.02561	0.51991	0.70833	
N11	1.83017	-0.89822	-0.76372	H205	1.2141	-0.98666	-0.76372	C121	0.05956	0.49952	0.70833	
C12	1.86428	-0.91844	-0.76372	H206	1.31405	-0.92385	-0.76372	C122	0.11398	0.53356	0.70833	
C13	1.81635	-0.82361	-0.76372	H207	1.11946	-0.90659	-0.88848	O123	0.26342	0.71012	0.70833	
C14	1.83663	-0.7692	-0.76372	H208	1.11567	-0.90892	-0.63444	O124	0.44017	0.73742	0.70833	
C15	1.80227	-0.74884	-0.76372	H209	1.13852	-1.02037	-0.63621	O125	0.73191	0.29592	0.70833	
C16	1.74788	-0.78303	-0.76372	H210	1.13691	-1.02138	-0.89299	O126	0.55516	0.26862	0.70833	
C17	1.7276	-0.83743	-0.76372	H211	1.52594	-0.6515	-0.63766	0127	0.7046	0.44518	0.70833	
N18	1.76196	-0.8578	-0.76372	H212	1.52874	-0.64973	-0.89299	O128	0.29073	0.56085	0.70833	

N19	1.71403	-0.76297	-0.76372	H213	1.82213	-0.5283	-0.63762	C129	0.20932	0.67646	0.70833
C20	1.73406	-0.70842	-0.76372	H214	1.82113	-0.53106	-0.89299	C130	0.46031	0.79147	0.70833
C21	1.69995	-0.6882	-0.76372	H215	1.64905	-0.8246	-0.63774	C131	0.32468	0.54046	0.70833
C22	1 72024	-0.6338	-0 76372	H216	1 64725	-0 82355	-0 89299	C132	0 6709	0 46543	0 70833
C23	1 68613	-0.61359	-0 76372	H217	2 01747	-0.84278	-0 63747	C133	0 78601	0.32958	0 70833
C24	1 63174	-0 64778	-0 76372	H218	2 01915	-0.84374	-0.89299	C134	0.5347	0.21419	0 70833
C25	1 61146	-0 70218	-0 76372	H219	1 86378	-0 45369	-0 76372	C135	0 89484	0.39766	0 70833
C26	1.64556	-0.70210	-0.76372	H220	1 7383	-0.40000	-0.76372	C136	0.00404	0.00700	0.70000
C27	1.0-100	0 73637	0.76372	LI220	1 70117	0.47054	0.76372	C127	0.04020	0.49575	0.70000
N20	1.55707	0.73037	0.76272	L1222	1.70117	0.47904	0.76272	N120	0.9094	0.40575	0.70000
020	1.02290	0.75024	-0.70372	<u>п222</u> Цэээ	1.90100	-0.19023	0.76372	C120	0.93545	0.00014	0.70000
029	1.40857	-0.75034	-0.70372	H223	1.79892	-0.21609	-0.70372	0139	0.88135	0.47248	0.70833
030	1.7061	-0.55956	-0.76372	H224	1.76172	-0.31596	-0.76372	C140	0.50124	0.90033	0.70833
N31	1.76048	-0.52537	-0.76372	H225	1.97391	-0.12047	-0.88977	N141	0.5217	0.95476	0.70833
C32	1.78077	-0.47097	-0.76372	H226	1.97497	-0.11767	-0.63444	C142	0.48774	0.97515	0.70833
C33	1.43421	-0.72998	-0.76372	H227	1.84057	-0.14147	-0.88982	C143	0.43332	0.94112	0.70833
N34	1.37982	-0.76417	-0.76372	H228	1.84228	-0.14252	-0.63444	C144	0.41286	0.88669	0.70833
C35	1.35954	-0.81857	-0.76372	C1	2.03481	-0.0195	-0.76372	H145	0.62803	0.14779	0.70833
C36	1.3939	-0.83894	-0.76372	C2	1.05509	-0.9651	-0.76372	H146	0.4656	0.12276	0.70833
C37	1.44829	-0.80475	-0.76372	C4	1.9666	0.02092	-0.76372	H147	0.42807	0.02284	0.70833
C38	1.30572	-0.85254	-0.76372	C45	2.10819	-0.93474	-0.76372	H148	0.6403	0.2175	0.58227
N39	1.27136	-0.83218	-0.76372	O48	1.06891	-1.03972	-0.76372	H149	0.64137	0.2203	0.8376
C40	1.21697	-0.86636	-0.76372	C51	2.12227	-1.00951	-0.76372	H150	0.56873	0.35997	0.83423
C41	1.19669	-0.92077	-0.76372	C69	1.97689	-1.05581	-0.76372	H151	0.5698	0.36288	0.57905
C42	1.23105	-0.94113	-0.76372	C70	1.94278	-1.0356	-0.76372	H152	0.78284	0.43195	0.83443
C43	1.28543	-0.90694	-0.76372	C73	0.50759	0.03088	0.70833	H153	0.78459	0.43094	0.57905
N44	1.1423	-0.95496	-0.76372	N74	0.56201	0.06492	0.70833	H154	0.64829	0.53479	0.70833
C45	1.10819	-0.93474	-0.76372	C75	0.58247	0.11935	0.70833	H155	0.58587	0.57231	0.70833
046	1 59763	-0.62756	-0 76372	C76	0.54851	0 13975	0 70833	H156	0.51108	0.37271	0 70833
047	1 77431	-0 59999	-0 76372	C77	0.01001	0.10571	0.70833	H157	0.54668	0.59582	0.70833
048	2 06801	-1 03072	-0.76372	C78	0.43403	0.05128	0.70833	H158	0.04000	0.00002	0.70000
040	2.00031	0.80086	-0.76372	N79	0.56866	0.00120	0.70000	H150	0.40420	0.00000	0.70000
045	1 62528	-0.7768	-0.76372	C80	0.00000	0.1330	0.70000	H160	0.04268	0.47111	0.70000
C51	1 1 1 2 2 2 2 7	1 00051	0.76372	C91	0.02307	0.22704	0.70033		0.42500	0.04070	0.30223
C52	1.12221	0.66175	0.76372	<u> </u>	0.04333	0.20227	0.70033	L162	0.42303	0.04002	0.0070
C52	1.04024	0.54559	0.76372	<u> </u>	0.09793	0.31031	0.70033		0.21243	0.57405	0.03433
C54	1.79409	0.70701	0.76372	<u> </u>	0.7101	0.37030	0.70033	L164	0.21000	0.3731	0.07900
054	2.00716	0.79701	0.76272	C04	0.00414	0.39073	0.70033	L165	0.33309	0.70030	0.03443
C55	2.00710	-0.07027	0.76272	C05	0.03004	0.35709	0.70033		0.33703	0.79031	0.57905
030 NE7	1.05510	-0.43070	-0.70372	C00	0.00900	0.30200	0.70033		0.11750	0.05594	0.70033
	1.00044	-0.30230	-0.70372		0.09000	0.37733	0.70033		0.04247	0.45597	0.70000
050	1.02133	-0.30210	-0.70372		0.01023	0.43134	0.70033		0.14247	0.5105	0.70033
000	1.70009	-0.3962	-0.70372	689	0.38227	0.45193	0.70833	H169	0.19210	0.00004	0.83445
004	1.74666	-0.45075	-0.76372	090	0.77251	0.4044	0.70833	H1/0	0.19489	0.68857	0.57905
100	1.84137	-0.30761	-0.70372	N91 000	0.80647	0.38401	0.70833	H1/1	0.48788	0.80873	0.83435
N62	1.89601	-0.27357	-0.76372	<u>C92</u>	0.86089	0.41805	0.70833	H1/2	0.48685	0.80592	0.57905
063	1.91604	-0.21902	-0.76372	<u>C93</u>	0.60273	0.50636	0.70833	H1/3	0.3143	0.51288	0.83435
C64	1.88193	-0.19881	-0.76372	<u>C94</u>	0.56878	0.52675	0.70833	H174	0.31253	0.51392	0.57905
C65	1.82754	-0.233	-0.76372	<u>C95</u>	0.51436	0.49271	0.70833	H175	0.68132	0.49303	0.8343
C66	1.80726	-0.2874	-0.76372	N96	0.49422	0.43866	0.70833	H176	0.68312	0.49197	0.57905
N67	1.90222	-0.1444	-0.76372	<u>C97</u>	0.52817	0.41827	0.70833	H177	0.80318	0.3192	0.83445
C68	1.95661	-0.11021	-0.76372	C98	0.48065	0.51295	0.70833	H178	0.80044	0.31747	0.57905
C69	1.97689	-0.05581	-0.76372	C99	0.50111	0.56738	0.70833	H179	0.50715	0.19699	0.83443
C70	1.94278	-0.0356	-0.76372	C100	0.46716	0.58777	0.70833	H180	0.50816	0.19974	0.57905
071	1.88839	-0.06979	-0.76372	C101	0.41274	0.55374	0.70833	H181	0.87775	0.3521	0.70833
C72	1.86811	-0.12419	-0.76372	C102	0.3926	0.49968	0.70833	H182	0.97775	0.41464	0.70833
H187	1.90495	-0.97614	-0.63762	N103	0.42655	0.47929	0.70833	H183	0.85299	0.4897	0.70833
H188	1.90596	-0.97339	-0.89299	N104	0.37879	0.57413	0.70833	H184	0.52973	0.88328	0.70833
H189	1.98449	-0.80128	-0.76372	C105	0.39925	0.62856	0.70833	H185	0.40483	0.95817	0.70833
H190	1.92179	-0.7641	-0.76372	C106	0.36529	0.64895	0.70833	H186	0.3673	0.85825	0.70833
H191	1.84733	-0.96397	-0.76372	C107	0.38575	0.70338	0.70833	C73	0.50759	1.03088	0.70833

H192	1.88217 -0.74064 -0.76372	C108	0.3518	0.72377	0.70833	C120	1.02561	0.51991	0.70833
H193	1.81922 -0.70331 -0.76372	C109	0.29738	0.68973	0.70833	C137	-0.0306	0.48575	0.70833
H194	1.68206 -0.86599 -0.76372	C110	0.27692	0.6353	0.70833	C142	0.48774	-0.02485	0.70833

Figure S8. Unit cell structure of PGBpy calculated for ABC model.

