
1 

 

Intelligent tactile imaging-recognition sensor system 

enabled by methoxynitrobenzene-salicylaldehyde 

fluorescent material 
 

Zihan Liu, Xinyi Zhao, Yuai Duan, Yaping Li, Zhijia Wang, Zixuan Wang, Jiarong Zhang, Jing 

Yuan, Hua Geng, Tianyu Han* 

 

Department of Chemistry, Capital Normal University, Beijing, China, 100048. 

*Corresponding author. E-mail address: hanty@cnu.edu.cn. 

 

 

 

 

Table of contents 

1. Materials and instruments--------------------------------------------------------------------------------2 

2. Supplementary figures and tables----------------------------------------------------------------------3 

3. Quantum chemical calculation-------------------------------------------------------------------------30 

4. Introduction of CNN and Resnet-18 model----------------------------------------------------------30 

5. CNN code with modifications---------------------------------------------------------------------------33 

6. References---------------------------------------------------------------------------------------------------42 

 

 

Supplementary Information (SI) for Materials Horizons.
This journal is © The Royal Society of Chemistry 2025



2 

 

1. Materials and instruments 

The involved chemicals and organic solvents were provided by Macklin and J&K 

Scientific, respectively. They were used as received, without purification. 1H and 13C 

NMR spectra of MNIMP were obtained by a 600 MHz Varian-VNMRS nuclear magnetic 

resonance spectrometer with tetramethylsilane (TMS) internal reference. Melting 

point of MNIMP was measured by a Hanon-MP420 (digital version) melting point 

apparatus. The high-resolution mass spectrum (HRMS) of MNIMP was measured by 

XevoTM G2-XS TOF mass spectrometer in positive ionization mode. UV-vis spectra of 

MNIMP were recorded by a SHIMADZU UV-2550 spectrophotometer. Emission 

spectra of MNIMP were recorded by a HITACHI F-7000 spectrofluorophotometer. 

Fluorescence images of MNIMP film were captured by an Olympus-CKX41 

fluorescence microscope using 365 nm irradiation. The average thickness of MNIMP 

film was measured by a Smart-Sensor (AS-931) coating thickness gauge. Fluorescent 

images for texture recognition were taken with a Xiaomi-13 smartphone. The robot 

arm used to build the automation platform is by Keyes Micro:bit. Thermogravimetric 

(TG) and derivative thermogravimetric (DTG) curves were measured by SHIMADZU 

DTG-60AH thermogravimetric meter. Powder X-ray diffraction patterns were 

recorded on Bruker D8 advance X-ray diffractometer (Bruker, Germany). Single crystal 

X-ray diffraction was performed on a Bruker D8 venture X-ray diffractometer (Bruker, 

Germany). The intensity values of the fluorescent patterns were measured by Image-

Pro-Plus 6.0 software. The mean gray values of the fluorescent patterns were 

measured by Image-J 1.54f software. 



3 

 

2. Supplementary figures and tables 

 
Figure S1. 1H NMR (600 MHz, 298 K) spectrum of MNIMP in DMSO-d6. 

 

 

Figure S2. Magnified 1H NMR spectrum of MNIMP (6.85-7.95 ppm) showing the peaks and splitting of the 

aromatic hydrogens. 

 

 



4 

 

 

Figure S3. 13C NMR (151 MHz, 298 K) spectrum of MNIMP in DMSO-d6. 

 

 
Figure S4. Magnified 13C NMR spectrum of MNIMP ranging from 116-130 ppm. 

 

 



5 

 

 

Figure S5. High resolution mass spectrum of MNIMP. 

 

 

 

Figure S6. Fluorescence micrographs of MNIMP in hydrated states with varying water fraction (fw: 0-99%). 

Scale bar: 200 μm 

 

 

 

 

 



6 

 

10 20 30 40 50

1

10

100

1000

C
o

u
n

ts

Time (ns)

τ = 0.85 ns

 

Figure S7. Fluorescence lifetime decay profile and the dual-exponential fitting curve of MNIMP film. 

Excitation wavelength: 375 nm. 

 

 

500 550 600 650 700

 30

 60

 90

 120

 150

 180

 210

 240

 270

 300

P
L

 i
n

te
n

s
it

y

Wavelength (nm)

Time (s)

Cv:  9.09%

 

Figure S8. Time-dependent emission spectra of MNIMP with 1000 μW/cm2 UV exposure (300 s). Excitation 

wavelength: 414 nm. 