Table S3. Fractional atomic coordinates and unit cell	parameters of PGBpy calculated for ABC model
---	---

	PGBpy: Model ABC; Space group P1												
	Unit cel	l paramet	ers : a = 3	0.10 Å, b	= 30.04 Å	, c = 8.15	Å; α = 92	.57°, β = 9)2.44°, γ =	120.67°			
Atoms	Х	Y	Z	Atoms	Х	Y	Z	Atoms	Х	Y	Z		
C1	1.91148	-0.90082	0.09705	C75	1.10618	-0.79999	0.46508	C144	1.07966	-0.0268	0.48746		
C2	1.93182	-0.84765	0.1391	C76	1.14568	-0.76116	0.57562	C145	0.51721	0.03452	0.82755		
N3	1.8995	-0.82834	0.15089	N77	1.16277	-0.7103	0.55757	N146	0.56257	0.06158	0.75644		
C4	1.84681	-0.85895	0.12532	C78	1.14286	-0.69465	0.43422	C147	0.58272	0.11219	0.72656		
C5	1.82477	-0.91268	0.09322	C79	1.10376	-0.73241	0.31955	C148	0.55628	0.13842	0.76578		
C6	1.85705	-0.93337	0.0789	C80	1.08558	-0.78486	0.33597	C149	0.51053	0.11191	0.84475		
C7	1.81458	-0.8345	0.13335	C81	1.16439	-0.63826	0.42303	C150	0.49084	0.06006	0.87532		
N8	1.83493	-0.78738	0.21875	N82	1.21153	-0.60431	0.50404	N151	0.57498	0.1908	0.72233		
C9	1.80822	-0.76193	0.22983	C83	1.23435	-0.55205	0.4997	C152	0.63085	0.2271	0.71912		
C10	1.75776	-0.78394	0.15122	C84	1.20964	-0.53046	0.40841	C153	0.64308	0.28255	0.72103		
C11	1.73632	-0.83202	0.06026	C85	1.16063	-0.56526	0.3245	C154	0.69497	0.32269	0.72296		
C12	1.76453	-0.85742	0.05065	C86	1.13772	-0.61866	0.33347	C155	0.70737	0.37487	0.73674		
N13	1.72824	-0.75826	0.16524	N87	1.23418	-0.47462	0.39893	C156	0.66742	0.3865	0.7366		
C14	1.75425	-0.70183	0.15883	C88	1.29143	-0.44279	0.40971	C157	0.61503	0.34617	0.72863		
C15	1.71646	-0.68252	0.15754	C89	1.31144	-0.38567	0.40208	C158	0.60277	0.29414	0.71889		
C16	1.73561	-0.62893	0.16733	C90	1.36533	-0.35076	0.408	C159	0.57205	0.35876	0.73285		
C17	1.70071	-0.61044	0.16787	C91	1.38456	-0.29714	0.41721	N160	0.59162	0.4147	0.72972		
C18	1.64694	-0.64542	0.15947	C92	1.35003	-0.27835	0.41373	C161	0.55692	0.43451	0.75112		
C19	1.62759	-0.69925	0.15057	C93	1.29607	-0.31325	0.406	C162	0.76358	0.41833	0.74776		
C20	1.66245	-0.71775	0.15332	C94	1.27684	-0.36688	0.39949	N163	0.79928	0.39858	0.72867		
C21	1.56959	-0.73697	0.14251	C95	1.25877	-0.29329	0.40972	C164	0.8548	0.43194	0.76736		
N22	1.53967	-0.71048	0.15591	N96	1.28525	-0.23656	0.41133	C165	0.55568	0.46984	0.64645		
C23	1.48358	-0.74071	0.14245	C97	1.25431	-0.21223	0.41647	N166	0.52427	0.48963	0.67141		
C24	1.72069	-0.55304	0.18456	C98	1.44217	-0.25932	0.44259	C167	0.49254	0.4764	0.79549		
N25	1.77775	-0.52197	0.19405	N99	1.47379	-0.28409	0.43051	C168	0.49164	0.44002	0.90037		
C26	1.80322	-0.46704	0.17232	C100	1.53003	-0.25097	0.44234	C169	0.52396	0.41957	0.87816		

C27	1.45569	-0.7362	0.26757	C101	1.25286	-0.18323	0.28912	C170	0.4607	0.50142	0.81425
C28	1.40152	-0.7653	0.25427	C102	1.222	-0.16061	0.29384	N171	0.46108	0.53282	0.69819
C29	1.37463	-0.79917	0.11363	C103	1.19262	-0.16664	0.42817	C172	0.43383	0.5579	0.70619
N30	1.4026	-0.80335	-0.00573	N104	1 19459	-0.19527	0.54984	C173	0.40363	0.55203	0.83702
C31	1.45554	-0.77542	0.00513	C105	1.22416	-0.21789	0.54716	C174	0.40275	0.52018	0.95851
C32	1.317	-0.83231	0.09442	C106	1.15889	-0.14376	0.4421	C175	0.43109	0.49495	0.94806
C33	1,28479	-0.82275	0.19066	C107	1.16117	-0.1063	0.34037	N176	0.37385	0.57767	0.84642
C34	1.23119	-0.85708	0.17415	C108	1.12802	-0.0868	0.35919	C177	0.40042	0.63442	0.84383
C35	1 20886	-0.90053	0.05934	C109	1.09287	-0 10354	0.48065	C178	0.3631	0.65451	0.8484
C36	1 24227	-0.90725	-0.04029	C110	1.00207	-0 14053	0.58161	C179	0.38212	0 70827	0.8593
N37	1 29455	-0.87378	-0.01954	N111	1 12481	-0 15932	0.55977	C180	0.34688	0.7264	0.84983
038	1.20100	-0 62584	0.015866	N112	1.05922	-0.0824	0.50347	C181	0.01000	0.69125	0.83005
039	1 78967	-0.52004	0.10000	0113	1.00022	-0.0024	0.00047	C182	0.20014	0.63786	0.83704
040	1.70307	-0.00440	0.17707	0114	1 300/7	-0.22400	0.42010	C183	0.27411	0.00700	0.00704
C41	1.56618	-0.65717	0.10001	0115	0 07171	-0.30303	0.51582	C184	0.00000	0.0134	0.04001
C42	1.30010	-0.54532	0.2010-	0116	1 22337	-0.40064	0.01002	N185	0.21000	0.00000	0.02+0
C42	1.00074	0.79527	0.20000	C117	1.22337	0 11201	0.40424	C196	0.1040	0.02303	0.00410
C44	1.07721	0.10021	0.23010	C119	1 22725	0.20834	0.30112	C100	0.12041	0.33214	0.0000
C44	1.03317	0.20601	0.11039	C110	1 4 4 9 0 4	0.20034	0.33304	N100	0.30031	0.70303	0.00074
C45	1.0//49	-0.30091	0.10000	C119 C120	1.44094	0.45047	0.3309	C100	0.42323	0.01000	0.00074
040 N47	1.00090	-0.30071	0.13012	C120	1.20300	-0.45217	0.33302	C109	0.4404	0.61012	0.07009
IN47	1.00219	-0.30/3/	0.10010	N422	1.00090	-0.20239	0.3440	C190	0.0900	0.01012	0.90945
C40	1.11022	-0.43007	0.20004	0422	1.01342	-0.22909	0.35302	C102	0.04440	0.57900	0.90214
C50	1.0/414	-0.30302	0.11004	C123	1.03/93	-0.10003	0.4020	0192 N402	0.01991	0.5294	0.02124
C50	1.92333	-0.20002	0.19477	0124	1.00904	-0.17107	0.55167	N193	0.04090	0.5124	0.74039
051	1.94170	-0.2159	0.10/01	0125	1.00041	-0.20511	0.040	0194	0.10154	0.54233	0.74972
052	1.91109	-0.19097	0.10212	NI407	1.0947	0.13130	0.40972	0195	0.25904	0.71017	0.02434
053	1.00310	-0.23/1/	0.02247	N12/	1.72002	-0.17000	0.50567	0190	0.4301	0.74332	0.07090
N04	1.0400	-0.20029	0.03524	C120	1.77020	-0.1407	0.52500	0197	0.73395	0.31003	0.70904
056	1.92940	-0.14410	0.09047	C129 C120	1.00293	-0.00759	0.49009	0190	0.00024	0.20440	0.70951
C50	1.90047	-0.10702	0.09202	C130	1.77101	-0.00791	0.44252	0199	0.0000	0.43004	0.74592
C59	1.99792	0.03034	0.07039	N122	1.71742	0.05412	0.42000	C200	0.20000	0.00007	0.03107
059	1.90901	-0.03334	0.09502	C133	1 80200	-0.03413	0.53235	C201	0.21007	0.0004	0.03133
C60	1.90009	-0.07701	0.12330	C134	1.09299	-0.070	0.53100	C202	0.40100	0.79200	0.9392
C61	2 04911	-0.12773	0.05921	0135	1.90531	0.01001	0.52555	C203	0.52252	0.00000	0.66755
C62	2.0611	0.03895	0.05225	C136	1.88129	-0.00131	0.6102	C205	0.7781	0.34804	0.63596
C63	2.0011	0.05086	0.05643	C137	2 03936	-0.01128	0.50558	C206	0.53955	0.20502	0.6411
C64	1 97057	0.00000	0.08293	C138	2.00000	0.04105	0.50079	C207	0.8862	0.20002	0.81301
065	2 03287	0 10192	0.03836	C139	2 01595	0.0557	0.50921	C208	0.94025	0 44276	0.8315
C66	1.98985	0.10575	-0.02813	0140	2.10558	0.07765	0.47835	C209	0.96297	0.49575	0.81102
N67	1.94536	0.07871	0.06964	C141	2.12272	0.12917	0.54368	N210	0.93202	0.51587	0.77571
C68	1.92816	0.02459	0.09922	N142	2.08675	0.14585	0.48464	C211	0.87928	0.48575	0.75418
O69	2.0881	-0.02573	0.05819	C143	2.03073	0.11152	0.49601	C212	0.49758	0.8989	0.81135
C70	2.13327	0.0088	-0.01818	C144	2.07966	-0.0268	0.48746	C213	0.52106	0.95239	0.79969
N71	2.15332	0.06283	0.04422	H301	1.16241	-0.77124	0.67758	C214	0.49507	0.97834	0.84677
C72	2.11663	0.08195	0.0464	H302	1.0879	-0.72202	0.2163	N215	0.44757	0.95066	0.90484
H259	1.97324	-0.82128	0.16188	H303	1.05605	-0.81359	0.2464	C216	0.42407	0.89877	0.91829
H260	1.78309	-0.93873	0.07937	H304	1.27177	-0.52803	0.56775	H217	0.61845	0.13122	0.66729
H261	1.839	-0.97474	0.05023	H305	1.13976	-0.55188	0.24897	H218	0.48987	0.1312	0.88203
H262	1.82625	-0.72508	0.30235	H306	1.09941	-0.6439	0.27146	H219	0.45491	0.04	0.93341
H263	1.69796	-0.84959	-0.00456	H307	1.30571	-0.45655	0.3084	H220	0.64425	0.21752	0.60662
H264	1.74754	-0.89395	-0.0234	H308	1.30842	-0.44694	0.52742	H221	0.65232	0.22319	0.82735
H265	1.77551	-0.69077	0.04683	H309	1.23677	-0.3062	0.51909	H222	0.55224	0.34421	0.84539
H266	1.78266	-0.68259	0.26795	H310	1.23034	-0.31076	0.30037	H223	0.54315	0.33791	0.6257
H267	1.56145	-0.76228	0.24476	H311	1.44998	-0.23876	0.56571	H224	0.77334	0.44094	0.86854
H268	1.55729	-0.76178	0.02559	H312	1.45316	-0.23045	0.35012	H225	0.76813	0.44429	0.64965
H269	1.70719	-0.54402	0.29836	H313	1.27499	-0.1788	0.18477	H226	0.57958	0.48171	0.54457
H270	1.70401	-0.54309	0.07735	H314	1.22105	-0.13955	0.19167	H227	0.46673	0.42711	0.99917
H271	1.47592	-0.71074	0.37715	H315	1.22449	-0.23974	0.6477	H228	0.52369	0.39284	0.96274