7 

 

   

500 550 600 650 700

P
L

 i
n

te
n

s
it

y

Wavelength (nm)

 30

 60

 90

 120

 150

 180

 210

 240

 270

 300

Time (s)

Cv:  0.75%

 

Figure S9. Time-dependent emission spectra of MNIMP with 90% RH humidity environment (300 s). 

Excitation wavelength: 414 nm. 

 

Figure S10. TG-DTG (A) and DTA (B) curves of MNIMP under air atmosphere at a heating rate of 10 °C/min.  

 

 



8 

 

 

 

Figure S11. Scanning electron microscope (SEM) image of the as-preprepared film (before contact with 

target objects). 

 

 

Figure S12. Fourier transform spectra of various textured targets in 0°, 45° and 90° directions (i.e., gunny, 

polyester, hard foam, soft foam, leather, plastic, plaid fabric, stripe fabric, rubber and sponge). 

 

 

0.00 0.05 0.10 0.15 0.20

0

20

40 0°

Frequency (Hz)

0

20

40

A
m

p
li
tu

d
e
 (

a
.u

.)

45°
0

20

40 90°

0.00 0.05 0.10 0.15 0.20

0

20

40

0

20

40

A
m

p
li
tu

d
e
 (

a
.u

.)

45°
0

20

40 90°

Frequency (Hz)

0°

0.00 0.05 0.10 0.15 0.20

0

20

40

Frequency (Hz)

0

20

40

A
m

p
li
tu

d
e
 (

a
.u

.)

45°
0

20

40 90°

0°

0.00 0.05 0.10 0.15 0.20

0

20

40

Frequency (Hz)

0

20

40

A
m

p
li
tu

d
e
 (

a
.u

.)

45°
0

20

40 90°

0°

0.00 0.05 0.10 0.15 0.20

0

20

40

0

20

40
A

m
p

li
tu

d
e
 (

a
.u

.)
45°

0

20

40 90°

Frequency (Hz)

0°

0.00 0.05 0.10 0.15 0.20

0

20

40 0°
0

20

40

A
m

p
li
tu

d
e
 (

a
.u

.)

45°
0

20

40 90°

Frequency (Hz)
0.00 0.05 0.10 0.15 0.20

0

20

40

0

20

40

A
m

p
li
tu

d
e
 (

a
.u

.)

45°
0

20

40 90°

Frequency (Hz)

0°

0.00 0.05 0.10 0.15 0.20

0

20

40

0

20

40

A
m

p
li
tu

d
e
 (

a
.u

.)

45°
0

20

40 90°

0°

Frequency (Hz)
0.00 0.05 0.10 0.15 0.20

0

20

40

0

20

40

A
m

p
li
tu

d
e
 (

a
.u

.)

45°
0

20

40 90°

0°

Frequency (Hz)
0.00 0.05 0.10 0.15 0.20

0

20

40 0°

Frequency (Hz)

0

20

40

A
m

p
li
tu

d
e
 (

a
.u

.)

45°
0

20

40 90°



9 

 

 

Figure S13. The image set of the surface textures of twill inputted into CNN model for training and 

recognition, containing 100 fluorescent patterns recorded by MNIMP films. Photographs were taken by a 

built-in camera of a smartphone in a dark box with 365 nm UV irradiation 

 

 

 

 



10 

 

 

Figure S14. The image set of the surface textures of gunny inputted into CNN model for training and 

recognition, containing 80 fluorescent patterns recorded by MNIMP films. Photographs were taken by a 

built-in camera of a smartphone in a dark box with 365 nm UV irradiation. 

 

 

 

 

 

 

 

 

 

 



11 

 

 

Figure S15. The image set of the surface textures of elastic inputted into CNN model for training and 

recognition, containing 80 fluorescent patterns recorded by MNIMP films. Photographs were taken by a 

built-in camera of a smartphone in a dark box with 365 nm UV irradiation. 

 

 

 

 

 

 

 

 

 

 

 



12 

 

 

Figure S16. The image set of the surface textures of polyester inputted into CNN model for training and 

recognition, containing 90 fluorescent patterns recorded by MNIMP films. Photographs were taken by a 

built-in camera of a smartphone in a dark box with 365 nm UV irradiation. 