H272	1.3816 -0.76	18 0.35545	H316	1.18843	-0.09124	0.24816	H229	0.43524	0.58174	0.60946
H273	1.47555 -0.779	96 -0.09398	H317	1.13029	-0.05871	0.27736	H230	0.38053	0.51523	1.06282
H274	1.3002 -0.789	23 0.27797	H318	1.06715	-0.15395	0.6799	H231	0.42974	0.47139	1.04544
H275	1.20777 -0.849	65 0.25406	H319	1.01809	-0.10119	0.71509	H232	0.42142	0.64648	0.73215
H276	1.22706 -0.939	04 -0.13456	H320	0.99496	-0.15436	0.55954	H233	0.4297	0.65251	0.9509
H277	1.5753 -0.65	72 0.36492	H321	1.35518	-0.1659	0.3844	H234	0.20756	0.57398	0.92543
H278	1.54108 -0.639	91 0.2169	H322	1.33413	-0.21583	0.21884	H235	0.20625	0.57643	0.706
H279	1.79991 -0.550	77 0.39416	H323	1.4735	-0.35498	0.39039	H236	0.34868	0.79351	0.95321
H280	1.84926 -0.520	44 0.25802	H324	1.44406	-0.33875	0.22386	H237	0.35296	0.79207	0.73553
H281	1.68213 -0.774	27 0.36375	H325	1.16267	-0.47494	0.36379	H238	0.11631	0.64737	0.97936
H282	1.6594 -0.828	02 0.21273	H326	1.20441	-0.45213	0.19857	H239	0.02212	0.59327	0.96219
H283	1.87321 -0.460	31 0.08181	H327	1.5437	-0.29647	0.25862	H240	0.12169	0.52636	0.68664
H284	1.91599 -0.366	56 0.05818	H328	1.62803	-0.1367	0.6338	H241	0.2169	0.68481	1.02682
H285	1.7398 -0.457	41 0.24771	H329	1.5342	-0.19469	0.62873	H242	0.18613	0.69692	0.85369
H286	1.94636 -0.281	34 0.26413	H330	1.80053	-0.15805	0.56702	H243	0.44213	0.78758	1.08863
H287	1.97908 -0.188	71 0.25217	H331	1.78848	-0.02815	0.41166	H244	0.49411	0.81814	0.95987
H288	1.83904 -0.22	68 -0.05018	H332	1.69351	-0.08365	0.38606	H245	0.32631	0.55956	1.04235
H289	1.99968 -0.119	23 -0.01246	H333	1.88083	-0.10466	0.42401	H246	0.30423	0.50773	0.88265
H290	2.00698 -0.107	24 0.20653	H334	1.88949	-0.09611	0.64502	H247	0.65544	0.48927	0.69177
H291	1.88602 -0.128	68 -0.08175	H335	1.85363	0.01302	0.60453	H248	0.6393	0.43867	0.53283
H292	1.85373 -0.154	13 0.10042	H336	1.89214	-0.00117	0.74135	H249	0.80684	0.33524	0.6288
H293	1.97826 0.087	57 -0.15587	H337	2.16227	0.15516	0.50594	H250	0.76619	0.35101	0.50819
H294	2.00234 0.147	29 -0.0337	H338	2.12531	0.13099	0.67938	H251	0.49816	0.17596	0.6522
H295	1.89489 -0.00	19 0.00992	H339	2.00847	0.11327	0.3859	H252	0.5451	0.20687	0.50829
H296	1.91468 0.017	06 0.2236	H340	2.01951	0.1253	0.6057	H253	0.86915	0.37059	0.83342
H297	2.12344 0.004	7 -0.15192	H341	2.11313	-0.00377	0.57998	H254	0.96411	0.42608	0.86257
H298	2.16273 -0.002	82 0.00651	H342	2.09402	-0.01642	0.36587	H255	0.85689	0.50378	0.7219
H299	2.11947 0.102	68 -0.06448	C73	1.94928	-0.03474	0.5253	H256	0.51744	0.8792	0.77076
H300	2.12641 0.109	48 0.15545	C74	1.98716	-0.04915	0.5188	H257	0.55885	0.97298	0.75256
C1	1.91148 0.099	18 0.09705	C75	2.10618	0.20001	0.46508	H258	0.38653	0.87958	0.96667
C35	2.20886 0.099	47 0.05934	N112	2.05922	-0.0824	0.50347	C145	0.51721	1.03452	0.82755
N67	1.94536 -0.921	29 0.06964	C133	0.89299	-0.076	0.53186	C192	1.01991	0.5294	0.82124
N71	1.15332 -0.937	17 0.04422	C134	0.96391	0.01801	0.52555	C209	-0.03703	0.49575	0.81102
C73	0.94928 -0.034	74 0.5253	C137	1.03936	-0.01128	0.50558	C214	0.49507	-0.02166	0.84677
C74	0.98716 -0.049	15 0.5188	N142	1.08675	-0.85415	0.48464				

Figure S9. Unit cell structure of PGBD elucidated for eclipsed AA model.

PGBD: Model AA; Space group P1											
	U	nit cell pa	arameters	: a = 28.6	Å, b = 28	.6 Å, c = 3	3.6 Å; α = 9	90°, β = 90)°, γ = 120)°	
Atoms	Х	Y	Z	Atoms	Х	Y	Z	Atoms	Х	Y	Z
C1	1.5081	-0.96873	0	C43	1.37276	-0.22141	0	H85	1.44918	-0.58953	0
C2	1.56251	-0.93469	0	N44	1.42686	-0.18775	0	H86	1.51158	-0.62691	0
C3	1.58297	-0.88026	0	C45	1.44732	-0.13332	0	H87	1.54718	-0.4038	0
C4	1.54902	-0.85987	0	C46	1.10099	-0.39123	0	H88	1.48476	-0.36628	0
C5	1.4946	-0.89391	0	C47	1.04658	-0.42527	0	H89	1.34757	-0.5285	0
C6	1.47414	-0.94834	0	C48	1.02611	-0.4797	0	H90	1.40997	-0.56588	0
N7	1.56916	-0.80581	0	C49	1.06007	-0.50009	0	H91	1.4273	-0.35385	-0.2522
C8	1.62358	-0.77178	0	C50	1.11449	-0.46605	0	H92	1.4256	-0.35279	0.25856
C9	1.64404	-0.71734	0	O51	1.26393	-0.28949	0	H93	1.21294	-0.42556	0.25205
C10	1.69846	-0.68331	0	O52	1.44068	-0.2622	0	H94	1.21116	-0.42452	-0.25856
C11	1.7186	-0.62925	0	O53	1.73241	-0.7037	0	H95	1.3556	-0.21103	0.25225
C12	1.68465	-0.60886	0	O54	1.55567	-0.73099	0	H96	1.35833	-0.2093	-0.25856
C13	1.63055	-0.64252	0	O55	1.70511	-0.55443	0	H97	1.11809	-0.34568	0
C14	1.61008	-0.69695	0	O56	1.29123	-0.43876	0	H98	1.01808	-0.40821	0
C15	1.59684	-0.62228	0	C57	1.20983	-0.32316	0	H99	1.04298	-0.54565	0
N16	1.61673	-0.56808	0	C58	1.46082	-0.20814	0	H100	1.14298	-0.48311	0
C17	1.58278	-0.54769	0	C59	1.32519	-0.45915	0	H101	1.19266	-0.31277	0.25225
C18	1.77302	-0.59521	0	C60	1.6714	-0.53419	0	H102	1.1954	-0.31105	-0.25856
N19	1.80698	-0.6156	0	C61	1.78651	-0.67003	0	H103	1.48839	-0.19088	0.25205
C20	1.86139	-0.58156	0	C62	1.53521	-0.78542	0	H104	1.48736	-0.19369	-0.25856
C21	1.60324	-0.49326	0	C63	1.89535	-0.60196	0	H105	1.31481	-0.48673	0.25205
C22	1.56928	-0.47286	0	C64	1.94977	-0.56792	0	H106	1.31303	-0.48569	-0.25856
C23	1.51487	-0.5069	0	C65	1.96991	-0.51386	0	H107	1.68183	-0.50658	0.25195
C24	1.49472	-0.56096	0	C66	1.93595	-0.49347	0	H108	1.68362	-0.50764	-0.25856
C25	1.52868	-0.58135	0	C67	1.88185	-0.52713	0	H109	1.80368	-0.68041	0.25225
C26	1.48116	-0.48666	0	C68	1.50174	-0.09928	0	H110	1.80094	-0.68214	-0.25856
C27	1.50162	-0.43223	0	C69	1.5222	-0.04485	0	H111	1.50765	-0.80263	0.2522
C28	1.46766	-0.41184	0	C70	1.48825	-0.02446	0	H112	1.50867	-0.79987	-0.25856
C29	1.41325	-0.44588	0	C71	1.43383	-0.0585	0	H113	1.87826	-0.64751	0
C30	1.3931	-0.49993	0	C72	1.41337	-0.11293	0	H114	1.97826	-0.58498	0
C31	1.42706	-0.52033	0	H73	1.59101	-0.95175	0	H115	1.95305	-0.44791	0
N32	1.37929	-0.42549	0	H74	1.62854	-0.85183	0	H116	1.8535	-0.50992	0
C33	1.39975	-0.37106	0	H75	1.46611	-0.87685	0	H117	1.53023	-0.11634	0
C34	1.3658	-0.35067	0	H76	1.42858	-0.97677	0	H118	1.56776	-0.01642	0
C35	1.38626	-0.29624	0	H77	1.6408	-0.78212	-0.2521	H119	1.40534	-0.04144	0
C36	1.3523	-0.27584	0	H78	1.64187	-0.77932	0.25856	H120	1.36781	-0.14136	0
C37	1.29788	-0.30988	0	H79	1.56923	-0.63964	0.2518	C1	1.5081	0.03127	0
C38	1.27742	-0.36431	0	H80	1.5703	-0.63673	-0.25856	C48	2.02611	-0.4797	0
C39	1.31138	-0.3847	0	H81	1.78335	-0.56766	0.2522	C65	0.96991	-0.51386	0
C40	1.22332	-0.39798	0	H82	1.78509	-0.56867	-0.25856	C70	1.48825	-1.02446	0
N41	1.18937	-0.37759	0	H83	1.6488	-0.46482	0				
C42	1.13495	-0.41162	0	H84	1.58638	-0.42731	0				

 Table S4. Fractional atomic coordinates and unit cell parameters of PGBD calculated for eclipsed AA model.