 

 

 

 

 

 

 



13 

 

 

Figure S17. The image set of the surface textures of hard foam inputted into CNN model for training and 

recognition, containing 90 fluorescent patterns recorded by MNIMP films. Photographs were taken by a 

built-in camera of a smartphone in a dark box with 365 nm UV irradiation. 

 

 

 

 

 

 

 



14 

 

 

 

Figure S18. The image set of the surface textures of soft foam inputted into CNN model for training and 

recognition, containing 80 fluorescent patterns recorded by MNIMP films. Photographs were taken by a 

built-in camera of a smartphone in a dark box with 365 nm UV irradiation. 

 

 

 

 

 

 

 

 

 

 



15 

 

 

 

Figure S19. The image set of the surface textures of gauze inputted into CNN model for training and 

recognition, containing 80 fluorescent patterns recorded by MNIMP films. Photographs were taken by a 

built-in camera of a smartphone in a dark box with 365 nm UV irradiation. 

 

 

 

 

 

 

 

 

 

 



16 

 

 

 

Figure S20. The image set of the surface textures of leather inputted into CNN model for training and 

recognition, containing 100 fluorescent patterns recorded by MNIMP films. Photographs were taken by a 

built-in camera of a smartphone in a dark box with 365 nm UV irradiation. 

 

 

 



17 

 

 

 

Figure S21. The image set of the surface textures of linen inputted into CNN model for training and 

recognition, containing 80 fluorescent patterns recorded by MNIMP films. Photographs were taken by a 

built-in camera of a smartphone in a dark box with 365 nm UV irradiation. 

 

 

 

 

 

 

 

 

 

 



18 

 

 

 

Figure S22. The image set of the surface textures of nonwoven inputted into CNN model for training and 

recognition, containing 80 fluorescent patterns recorded by MNIMP films. Photographs were taken by a 

built-in camera of a smartphone in a dark box with 365 nm UV irradiation. 

 

 

 

 

 

 

 

 

 

 



19 

 

 

 

Figure S23. The image set of the surface textures of plastic inputted into CNN model for training and 

recognition, containing 90 fluorescent patterns recorded by MNIMP films. Photographs were taken by a 

built-in camera of a smartphone in a dark box with 365 nm UV irradiation. 

 

 

 

 

 

 

 



20 

 

 

 

Figure S24. The image set of the surface textures of plaid fabric inputted into CNN model for training and 

recognition, containing 80 fluorescent patterns recorded by MNIMP films. Photographs were taken by a 

built-in camera of a smartphone in a dark box with 365 nm UV irradiation. 

 

 

 

 

 

 

 

 

 

 



21 

 

 

 

Figure S25. The image set of the surface textures of stripe fabric inputted into CNN model for training and 

recognition, containing 80 fluorescent patterns recorded by MNIMP films. Photographs were taken by a 

built-in camera of a smartphone in a dark box with 365 nm UV irradiation. 

 

 

 

 

 

 

 

 



22 

 

 

 

Figure S26. The image set of the surface textures of rubber inputted into CNN model for training and 

recognition, containing 100 fluorescent patterns recorded by MNIMP films. Photographs were taken by a 

built-in camera of a smartphone in a dark box with 365 nm UV irradiation. 

 

 

 



23 

 

 

 

Figure S27. The image set of the surface textures of sponge inputted into CNN model for training and 

recognition, containing 80 fluorescent patterns recorded by MNIMP films. Photographs were taken by a 

built-in camera of a smartphone in a dark box with 365 nm UV irradiation. 

 

 

 

 

 

 

 

 

 

 



24 

 

Table S1. Photophysical data of MNIMP. λab= maximum absorption wavelength, λem = maximum emission 

wavelength, τ = fluorescence lifetime, ΔE = Energy gap, DCT = charge transfer distance. QY = fluorescence 

quantum yield 

Parameter                    Value 

λab 
Hexane 365 nm 

Ethyl acetate 371 nm 

THF 373 nm 

Methanol 374 nm 

DMF 379 nm 

λem 
Hexane 549 nm 

Ethyl acetate 560 nm 

THF 563 nm 

Methanol 561 nm 

DMF 572 nm 

Crystalline powder 573 nm 

Stokes shift Hexane 184 nm 

Ethyl acetate 189 nm 

THF 190 nm 

Methanol 187 nm 

DMF 193 nm 

τ Crystalline powder 0.85 ns 

QY THF solution ＜1% 

Solid powder 4.2% 

As-prepared film ＜% 

Self-assembled film 3.3% 

Energy levels 
HOMO -6.37 eV 

LUMO -3.13 eV 

ΔE 3.24 eV 

DCT 4.24 Å 

 

 

 

 



25 

 

Table S2. Basic crystallographic data of MNIMP from single crystal X-ray diffraction analysis. 

 

Empirical formula C28H24N4O8 

Compound name (E)-2-(((2-methoxy-4-nitrophenyl)imino)methyl)phenol 

Synonym MNIMP 

Space group P 21/n (14) 

Cell lengths a = 15.9306(2) Å  

b = 6.83720(10) Å  

c = 22.9367(3) Å 

Cell angles α = 90o  

β = 94.7220(10)  

γ = 90o 

Cell Volume 2489.8 

Z, Z’ Z: 4 Z’: 1 

R-Factor (%) 3.63 

 

 

Table S3. Mean intensity values of background noise, texture pattern and contrast degree obtained from 20 

repeated parallel fluorescence imaging experiments. 
Group Background noise Mean Intensity Contrast value 

1 

 

65.657 

 

120.911 

 

148 

2 

 

60.863 

 

101.085 

 

150 

3 

 

65.508 

 

110.022 

 

147 

4 

 

68.340 

 

107.907 

 

157 

5 

 

71.632 

 

122.884 

 

153 

6 

 

66.456 

 

112.859 

 

142 



26 

 

7 

 

65.956 

 

99.709 

 

141 

8 

 

66.418 

 

104.778 

 

143 

9 

 

69.045 

 

101.756 

 

144 

10 

 

66.975 

 

110.834 

 

154 

11 

 

66.481 

 

101.566 

 

154 

12 

 

63.205 

 

116.676 

 

141 

13 

 

63.523 

 

110.719 

 

156 

14 

 

67.327 

 

111.752 

 

156 

15 

 

66.293 

 

116.316 

 

153 

16 

 

68.384 

 

111.989 

 

145 

17 

 

60.554 

 

113.884 

 

145 



27 

 

18 

 

71.939 

 

106.400 

 

160 

19 

 

69.376 

 

109.490 

 

145 

20 

 

66.278 

 

105.478 

 

148 

 

Table S4. The fluorescent images surface textures (twill, gunny, polyester, soft foam, and nonwoven) 

inputted into CNN model for recognition. Photographs were taken in a dark box with 365 nm UV irradiation. 

Angle Twill Gunny Polyester Soft foam Nonwoven 

15° 
 

Twill √ 

(64.54%) 

 

Sponge ×  

(20.34%) 

 

Polyester √ 

(20.39%) 

 

Soft foam √ 

(72.00%) 

 

Nonwoven √ 

(68.65%) 

30° 
 

Twill √ 

(67.07%) 

 

Sponge × 

(35.45%) 

 

Polyester √ 

(55.97%) 

 

Soft foam √ 

(68.65%) 

 

Nonwoven √ 

(82.48%) 

45° 
 

Twill √ 

(72.30%) 

 

Plastic × 

(32.60%) 

 

Polyester √ 

(44.66%) 

 

Soft foam √ 

(54.52%) 

 

Nonwoven √ 

(87.13%) 

60° 
 

Twill √ 

(73.68%) 

 

Gunny √ 

(34.52%) 

 

Polyester √ 

(67.80%) 

 

Soft foam √ 

(68.30%) 

 

Nonwoven √ 

(94.10%) 



28 

 

90° 
 

Twill √ 

(88.29%) 

 

Gunny √  

(69.51%) 

 

Polyester √ 

(74.93%) 

 

Soft foam √ 

(78.65%) 

 

Nonwoven √ 

(96.16%) 

 

 

Table S5. Mean intensity values of background noise, texture pattern and contrast degree obtained from 20 

repeated parallel fluorescence imaging experiments under practical operating conditions. 