Figure S10. Unit cell structure of PGBD calculated for staggered AB model.

Table S5.	Fractional	atomic	coordinates	and unit	cell pa	rameters	calculated	for l	PGBD	staggered	AB	model.
									-	66		

PGBD: Model AB; Space group P1											
	U	nit cell pa	arameters	s: a = 28.6	Å, b = 28	.6 Å, c = 7	'.2 Å; α = §	90°, β = 9)°, γ = 120)°	
Atoms	Х	Y	Z	Atoms	Х	Y	Z	Atoms	Х	Y	Z
C1	2.03481	-1.0195	-0.76372	H207	1.68877	-0.54936	-0.63759	C117	0.44682	0.86629	0.70833
C2	2.05509	-0.9651	-0.76372	H208	1.69151	-0.54762	-0.89299	C118	0.10049	0.60838	0.70833
C3	2.02098	-0.94489	-0.76372	H209	1.45116	-0.68445	-0.76372	C119	0.04607	0.57434	0.70833
C4	1.9666	-0.97908	-0.76372	H210	1.35121	-0.74726	-0.76372	C120	0.02561	0.51991	0.70833
C5	1.93249	-0.95886	-0.76372	H211	1.37695	-0.88447	-0.76372	C121	0.05956	0.49952	0.70833
N6	1.95277	-0.90446	-0.76372	H212	1.47691	-0.82166	-0.76372	C122	0.11398	0.53356	0.70833
C7	1.91867	-0.88425	-0.76372	H213	1.2883	-0.78664	-0.76372	O123	0.26342	0.71012	0.70833
C8	1.93895	-0.82984	-0.76372	H214	1.18835	-0.84946	-0.76372	0124	0.44017	0.73742	0.70833
C9	1.90484	-0.80963	-0.76372	H215	1.2141	-0.98666	-0.76372	O125	0.73191	0.29592	0.70833
C10	1.85045	-0.84382	-0.76372	H216	1.31405	-0.92385	-0.76372	O126	0.55516	0.26862	0.70833
C11	1.83017	-0.89822	-0.76372	H217	1.11946	-0.90659	-0.88848	O127	0.7046	0.44518	0.70833
C12	1.86428	-0.91844	-0.76372	H218	1.11567	-0.90892	-0.63444	O128	0.29073	0.56085	0.70833
C13	1.81635	-0.82361	-0.76372	H219	1.13852	-1.02037	-0.63621	C129	0.20932	0.67646	0.70833
C14	1.83663	-0.7692	-0.76372	H220	1.13691	-1.02138	-0.89299	C130	0.46031	0.79147	0.70833
C15	1.80227	-0.74884	-0.76372	H221	1.52594	-0.6515	-0.63766	C131	0.32468	0.54046	0.70833
C16	1.74788	-0.78303	-0.76372	H222	1.52874	-0.64973	-0.89299	C132	0.6709	0.46543	0.70833
C17	1.7276	-0.83743	-0.76372	H223	1.82213	-0.5283	-0.63762	C133	0.78601	0.32958	0.70833
C18	1.76196	-0.8578	-0.76372	H224	1.82113	-0.53106	-0.89299	C134	0.5347	0.21419	0.70833
N19	1.71403	-0.76297	-0.76372	H225	1.64905	-0.8246	-0.63774	C135	0.89484	0.39766	0.70833
C20	1.73406	-0.70842	-0.76372	H226	1.64725	-0.82355	-0.89299	C136	0.94926	0.4317	0.70833
C21	1.69995	-0.6882	-0.76372	H227	2.01747	-0.84278	-0.63747	C137	0.9694	0.48575	0.70833
C22	1.72024	-0.6338	-0.76372	H228	2.01915	-0.84374	-0.89299	C138	0.93545	0.50614	0.70833
C23	1.68613	-0.61359	-0.76372	H229	1.86378	-0.45369	-0.76372	C139	0.88135	0.47248	0.70833
C24	1.63174	-0.64778	-0.76372	H230	1.90098	-0.35382	-0.76372	C140	0.50124	0.90033	0.70833
C25	1.61146	-0.70218	-0.76372	H231	1.7383	-0.37902	-0.76372	C141	0.5217	0.95476	0.70833
C26	1.64556	-0.72239	-0.76372	H232	1.70117	-0.47954	-0.76372	C142	0.48774	0.97515	0.70833
C27	1.55707	-0.73637	-0.76372	H233	1.9244	-0.29075	-0.76372	C143	0.43332	0.94112	0.70833
N28	1.52296	-0.71616	-0.76372	H234	1.96153	-0.19023	-0.76372	C144	0.41286	0.88669	0.70833
C29	1.46857	-0.75034	-0.76372	H235	1.79892	-0.21609	-0.76372	H145	0.5905	0.04787	0.70833
C30	1.7061	-0.55956	-0.76372	H236	1.76172	-0.31596	-0.76372	H146	0.62803	0.14779	0.70833
N31	1.76048	-0.52537	-0.76372	H237	1.97391	-0.12047	-0.88977	H147	0.4656	0.12276	0.70833
C32	1.78077	-0.47097	-0.76372	H238	1.97497	-0.11767	-0.63444	H148	0.42807	0.02284	0.70833

C33	1 43421 0 72008 0 76372	H230	1 8/057	0 1/1/7	0 88083	H1/Q	0.6403	0 2175	0 58227
C34	1.45421 -0.72330 -0.70372	11233	1.04007	0.14147	-0.00302	11145	0.0403	0.2173	0.30227
034	1.37962 -0.76417 -0.76372	<u> </u>	1.04220	-0.14252	-0.03444	П150	0.04137	0.2203	0.0370
C35	1.35954 -0.81857 -0.76372	C1	2.03481	-0.0195	-0.76372	H151	0.56873	0.35997	0.83423
C36	1.3939 -0.83894 -0.76372	C2	1.05509	-0.9651	-0.76372	H152	0.5698	0.36288	0.57905
C37	1.44829 -0.80475 -0.76372	C4	1.9666	0.02092	-0.76372	H153	0.78284	0.43195	0.83443
C38	1.30572 -0.85254 -0.76372	C45	2.10819	-0.93474	-0.76372	H154	0.78459	0.43094	0.57905
C39	1.27136 -0.83218 -0.76372	O48	1.06891	-1.03972	-0.76372	H155	0.64829	0.53479	0.70833
C40	1,21697 -0.86636 -0.76372	C51	2,12227	-1.00951	-0.76372	H156	0.58587	0.57231	0.70833
C41	1 19669 -0 92077 -0 76372	C69	1 97689	-1 05581	-0 76372	H157	0 44868	0 41009	0 70833
C42	1 23105 0 9/113 0 76372	C70	1.07000	1.00001	0.76372	H158	0.51108	0.37271	0.70833
042	1.25105 -0.94115 -0.70372	070	1.94270	-1.0330	-0.70372	11450	0.51108	0.57271	0.70033
643	1.20343 -0.90094 -0.70372	073	0.50759	0.03066	0.70633	П159	0.54666	0.59562	0.70633
N44	1.1423 -0.95496 -0.76372	C/4	0.56201	0.06492	0.70833	H160	0.48425	0.63333	0.70833
C45	1.10819 -0.93474 -0.76372	C75	0.58247	0.11935	0.70833	H161	0.34706	0.47111	0.70833
O46	1.59763 -0.62756 -0.76372	C76	0.54851	0.13975	0.70833	H162	0.40946	0.43373	0.70833
047	1.77431 -0.59999 -0.76372	C77	0.49409	0.10571	0.70833	H163	0.4268	0.64576	0.58223
O48	2.06891 -1.03972 -0.76372	C78	0.47363	0.05128	0.70833	H164	0.42509	0.64682	0.8376
O49	2.04095 -0.89086 -0.76372	N79	0.56866	0.1938	0.70833	H165	0.21243	0.57405	0.83435
050	1 62528 -0 7768 -0 76372	C80	0.62307	0 22784	0 70833	H166	0 21066	0.5751	0 57905
C51	1 12227 -1 00951 -0 76372	C81	0.64353	0.28227	0 70833	H167	0.35509	0 78858	0.83445
C52	1 54324 -0 66175 -0 76372	<u> </u>	0.60705	0.31631	0.70833	H168	0.35783	0.70031	0.57005
C53	1 79459 0 54558 0 76372	<u> </u>	0.03730	0.37036	0.70833	H160	0.00700	0.75001	0.070833
C53	1.79439 -0.34330 -0.70372		0.7101	0.37030	0.70000	11105	0.11750	0.0000	0.70000
054		004	0.00414	0.39075	0.70833		0.01756	0.0914	0.70033
055	2.00716 -0.87027 -0.76372	000	0.63004	0.35709	0.70833	H1/1	0.04247	0.45397	0.70833
0.56	1.83516 -0.43678 -0.76372	085	0.60958	0.30266	0.70833	H1/2	0.14247	0.5165	0.70833
C57	1.85544 -0.38238 -0.76372	C87	0.59633	0.37733	0.70833	H173	0.19216	0.68684	0.83445
C58	1.82133 -0.36216 -0.76372	N88	0.61623	0.43154	0.70833	H174	0.19489	0.68857	0.57905
C59	1.76669 -0.3962 -0.76372	C89	0.58227	0.45193	0.70833	H175	0.48788	0.80873	0.83435
C60	1.74666 -0.45075 -0.76372	C90	0.77251	0.4044	0.70833	H176	0.48685	0.80592	0.57905
C61	1.84137 -0.30761 -0.76372	N91	0.80647	0.38401	0.70833	H177	0.3143	0.51288	0.83435
C62	1.89601 -0.27357 -0.76372	C92	0.86089	0.41805	0.70833	H178	0.31253	0.51392	0.57905
C63	1.91604 -0.21902 -0.76372	C93	0.60273	0.50636	0.70833	H179	0.68132	0.49303	0.8343
C64	1.88193 -0.19881 -0.76372	C94	0.56878	0.52675	0.70833	H180	0.68312	0.49197	0.57905
C65	1.82754 -0.233 -0.76372	C95	0.51436	0.49271	0.70833	H181	0.80318	0.3192	0.83445
C66	1.80726 -0.2874 -0.76372	C96	0.49422	0.43866	0.70833	H182	0.80044	0.31747	0.57905
N67	1.90222 -0.1444 -0.76372	C97	0.52817	0.41827	0.70833	H183	0.50715	0.19699	0.83443
C68	1,95661 -0,11021 -0,76372	C98	0.48065	0.51295	0.70833	H184	0.50816	0.19974	0.57905
C69	1 97689 -0 05581 -0 76372	C99	0.50111	0.56738	0 70833	H185	0.87775	0.3521	0 70833
C70		C100	0.46716	0.58777	0.70833	H186	0.97775	0 41464	0.70833
071		C100	0.40710	0.55374	0.70000	H187	0.07770	0.5517	0.70000
071	1 96911 0 12410 0 76372	C102	0.3026	0.0001	0.70033	L100	0.35204	0.0017	0.70000
U102	1.00405 0.07614 0.63762	C102	0.3920	0.43300	0.70033	L120	0.00299	0.4037	0.70000
H193		N104	0.42000	0.47929	0.70000	H109	0.52975	0.00020	0.70000
LI105	1.90390 -0.97339 -0.09299	C105	0.37079	0.57413	0.70000	LI101	0.30720	0.9032	0.70000
H40C	1.90449 -0.80128 -0.70372	C105	0.39925	0.02000	0.70000	H100	0.40403	0.95017	0.70033
H107		C100	0.30529	0.04090	0.70000	H244	0.3073	0.05025	0.70033
	1.70403 -0.92078 -0.70372	C107	0.36575	0.70330	0.70000	H241	0.49000	-0.01407	0.70033
H100	1.04733 -0.90397 -0.70372	C100	0.3510	0.72377	0.70000	H242	1 01 4 04	0.49140	0.70033
П133	1.00217 -0.74004 -0.70372	0109	0.29/38	0.009/3	0.70000	П243 ЦО44	0.50402	1 00074	0.70000
	1.01922 -0.70331 -0.70372	0110	0.21092	0.0303	0.70000	□Z44 072	0.50483	1.020/1	0.70000
H201	1.00200 -0.00599 -0.70372	0111	0.3108/	0.01491	0.70033	0/3	1.00504	1.03088	0.70833
	1.74001 -0.90000 -0.70072	N442	0.22202	0.00104	0.70000	0120	0.02001	0.01991	0.70000
		0444	0.10000	0.02203	0.70000	0137	-0.0300	0.400/5	0.70000
		0114	0.13444	0.56/99	0.70000	0142	0.40//4	-0.02485	0.10833
H205	1.54683 -0.7639 -0.63762	0115	0.3/226	0.7782	0.70833				
H206	1.54508 -0.7629 -0.89299	N116	0.42636	U.81186	0.70833				