Group Background noise Mean intensity Contrast value 

1 

 

74.101 

 

104.358 

 

156 

2 

 

73.623 

 

109.163 

 

153 

3 

 

74.385 

 

103.152 

 

155 

4 

 

70.694 

 

103.833 

 

155 

5 

 

72.272 

 

105.539 

 

149 

6 

 

74.161 

 

105.832 

 

149 

7 

 

73.22 

 

101.878 

 

150 

8 

 

72.054 

 

102.546 

 

159 



29 

 

9 

 

72.545 

 

100.794 

 

151 

10 

 

74.494 

 

100.214 

 

160 

11 

 

70.955 

 

100.794 

 

156 

12 

 

75.429 

 

102.278 

 

149 

13 

 

73.33 

 

100.619 

 

153 

14 

 

74.586 

 

107.249 

 

148 

15 

 

69.614 

 

100.079 

 

153 

16 

 

73.425 

 

106.775 

 

147 

17 

 

74.108 

 

107.341 

 

153 

18 

 

70.928 

 

100.937 

 

155 

19 

 

75.113 

 

104.039 

 

153 



30 

 

20 

 

74.566 

 

104.839 

 

150 

 

 

 

3. Quantum chemical calculation 

The geometry optimization of MNIMP at ground state was carried out in THF solvent by 

B3LYP/6-31+G* method. Based on the optimized geometry, the harmonic vibrational 

frequency calculation was performed at the same theoretical level to check the nature of the 

stationary point. The electron-hole coherence of charge transfer upon electronic transition 

was investigated via charge density difference (CDD) calculation in Multiwfn 3.8 software [1]. 

The charge transfer index (DCT) and the centroids of charge C+(r)/C-(r) for the first excited 

state (S1) of MNIMP were evaluated at PCM(THF)/TD-B3LYP/6-31+G* level. The resulting 

plots were obtained from Visual Molecular Dynamics (VMD) software [2]. All calculations 

were performed in Gaussian 09 program package [3]. 

4. Introduction of Convolutional Neural Network and Resnet-18 model 

Convolutional Neural Network (CNN) is a type of neural network specially designed to 

deal with data with similar grid structure, such as sequence data (regarded as the data 

sampled regularly in a certain dimension) and image data, etc. Among them, for the 

processing of large-scale image sets, CNN has excellent performance [4,5]. CNN mainly 

includes the following structures: input layer, convolutional layer, pooling layer and fully 

connected layer [6]. Herein, we take the recognition-classification of fluorescent patten 

images as an example to illustrated the working process of CNN. Firstly, the input layer is 



31 

 

responsible for inputting patten images into the model. Since the initial specifications of the 

images are different and the amount of manually captured data is still limited, a series of 

data pre-processing operations such as cropping, conversion and data increment operations 

will be performed at the input layer. The convolutional layer, as the core layer of the CNN, is 

responsible for the convolution operation on the results of the previous layer. Specifically 

speaking, the convolution operation is a special type of linear transformation that extracts 

feature values by sliding convolution kernels over an image matrix. Each convolution kernel 

can be considered as a filter, or as a small 2D matrix, which overlaps with local regions of the 

input images and performs a dot product operation to obtain the feature values by summing. 

After computing all the regions of the input images, a new feature map is obtained to 

describe the features of the input images. Generally, it requires multiple convolutional layers 

to obtain more complex feature representations. The pooling layer is another important part 

of CNN, which is used to aggregate the feature maps from convolution to obtain smaller 

feature maps. It thus reduces the number of parameters to improve the computational 

efficiency of the model. Maximum pooling and average pooling are two major methods 

commonly included in pooling layer. In this work, the former is adopted to select the 

maximum value from the pooling window for output and compress the size of the feature 

map. The fully connected layer is the final computational layer in CNN, which connects all the 

feature maps obtained after previous convolution operations and converts them into one-

dimensional vectors, whereby, the classification results are obtained by weighting operations 

and output.  

According to the principle of traditional convolutional neural network, more 



32 

 

convolutional layers together with deeper network would lead to complex fitted results. But 

in fact, blindly deepening the depth of the model may cause shortcomings such as poor fitting 

effect and disappearing gradient, ect. In order to solve these problems and improve the 

accuracy and efficiency of image classification, a residual network with a depth of 18 layers 

(Resnet-18) is employed on the basis of traditional CNN [7]. The core idea of Resnet is to add 

a residual connection, allowing the output of a particular layer to skip multiple layers of 

computation and be fed directly to subsequent layers (Figure S23). In this case, even if the 

effect of some convolutional layers is not significant, the output result will still transmit the 

information of the previous layer to avoid excessive gradient loss. 