Figure S11. Unit cell diagram of PGBD calculated for ABC model.

PGBD: Model ABC; Space group P1											
	Unit cel	I paramet	t ers : a = 3	0.18 Å, b	= 29.67 Å	, c = 8.08	Å; α = 81.	43°, β = 8	4.38°, γ =	119.79°	
Atoms	Х	Y	Z	Atoms	Х	Y	Z	Atoms	Х	Y	Z
C1	1.93776	-0.87185	0.09594	C75	1.09745	-0.80881	0.51011	C144	1.07516	-0.03522	0.492
C2	1.94887	-0.8262	-0.02428	C76	1.13395	-0.78155	0.60961	C145	0.49629	0.03337	0.78668
C3	1.91667	-0.805	-0.01185	C77	1.15679	-0.72673	0.59145	C146	0.53099	0.05801	0.89304
C4	1.87212	-0.82974	0.11826	C78	1.14288	-0.69804	0.47642	C147	0.55457	0.1128	0.88093
C5	1.86096	-0.87491	0.23906	C79	1.10464	-0.72514	0.38323	C148	0.54462	0.1444	0.75998
C6	1.89379	-0.89542	0.22931	C80	1.08216	-0.78001	0.39968	C149	0.51021	0.11912	0.65183
C7	1.83717	-0.80855	0.12881	C81	1.17009	-0.6396	0.44861	C150	0.48582	0.06419	0.66684
C8	1.85398	-0.7595	0.17227	C82	1.22446	-0.60904	0.39563	N151	0.56943	0.20141	0.74558
C9	1.81967	-0.74117	0.19435	C83	1.25066	-0.55366	0.36622	C152	0.62404	0.2322	0.76626
C10	1.76776	-0.77136	0.17175	C84	1.22314	-0.52762	0.39304	C153	0.64426	0.2908	0.74801
C11	1.75229	-0.81915	0.11809	C85	1.16865	-0.55872	0.45113	C154	0.69644	0.32582	0.75579
C12	1.78642	-0.83791	0.09947	C86	1.14228	-0.61417	0.4759	C155	0.71509	0.38017	0.7454
N13	1.73129	-0.75379	0.20508	N87	1.25052	-0.47017	0.36279	C156	0.68155	0.39973	0.7242
C14	1.75086	-0.69774	0.20591	C88	1.30564	-0.43981	0.37529	C157	0.62905	0.36425	0.71937
C15	1.70906	-0.68417	0.19979	C89	1.32317	-0.38339	0.38563	C158	0.61065	0.3102	0.72976
C16	1.72185	-0.63181	0.19609	C90	1.3746	-0.34929	0.40175	C159	0.59199	0.38368	0.70281
C17	1.68482	-0.61699	0.17242	C91	1.39086	-0.29737	0.41934	N160	0.61619	0.44009	0.70611
C18	1.63392	-0.65579	0.16508	C92	1.35524	-0.27986	0.42306	C161	0.58334	0.46167	0.73943
C19	1.61993	-0.70916	0.18079	C93	1.30428	-0.31322	0.39988	C162	0.77101	0.4175	0.7571
C20	1.65749	-0.72358	0.19836	C94	1.28836	-0.3648	0.3783	N163	0.80258	0.39235	0.75596
C21	1.56517	-0.75043	0.17129	C95	1.2661	-0.2945	0.40094	C164	0.85776	0.42418	0.75709
N22	1.52886	-0.73086	0.17973	N96	1.28894	-0.23932	0.42087	C165	0.60099	0.50751	0.80636
C23	1.47427	-0.76669	0.1789	C97	1.25631	-0.21639	0.42224	C166	0.56915	0.52861	0.83318
C24	1.69935	-0.55978	0.15906	C98	1.44631	-0.26034	0.43478	C167	0.51866	0.50327	0.79869
N25	1.75303	-0.52593	0.18291	N99	1.47971	-0.28311	0.41579	C168	0.50029	0.45671	0.73795
C26	1.77797	-0.46853	0.14784	C100	1.5341	-0.25171	0.42839	C169	0.53231	0.43643	0.70707
C27	1.43518	-0.7613	0.26817	C101	1.27438	-0.16529	0.3222	C170	0.48497	0.52549	0.82112
C28	1.38316	-0.79287	0.25636	C102	1.2424	-0.14379	0.32036	C171	0.5019	0.5775	0.73526
C29	1.36877	-0.83114	0.1576	C103	1.19122	-0.17323	0.41569	C172	0.46788	0.59655	0.74247
C30	1.40673	-0.83899	0.07607	C104	1.17279	-0.22432	0.51476	C173	0.41622	0.56393	0.83593
C31	1.45894	-0.8072	0.08694	C105	1.20531	-0.24524	0.52011	C174	0.40035	0.51239	0.92703
C32	1.31494	-0.85966	0.12948	C106	1.15778	-0.14994	0.41757	C175	0.43419	0.49325	0.91814
C33	1.29295	-0.83042	0.06646	C107	1.1763	-0.09961	0.45363	N176	0.38018	0.58279	0.83844
C34	1.24237	-0.85637	0.03695	C108	1.14324	-0.07968	0.47272	C177	0.3987	0.63737	0.85804
C35	1.21243	-0.91229	0.07001	C109	1.09082	-0.1095	0.45469	C178	0.35768	0.65215	0.85238

C36	1.23429	-0.94164	0.13656	C110	1.07391	-0.15801	0.40441	C179	0.36939	0.70279	0.87282
C37	1.28544	-0.91546	0.16409	C111	1.1067	-0.17849	0.38944	C180	0.33104	0.71675	0.86924
O38	1.59806	-0.6403	0.13528	N112	1.05486	-0.0916	0.49317	C181	0.2803	0.67882	0.85662
O39	1.7722	-0.59447	0.21375	0113	1.37092	-0.22953	0.45514	C182	0.26927	0.6289	0.82853
O40	1.64339	-0.77687	0.20965	0114	1.40849	-0.36858	0.40969	C183	0.3081	0.61581	0.82532
C41	1.54572	-0.67865	0.21955	0115	0.96602	-0.1151	0.52658	C184	0.21459	0.58764	0.81601
C42	1.77452	-0.55256	0.28524	0116	1.23689	-0.39797	0.3589	N185	0.1779	0.6062	0.83993
C43	1.67635	-0.79174	0.28659	C117	1.00116	-0.12963	0.58729	C186	0.12619	0.57685	0.80217
C44	1 83277	-0 4359	0 10989	C118	1 34592	-0 20402	0.38015	C187	0.34389	0 77197	0.88137
C45	1.85713	-0.38116	0.09807	C119	1 46193	-0.32971	0.33952	N188	0.39917	0.80664	0.88602
C46	1.007.10	-0 35728	0.11511	C120	1 22912	-0 44024	0.00002	C189	0.00017	0.86396	0.00002
C47	1 77282	-0.38808	0.1/178	C121	1.22012	-0.74024	0.27041	C190	0.42010	0.00000	0.04002
C/8	1 7/831	-0.30030	0.15004	C122	1.6250	-0.20100	0.33040	C101	0.030-	0.00227	0.70204
C40	1.74031	0.2003/	0.10304	C122	1.0200	0.122121	0.33043	C102	0.04002	0.57302	0.74430
C50	1.00042	0.29934	0.10393	C123	1.04023	0.10094	0.44904	C192	0.02139	0.31770	0.7022
C50	1.09022	0.27519	0.20317	0124	1.00137	0.10703	0.55000	C193	0.04992	0.49234	0.79000
051	1.91399	-0.22030	0.19729	0120	1.04900	0.15706	0.04793	0105	0.10105	0.52175	0.01073
052	1.90217	-0.10007	0.00029	0120	1.09525	-0.10700	0.4057	0195	0.24099	0.09113	0.07410
053	1.80041	-0.21311	-0.0198	0127	1.7219	-0.18391	0.50943	0196	0.42017	0.73943	0.89038
054	1.84178	-0.26785	-0.00869	0128	1.77257	-0.15529	0.53862	0197	0.72882	0.30546	0.78281
N55	1.92624	-0.13209	0.07771	0129	1.79823	-0.09971	0.52086	0198	0.55759	0.27545	0.73476
C56	1.98173	-0.10061	0.08657	C130	1.77213	-0.07346	0.46807	0199	0.70075	0.45421	0.71309
C57	2.00106	-0.04235	0.07266	C131	1.72076	-0.10242	0.44415	0200	0.29681	0.56658	0.79304
C58	1.96562	-0.0246	0.08028	N132	1.85023	-0.07052	0.55624	C201	0.19015	0.64589	0.94407
O59	1.91222	-0.06048	0.09617	C133	1.88544	-0.09107	0.53904	C202	0.42461	0.78097	0.96925
C60	1.90018	-0.10397	0.01723	C134	1.95469	0.00344	0.53805	C203	0.32373	0.54423	0.87304
C61	2.05447	-0.00603	0.05632	0135	1.9162	0.01693	0.55838	C204	0.67213	0.47453	0.63255
C62	2.07203	0.04753	0.05945	C136	1.8657	-0.02645	0.64313	C205	0.78221	0.34137	0.70422
C63	2.03659	0.06511	0.06903	C137	2.03284	-0.02206	0.50537	C206	0.546	0.23018	0.66674
C64	1.9833	0.0291	0.07869	C138	2.04607	0.03024	0.50694	C207	0.89452	0.4183	0.65503
O65	2.05495	0.11838	0.07443	C139	2.00706	0.04306	0.524	C208	0.94765	0.44876	0.65623
C66	2.02585	0.13967	0.00433	O140	2.09874	0.06952	0.48627	C209	0.96549	0.48636	0.75746
N67	1.97008	0.10516	0.08023	C141	2.10837	0.11193	0.56765	C210	0.92935	0.49314	0.85735
C68	1.94491	0.04769	0.08815	N142	2.07707	0.13513	0.5192	C211	0.87609	0.46234	0.85755
O69	2.08958	-0.02404	0.03981	C143	2.02099	0.09912	0.52744	C212	0.47736	0.89771	0.78929
C70	2.14136	0.0162	-0.04569	C144	2.07516	-0.03522	0.492	C213	0.5011	0.95281	0.76872
N71	2.16025	0.0614	0.03658	H313	1.14519	-0.80251	0.70113	C214	0.47096	0.97547	0.80149
C72	2.12908	0.08657	0.04781	H314	1.18551	-0.70654	0.66697	C215	0.41662	0.94252	0.85091
H265	1.98191	-0.80736	-0.12997	H315	1.09349	-0.70351	0.29356	C216	0.39295	0.88727	0.87617
H266	1.92586	-0.76994	-0.10564	H316	1.05404	-0.79931	0.32198	H217	0.53914	0.03458	0.98747
H267	1.82705	-0.89393	0.34186	H317	1.24658	-0.6281	0.37484	H218	0.58008	0.12991	0.96811
H268	1.88483	-0.92951	0.32684	H318	1.29248	-0.53135	0.32102	H219	0.50234	0.14166	0.55377
H269	1.89328	-0.73606	0.19361	H319	1.14634	-0.54044	0.48004	H220	0.4594	0.04579	0.58281
H270	1.83383	-0.70382	0.23304	H320	1.10035	-0.63735	0.51996	H221	0.64899	0.22745	0.6689
H271	1.71392	-0.84224	0.09	H321	1.33026	-0.4386	0.26102	H222	0.62788	0.21695	0.89455
H272	1.77335	-0.8753	0.06146	H322	1.3117	-0.45965	0.49142	H223	0.55784	0.35959	0.81061
H273	1.78292	-0.67189	0.09302	H323	1.23249	-0.3219	0.50724	H224	0.57874	0.3777	0.57972
H274	1.76615	-0.68937	0.32443	H324	1.25196	-0.29728	0.27845	H225	0.77059	0.43196	0.87558
H275	1.55001	-0.78604	0.27678	H325	1.44488	-0.25054	0.56142	H226	0.78936	0.45267	0.64796
H276	1.56734	-0.7627	0.04982	H326	1.46337	-0.22301	0.33473	H227	0.63903	0.52687	0.83985
H277	1.67173	-0.55937	0.25927	H327	1.31309	-0.14199	0.24322	H228	0.58361	0.56428	0.88255
H278	1.69511	-0.54385	0.03217	H328	1.25745	-0.10432	0.24287	H229	0.46144	0.43666	0.71026
H279	1.44455	-0.73239	0.34644	H329	1.13363	-0.24748	0.5914	H230	0.51693	0.40121	0.65554
H280	1.35405	-0.78703	0.32281	H330	1.19082	-0.28368	0.60225	H231	0.54083	0.60268	0.65766
H281	1.39629	-0.86831	-0.00139	H331	1.21582	-0.0766	0.47394	H232	0.48207	0.6364	0.67145
H282	1.48701	-0.81382	0.01909	H332	1.15873	-0.04157	0.50689	H233	0.36169	0.48658	1.00536
H283	1.31537	-0.78727	0.03733	H333	1.03522	-0.18055	0.37778	H234	0.42064	0.45304	0.98617
H284	1.22701	-0.83239	-0.01386	H334	1.09213	-0.21679	0.3565	H235	0.43243	0.66626	0.75448
H285	1.21173	-0.98472	0.16923	H335	0.99944	-0.1298	0.7254	H236	0.4114	0.64124	0.98258
H286	1.30175	-0.9386	0.21477	H336	0.98761	-0.17093	0.57628	H237	0.20093	0.55121	0.91681

H287	1.54232	-0.6826	0.36018	H337	1.35758	-0.16773	0.43072	H238	0.21542	0.57735	0.68965
H288	1.52097	-0.66327	0.17561	H338	1.3597	-0.19175	0.23916	H239	0.31937	0.76899	0.99946
H289	1.75075	-0.56946	0.4161	H339	1.48483	-0.34899	0.36511	H240	0.33444	0.78937	0.7684
H290	1.81519	-0.52526	0.29633	H340	1.46729	-0.31688	0.19876	H241	0.11601	0.64465	0.7482
H291	1.6712	-0.79164	0.42444	H341	1.18707	-0.46556	0.2781	H242	0.02589	0.59352	0.71769
H292	1.66365	-0.83315	0.27928	H342	1.24971	-0.42326	0.14387	H243	0.0314	0.44986	0.80468
H293	1.85707	-0.45258	0.09019	H343	1.56421	-0.27501	0.22204	H244	0.12155	0.50051	0.83888
H294	1.89932	-0.3573	0.07412	H344	1.6554	-0.22217	0.24513	H245	0.18893	0.62799	1.07708
H295	1.7491	-0.37127	0.15414	H345	1.612	-0.16337	0.65001	H246	0.16167	0.65902	0.95289
H296	1.70614	-0.46743	0.18549	H346	1.52052	-0.21832	0.63675	H247	0.40528	0.76385	1.10517
H297	1.89979	-0.29886	0.29295	H347	1.70292	-0.22668	0.52577	H248	0.46633	0.8092	0.96637
H298	1.94086	-0.20384	0.28129	H348	1.79116	-0.17707	0.57811	H249	0.30834	0.53114	1.01308
H299	1.8574	-0.19007	-0.11164	H349	1.79131	-0.03055	0.4441	H250	0.31545	0.50858	0.82268
H300	1.81419	-0.28553	-0.09021	H350	1.70098	-0.08158	0.40738	H251	0.6878	0.5161	0.64481
H301	2.00518	-0.10474	-0.01814	H351	1.8829	-0.10654	0.42105	H252	0.67859	0.47589	0.4939
H302	1.98848	-0.11574	0.20961	H352	1.87305	-0.12434	0.65029	H253	0.80417	0.32202	0.74334
H303	1.91325	-0.0888	-0.12308	H353	1.83786	-0.0124	0.6478	H254	0.78643	0.34872	0.56282
H304	1.85717	-0.13106	0.04741	H354	1.86682	-0.04003	0.77797	H255	0.50286	0.20419	0.69085
H305	2.03167	0.14369	-0.13624	H355	2.15072	0.14223	0.52911	H256	0.56121	0.24323	0.5271
H306	2.04122	0.18003	0.02959	H356	2.09848	0.09671	0.70814	H257	0.88249	0.39057	0.57218
H307	1.92441	0.03871	-0.02071	H357	2.00845	0.11358	0.41751	H258	0.97497	0.44357	0.5758
H308	1.91571	0.02469	0.20904	H358	1.9988	0.09819	0.64747	H259	0.94229	0.52171	0.93763
H309	2.1414	0.02995	-0.18181	H359	2.0944	-0.02556	0.60321	H260	0.84956	0.46829	0.9381
H310	2.16663	-0.00099	-0.04549	H360	2.1043	-0.01005	0.37209	H261	0.50162	0.88168	0.75831
H311	2.14326	0.1192	-0.06754	C73	1.94149	-0.04882	0.53069	H262	0.54301	0.97788	0.72617
H312	2.13391	0.10392	0.16231	C74	1.9803	-0.06207	0.52139	H263	0.39272	0.9595	0.87457
C1	1.93776	0.12815	0.09594	C75	2.09745	0.19119	0.51011	H264	0.35112	0.8629	0.9206
C35	2.21243	0.08771	0.07001	N112	2.05486	-0.0916	0.49317	C145	0.49629	1.03337	0.78668
N67	1.97008	-0.89484	0.08023	C133	0.88544	-0.09107	0.53904	C192	1.02159	0.51778	0.7622
N71	1.16025	-0.9386	0.03658	C134	0.95469	0.00344	0.53805	C209	-0.03451	0.48636	0.75746
C73	0.94149	-0.04882	0.53069	C137	1.03284	-0.02206	0.50537	C214	0.47096	-0.02453	0.80149
C74	0.9803	-0.06207	0.52139	N142	1.07707	-0.86487	0.5192				

Section S7. SEM images

Figure S12. SEM images of (a,b) PGBpy showing presence of small spheres and sheets on the surface, c) Au@PGBpy, d) Au@PGBD, and TEM diffraction pattern of e) Au@PGBpy and f) Au@PGBD..

Section S8. X-ray photoelectron spectroscopic (XPS) studies

Figure S13. XPS profile of PGBpy a) full survey, and high resolution profile b) C1s, c) N 1s, and d) O 1s.

Figure S14. XPS profile of PGBD a) full survey, and high resolution profile b) C1s, c) N 1s, and d) O 1s.

Figure S15. XPS profile of PGBpy recovered after gold adsorption a) full survey, and high-resolution profile b) C1s, c) N 1s, d) O 1s, e) Au 4f, and f) Cl 2p.

Figure S16. XPS profile of PGBD recovered after gold adsorption a) full survey, and high resolution profile b) C1s, c) N 1s, d) O 1s, e) Au 4f, and f) Cl 2p.

		РСВру	PGBD		Au@PGBpy	Au@PGBD
	C=C	283.28	283.38	C=C	283.42	283.29
C1s	C-C	284.26	284.47	C-C	284.55	284.51
	C-O / C-N	285.64	286.34	C-O / C-N	286.42	286.94
	C=N _{Bpy}	397.81	-	C=NAu	397.76	-
N1s	C-N _{imine}	398.77	398.82	C-N	398.78	398.64
				C-NAu	399.68	399.58
01a	C-O _{ether}	531.80	530.84	C-OAu	529.60	530.64
OIS	С-ОН	533.18	532.71	C-OHAu	531.30	532.49
				Au ⁰ 4f _{7/2}	83.21	82.99
				$Au^{1+} 4f_{7/2}$	83.99	84.23
A.11				$Au^{3+} 4f_{7/2}$	85.43	86.70
Au				Au ⁰ 4f _{5/2}	87.48	88.24
				$Au^{1+} 4f_{5/2}$	89.37	89.37
				$Au^{3+} 4f_{5/2}$	91.39	90.03
CI				Cl2p _{3/2}	199.07	197.96
				Cl2p _{1/2}	200.83	200.73

Table S7. Binding energy values observed for our synthesized COF before and after gold adsorption studies.

Section S9. Nitrogen gas uptake and pore size distribution profiles

Figure S17. BET isotherm of PGBpy and PGBD suggest their mesoporous nature.

	Table S8.	Curve	fitting	data	for	BET	sorption	isother	n and	summary
--	-----------	-------	---------	------	-----	-----	----------	---------	-------	---------

	РСВру									
Relative Pressure, P/Po	Volume, cc/g	BET summary								
2.28E-01	277.4936	Slope = 1.803 1/g								
2.53E-01	302.2773	Intercept = $4.33E-01 1/g$								
2.78E-01	331.8475	C constant = 5.163								
3.02E-01	359.4928	Surface Area = $1557.582 \text{ m}^2/\text{g}$								
3.28E-01	383.4227									
3.53E-01	407.0266									
3.78E-01	429.0504									
4.02E-01	467.369									
	PGBD	1								
2.77E-01	201.5613	BET summary								
2.99E-01	219.0527	Slope = 3.108 1/g								
3.27E-01	238.6891	Intercept = $6.31E-011/g$								
3.52E-01	255.0656	C constant = 5.922								
3.77E-01	270.4776	Surface Area = $931.362 \text{ m}^2/\text{g}$								
4.02E-01	285.9448									
4.28E-01	301.4239									

Figure S18 Pore size distribution curve for PGBpy.

Figure S19. Pore size distribution curve for PGBD.

Section S10. Crystallite size calculation using Debye Scherrer equation

The domain size of the COF crystallites in the form of powder was calculated using Scherrer equation. This equation is generally used to correlate the size of crystallites in a solid to the broadening of the peak in the PXRD pattern. The calculation of integral breadth (β) was performed through Gaussian fitting of the high-intensity first peak that corresponds to the [100] plane. According to our findings, the size of the COF crystallites varies when the synthesis is performed using different green solvents.

The Scherrer equation can be written as:

$$\tau = \frac{K\lambda}{\beta \cos\theta}$$
(eq. 1)

Where, τ is the size of the ordered (crystalline) domains, and K is a dimensionless shape factor with a value close to the unity. The shape factor varies with the actual shape of the crystallite. Herein we considered the shape factor value 0.94 in our calculations. λ is the X-ray wavelength (1.54178 Å) used for the measurement of the PXRD diffraction pattern of the COFs, β is the line broadening at half of the maximum intensity, θ is the Bragg angle.

PGBpy crystallite size = 2.81 Å **PGBD** crystallite size = 1.99 Å

Section S11. Additional characterization data

Figure S20. FTIR spectra of a) pristine PGBpy and b) PGBD after 3M HCl treatment and 3M NaOH treatment.

Figure S21. PXRD pattern of the pristine PGBpy COF and sample recovered after treatment at pH 2, 6, and 8.

Figure S22. Comparison of FTIR spectra of a) pristine PGBpy and b) Au@PGBpy suggest a notable shift in the C-N stretch due to interaction with gold nanoparticles.

Figure S23.PXRD pattern of Au@PGBpy and Au@PGBD and their comparison with their pristine form.

Section S12. Gold adsorption studies

Figure S24. ICP calibration curve using different concentrations of gold chloride solution.

Figure S25. The linear fitting of a) pseudo-second and b) pseudo-first order kinetics for PGBpy in Au³⁺ uptake.

Figure S26. The linear fitting of a) pseudo-second and b) pseudo-first order kinetics for PGBD in Au³⁺ uptake.

Figure S27. The Linear fitting of a) Langmuir and b) Freundlich isotherms for PGBpy in Au³⁺ uptake.

Figure S28. The Linear fitting of a) Langmuir and b) Freundlich isotherms for PGBD in Au³⁺ uptake.

Figure S29. Adsorption performance of PGBD after each regeneration cycle.

Figure S30. Concentration profile of metal ions in real e-waste leach solution prior to adsorption analysis. Bar graphs display elements present in lower concentrations, while the inset (top right) highlights metal ions with higher concentrations.

Table S9. The calculated selectivity parameters for each competing metal ions in simulated e-waste for PGBpy.

Metal ions (M)	Q _e (mg g ⁻¹)	K _d (L g ⁻¹)	a(Au/M)
Au	88.58276	53.01309	1
Cu	14.57092	0.391878	135.2795
Cr	12.46112	0.324949	163.1427
Al	7.548128	0.182988	289.7081
Zn	7.53967	0.184073	288.0003
Со	7.287405	0.175873	301.4278
Cd	6.670093	0.158843	333.7456

Metal ions	Q _e (mg g ⁻¹)	K _d (L g ⁻¹)
Au	18.86038	137.86014
Ag	0.009272	0.199978
Pb	0.004122	0.06654267
Zn	<0.00	<0.00
Ca	<0.00	<0.00
V	<0.00	<0.00
Cr	<0.00	<0.00
Mn	<0.00	<0.00
Fe	<0.00	<0.00
Со	<0.00	<0.00
Ni	<0.00	<0.00
Cu	<0.00	<0.00
Al	<0.00	<0.00

Table S10. The calculated selectivity parameters for each competing metal ions in real e-waste for PGBpy

From this, the separation factor for Au ions with respect to Ag and Pb were calculated as;

 $\alpha_{(Au/Ag)} = 689.3765$

 $\alpha_{(Au/Pb)} = 2071.755$

Meanwhile, the separation factor with respect to rest of all metals tends to infinity, indicates the superior selectivity of PGBpy towards Au, compared to other metal ions present in the CPU leaching solution.

Metal ions	Q _e (mg g ⁻¹)	K _d (L g ⁻¹)	a(Au/M)
Au	85.19579	25.3224	1
Cu	5.051532	0.120441	210.2473
Cr	8.826536	0.219756	115.2297
Al	2.008043	0.045617	555.1057
Zn	3.345807	0.077706	325.8736
Co	4.19237	0.097535	259.6227
Cd	1.822138	0.041025	617.2494

Table S12. The calculated selectivity parameters for each competing metal ions in real e-waste for PGBD

Metal ions	Q _e (mg g ⁻¹)	Kd (L g ⁻¹)
Au	55.727	23.27292
Ag	1.817	0.331479

0.0022	0.053012
0.004	0.133333
0.061	0.011821
<0.00	<0.00
<0.00	<0.00
<0.00	<0.00
<0.00	<0.00
<0.00	<0.00
<0.00	<0.00
<0.00	<0.00
<0.00	<0.00
	$\begin{array}{c} 0.0022\\ 0.004\\ 0.061\\ <0.00\\ <0.00\\ <0.00\\ <0.00\\ <0.00\\ <0.00\\ <0.00\\ <0.00\\ <0.00\\ <0.00\\ <0.00\\ <0.00\end{array}$

From this, the separation factor for Au ions with respect to Ag, Pb, Ni and Cu were calculated as follows

 $\alpha_{(Au/Ag)} = 70.2094$

 $\alpha_{(Au/Pb)} = 439.0118$

 $\alpha_{(Au/Ni)} = 174.5469$

 $\alpha_{(Au/Cu)} = 1968.835$

Meanwhile, the separation factor with respect to rest of all metals tends to infinity, indicates the superior selectivity of PGBD towards Au, compared to other metal ions present in the CPU leaching solution.

Figure S31. Comparison of PGBpy and PGBD with respective regenerated samples shows negligible change in the FTIR spectra.

Figure S32. Comparison of solid state ¹³C NMR of pristine PGBpy with the sample regenerated after gold adsorption studies.

Figure S33. Average gold particle size distribution in a) Au@PGBpy, and b) Au@PGBD.

Figure S34. HAADF-STEM-EDS mapping of Au@PGBpy sample.

Figure S35. HAADF-STEM-EDS mapping of Au@PGBD.

Figure S36. Gold recovery from e-waste using **PGBpy**. a) CPU used as a e-waste source, b) dissolution of metal content of the CPU under acidic conditions, c) solution turned yellow after 10 minutes, d) dark green-yellow solution suggesting complete dissolution of metal content of CPU chip in acidic solution, e) e-waste solution used for gold recovery studies, and f) e-waste solution containing **PGBpy** after gold adsorption.

Figure S37. DFT calculation performed for calculating binding energy value $[AuCl_4]^-$ interacting with O_{ether} in PGBpy in a) unprotonated, and b) protonated state.

Table S13. Comparison of the equilibrium time and adsorption capacity of various materials employed for gold recovery.

Materials	Equilibrium time (min)	Q _m (mg g ^{−1})	Reference
TSC functionalized corn bract	1440	1470	[1]
Methionine MOF	60	598	[2]
UiO-66-BTU	240	680	[3]
JNU-1	0.17	1124	[4]
COP	720	1945	[5]
TpTsc	2880	4400	[6]
DMC	20	~1000	[7]
IM-TUCS	240	933	[8]
TpTGCI	95	1794	[9]
COF-V-DTT	120	652	[10]
COF-V-S-β-CD	240	820	[10]
TTB-COF	1	560	[11]
JNM-100-AO	10	954	[12]
TzDa COF	30	1055	[13]
BMTA-TFPM COF	30	570	[14]
PYTA-COFs	10-60	1752-1180	[15]
NH ₂ -CTF-1	20	870	[16]

MTpPa-1	180	1737	[17]
S-COF	300	100	[18]
Tp-BTD	3600	3095	[19]
CF-COF	95	1794	[9]
COF-HNU25	8	1725	[20]
TyHz	3	1008	[21]
MoS2-TpTa	360	2565	[22]
ECUT-COF-29	60	3714	[23]
TpDa	360	982	[24]
РСВру	1440	3467	This work
PGBD	1440	2590	This work

[a] IM-TUCS = thiourea modified chitosan imprinted resin, DMC = dithiocarbamate modified cellulose.

S. No.	Metal ion	Reduced state	E° (V)
1.	[AuCl ₄] ⁻	Au ^o	1.002
2.	Ag ¹⁺	Ag ⁰	0.80
3.	Pb ⁴⁺	Pb ²⁺	1.45
4.	Co ²⁺	Co ⁰	-0.27
5.	Zn ²⁺	Zn ⁰	-0.76
6.	Ni ²⁺	Ni ⁰	-0.25
7.	Al ³⁺	Alo	-1.67
8.	Ca ²⁺	Ca ⁰	-2.84
9.	V ³⁺	V ¹⁺	1.0
10.	Cr ⁶⁺	Cr ³⁺	1.33
11.	Mn ⁷⁺	Mn ²⁺	1.51
12.	Fe ³⁺	Fe ²⁺	0.77
13.	Cu ²⁺	Cu ⁰	0.34

Table S14. Standard electrode reduction potential (V) in water at 25°C under acidic conditions.

Section S14. Ion adsorption energies and kinetics modeling under acidic conditions

To elucidate the origin of the exceptional selectivity of the PGBpy covalent organic framework (COF) toward Au³⁺ ions under acidic conditions, and as a proof-of-concept, we performed a detailed theoretical investigation combining first-principles adsorption energy calculations and kinetic modeling with the Gaussian16 atomistic simulation package [1]. To include the environmental acidic solvent effect in these new calculations we have adopted an implicit solvation model, the polarizable continuum model (PCM) [J. Tomasi, B. Mennucci, R. Cammi, "Quantum Mechanical Continuum Solvation Models." Chem. Rev. 105(8), 2999-3094 (2005)] for a formic acid solvent, with a pH~3 and a dielectric constant of 57.3, The experimental adsorption process was carried out in strongly acidic media (pH ~ 2-4), in which the bipyridine (Bpy) and amine-based (N_{amine}) coordination sites of the framework are likely protonated, forming -NH⁺ species. This protonation significantly alters the electronic properties of these donor atoms, reducing their classical Lewis basicity and changing the nature of metal-ligand interactions within the framework. Therefore, all our additional density functional theory (DFT) calculations of ion–COF interactions were conducted using the protonated COF fragment as the adsorption substrate (see Figure S37).

We evaluated the adsorption energies (ΔE_{ads}) for the representative set of metal ions: Au³⁺, Cu²⁺, Co²⁺, Al³⁺, Zn²⁺, Cr³⁺, and Cd2⁺. The computed values reveal a clear thermodynamic preference for Au³⁺, which binds coplanarly to the Bpy moiety with an adsorption energy of -2.07 eV, significantly stronger than Cu²⁺ (-1.23 eV), Co²⁺ (-0.68 eV), Al³⁺ (-0.31 eV), and significantly above the weakly bound Zn²⁺, Cr³⁺, and Cd²⁺ (-0.09 to -0.05 eV). These results indicate that even in the presence of protonation, the COF retains a strong thermodynamic affinity for Au³⁺.

Figure S38. (Left) Protonated COF fragment. (Right) Interaction of metal ions with protonated Bpy moiety within the COF fragment.

This pronounced selectivity may be rationalized by several key factors: i) Chemical Softness and Polarizability of Au³⁺. Au³⁺ is a highly polarizable soft acid, in accordance with Pearson's HSAB theory. Even in its naked ionic form, it exhibits significant electron-cloud deformability and can engage in strong dispersion-enhanced and partially covalent interactions with soft donor atoms, such as nitrogen and oxygen, even when these are protonated. By contrast, harder cations such as Al³⁺ and Cr³⁺, which are small and highly charged, prefer to coordinate with hard donor atoms (e.g., carboxylates or phosphates), and show negligible affinity for the protonated and flexible N,O-containing environments of the COF, ii) Electrostatic and Hydrogen Bonding Effects in Acidic Media. Although protonation reduces the formal availability of lone pairs on the nitrogen atoms, hydrogen bonding, cation- π interactions, and induced dipole effects remain operative. The protonated NBpy and Namine sites can still polarize around incoming cations, particularly for highly polarizable species like Au³⁺. These interactions are far more effective for gold than for more hydrated, hard, and symmetrical metal cations such as Zn^{2+} or Al^{3+} , which tend to remain solvated and exhibit weak, non-directional interactions with the framework, and iii) Ionic Size and Desolvation Energies. The effective ionic radius of Au³⁺ (around ~85 pm) is compatible with the pore sizes and local geometry of PGBpy. Moreover, its relatively low hydration energy (compared to Al^{3+} or Cr^{3+}) makes it more readily desolvated and thus more likely to engage in direct interactions with the framework. In contrast, smaller and more hydrated cations, such as Al³⁺ or Co³⁺, exhibit strong solvation shells in aqueous solution that hinder direct adsorption onto the framework, particularly in the presence of protons that compete for binding.

Figure S39. (Left) Adsorption energies, in eV, of metal ions on protonated COF. (Right) Residence time (in s and log-scale at 300 K) of metal ions on protonated COF.

Kinetic Retention – Residence Time Modeling. To assess not only the thermodynamics but also the kinetic persistence of each ion once adsorbed, we calculated the average ion residence time τ by using the Arrhenius expression:

$$\tau = \frac{1}{\nu} e^{\left(\frac{\left|\Delta E_{ads}\right|}{k_B T}\right)},$$

where v is the attempt frequency (typically adopted as 10^{13} s⁻¹), ΔE_{ads} is the ion adsorption energy and T is the temperature (300 K in the present case). The calculated τ for Au³⁺ exceeds 10^{21} s, while for Cu²⁺ it falls several orders of magnitude below 10^7 s, and for Al³⁺, Cd²⁺, Zn²⁺ and Cr³⁺ it drops to microseconds or nanoseconds (see Figure S38 and Table S15). This exponential sensitivity confirms that even moderate differences in ΔE_{ads} lead to orders-ofmagnitude differences in retention times, explaining the experimentally observed selectivity under dynamic conditions. The combination of (i) strong thermodynamic interaction of Au³⁺ with the protonated framework, (ii) favorable chemical softness and polarizability of gold, (iii) weak competition from other cations due to charge, size and solvation effects, and (iv) vastly superior kinetic retention, together explain the exceptional selectivity of PGBpy toward Au³⁺ under acidic conditions. These insights offer a predictive framework for the rational design of next-generation adsorbents based on heteroatom-rich, protonation-tolerant COFs for selective metal ion recovery.

It should be noted that the approach employed here - based on static adsorption energy calculations and kinetic modeling via Arrhenius-type expressions - does not fully capture the complexity of ionic competition or dynamic transport phenomena in aqueous media, such as ion–ion correlations, solvent-mediated interactions, or diffusion-limited kinetics. Nevertheless, the combination of adsorption energies and estimated residence times provides a robust and physically meaningful descriptor of ion affinity under acidic conditions. The trends observed are in excellent agreement with the experimental selectivity data, supporting the utility of this theoretical framework for rationalizing and predicting the behavior of COF-based adsorbents.

Ion	Adsorption Energy (eV)	Residence Time (s)
Au^{3+}	-2.0692	5.768e+21
Cu^{2+}	-1.2346	5.500e+07
Co^{2^+}	-0.6844	3.144e-02
Al^{3+}	-0.3082	1.505e-08
Zn^{2+}	-0.0918	3.485e-12
Cr^{3+}	-0.0766	2.239e-13
Cd^{2+}	-0.0481	7.098e-15

References.

- G. Lin, S. Wang, L. Zhang, T. Hu, J. Peng, S. Cheng, L. Fu, *Journal of Molecular Liquids* 2018, 258, 235–243.
- [2] M. Mon, J. Ferrando-Soria, T. Grancha, F. R. Fortea-Pérez, J. Gascon, A. Leyva-Pérez, D. Armentano, E. Pardo, *J. Am. Chem. Soc.* **2016**, *138*, 7864–7867.
- [3] J. Guo, X. Fan, J. Wang, S. Yu, M. Laipan, X. Ren, C. Zhang, L. Zhang, Y. Li, Chem. Eng. J. 2021, 425, 130588.
- [4] H.-L. Qian, F.-L. Meng, C.-X. Yang, X.-P. Yan, Angew. Chem. Int. Ed. 2020, 59, 17607–17613.
- [5] A. Li, N. Zheng, T. Yang, J. Xie, L. Li, K. Tang, C. Zhou, RSC Adv. 2021, 11, 29807–29815.
- [6] L. Zhang, Q.-Q. Zheng, S.-J. Xiao, J.-Q. Chen, W. Jiang, W.-R. Cui, G.-P. Yang, R.-P. Liang, J.-D. Qiu, Chem. Eng. J. 2021, 426, 131865.
- [7] F. B. Biswas, I. M. M. Rahman, K. Nakakubo, M. Endo, K. Nagai, A. S. Mashio, T. Taniguchi, T. Nishimura, K. Maeda, H. Hasegawa, J. Hazard. Mat. 2021, 410, 124569.
- [8] J. Guo, X. Fan, Y. Li, S. Yu, Y. Zhang, L. Wang, X. Ren, J. Hazardous Mat. 2021, 415, 125617.
- [9] Q. Xu, X.-H. Du, D. Luo, M. Strømme, Q.-F. Zhang, C. Xu, Chem. Eng. J. 2023, 458, 141498.
- [10] F. Liu, S. Wang, Z. Hu, B. Hu, Sep. Purif. Technol. 2024, 329, 125218.
- [11] Z. Zhou, W. Zhong, K. Cui, Z. Zhuang, L. Li, L. Li, J. Bi, Y. Yu, Chem. Commun. 2018, 54, 9977– 9980.
- [12] J. Luo, X. Luo, M. Xie, H.-Z. Li, H. Duan, H.-G. Zhou, R.-J. Wei, G.-H. Ning, D. Li, *Nat. Commun.* 2022, 13, 7771.
- [13] S. Zhong, Y. Wang, T. Bo, J. Lan, Z. Zhang, L. Sheng, J. Peng, L. Zhao, L. Yuan, M. Zhai, W. Shi, *Chem. Eng. J.* 2023, 455, 140523.
- [14] M. Liu, H.-Y. Kong, S. Bi, X. Ding, G. Z. Chen, J. He, Q. Xu, B.-H. Han, G. Zeng, Adv. Funct. Mat. 2023, 33, 2302637.
- [15] M. Liu, D. Jiang, Y. Fu, G. Zheng Chen, S. Bi, X. Ding, J. He, B.-H. Han, Q. Xu, G. Zeng, Angew. Chem. Int. Ed. 2024, 63, e202317015.
- [16] H.-Y. Kong, Y. Tao, X. Ding, B.-H. Han, Chem. Eng. J. 2023, 463, 142393.
- [17] Y. Bai, J. Yang, Q. Shuai, L. Huang, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 657, 130593.
- [18] C. Liu, G. Zhang, A. Dong, J. Zhang, Macromol. Mat. Eng. 2022, 307, 2100761.
- [19] S. Yang, T. Li, Y. Cheng, W. Fan, L. Wang, Y. Liu, L. Bian, C.-H. Zhou, L.-Y. Zheng, Q.-E. Cao, ACS Sustainable Chem. Eng. 2022, 10, 9719–9731.
- [20] J. Qiu, C. Xu, X. Xu, Y. Zhao, Y. Zhao, Y. Zhao, J. Wang, Angew. Chem. Int. Ed. 2023, 62, e202300459.
- [21] L. Zhang, J.-Q. Fan, Q.-Q. Zheng, S.-J. Xiao, C.-R. Zhang, S.-M. Yi, X. Liu, W. Jiang, Q.-G. Tan, R.-P. Liang, J.-D. Qiu, Chem. Eng. J.2023, 454, 140212.
- [22] Q. Zhou, X. Jin, Y. Wei, Y. Wu, F. Jiang, S. Wang, C. Zhang, X. Yang, Sep. Purif. Technol.y 2024, 338, 126599.
- [23] Z. Huang, L. Guo, K. Yu, F. Gao, Y. Yang, F. Luo, Chem. Commun. 2024, 60, 4950–4953.
- [24] D. Mei, B. Yan, Angew. Chem. Int. Ed. 2024, 63, e202402205.