 

Figure S28. Schematic diagram showing the basic unit structure of Resnet. 

Resnet-18 consists of five convolutional layers, one fully connected layer, several 

pooling layers and Relu (rectified linear unit) functions. The specific parameters of each 

convolutional layer of ResNet-18 are demonstrated in Table S3. Among them, except the 

convolution kernel size of 7×7 in Conv1, Conv2-4 are residual units with convolution kernel 

size of 3×3, and the number of channels is twice that of the upper layer. After the 

preprocessing of the input layer, the dimension of the input image is unified to 224×224, and 

the prediction results of 15 classifications will be output in the fully connected layer after the 



33 

 

processing of the above five convolutional layers. 

 

 

Table S6. The structure of Resnet-18. 

Layers of Resnet-18 Size of convolution kernels 

Conv 1 7×7, 64 

Conv 2 [3×3, 64; 3×3, 64] ×2 

Conv 3 [3×3, 128; 3×3, 128] ×2 

Conv 4 [3×3, 256; 3×3, 256] ×2 

Conv 5 [3×3, 512; 3×3, 512] ×2 

Fully connected layer 

 

 

 

5. CNN code with modifications 

# Retrieve the required functional modules directly from the API 

import torch 

import torchvision.transforms as transforms 

import torchvision.datasets as datasets 

import torch.nn as nn 

import torch.optim as optim 

from torchvision.models import resnet18 # Direct access to the open source resnet-18 model 

code 

# Resnet-18 Model code official path: https://download.pytorch.org/models/resnet18-

5c106cde.pth 

https://download.pytorch.org/models/resnet18-5c106cde.pth
https://download.pytorch.org/models/resnet18-5c106cde.pth


34 

 

# Resnet18 model code reference: 

https://github.com/GarsonWw/resnetgarson/blob/master/resnet/model.py 

from torch.utils.data import DataLoader, random_split 

from torch.utils.tensorboard import SummaryWriter 

from torch.optim.lr_scheduler import StepLR 

from sklearn.metrics import accuracy_score 

from PIL import Image 

from sklearn.metrics import confusion_matrix 

import seaborn as sns 

import matplotlib.pyplot as plt 

import numpy as np 

-------------------------------------------------------------------------------------------------------------------------- 

# Call device run 

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

-------------------------------------------------------------------------------------------------------------------------- 

# Define data transformation and enhancement 

# Image preprocessing operation strategy reference code: 

https://github.com/GarsonWw/resnet-garson/blob/master/resnet/model.py  

train_transform = transforms.Compose([ 

    transforms.RandomResizedCrop(224), 

    transforms.RandomHorizontalFlip(), 

    transforms.ToTensor(), 

https://github.com/GarsonWw/resnetgarson/blob/master/resnet/model.py


35 

 

    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) 

]) 

 

test_transform = transforms.Compose([ 

    transforms.Resize((224, 224)), 

    transforms.ToTensor(), 

    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) 

]) 

-------------------------------------------------------------------------------------------------------------------------- 

# Loading the dataset 

data_dir = "data/train1"  # Dataset path 

dataset = datasets.ImageFolder(root=data_dir, transform=train_transform) 

 

# Split the dataset into a training set and a test set, using 80% of the data as the training set 

train_size = int(0.8 * len(dataset))   

test_size = len(dataset) - train_size 

train_dataset, test_dataset = random_split(dataset, [train_size, test_size]) 

 

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) 

test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False) 

-------------------------------------------------------------------------------------------------------------------------- 

# Initialize the ResNet-18 model 



36 

 

model = resnet18(pretrained=True) # Use the official resnet18 to load the pre-trained model 

num_ftrs = model.fc.in_features 

model.fc = nn.Linear(num_ftrs, len(dataset.classes)) 

model = model.to(device) 

-------------------------------------------------------------------------------------------------------------------------- 

# Define loss functions and optimizers 

criterion = nn.CrossEntropyLoss() 

optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=1e-5) 

 

# Set up the learning rate scheduler 

scheduler = StepLR(optimizer, step_size=10, gamma=0.1) 

 

# Create a SummaryWriter object 

writer = SummaryWriter('logs') 

-------------------------------------------------------------------------------------------------------------------------- 

# Training model 

num_epochs = 150 

best_acc = 0.0 

patience = 5  # Define patience value 

no_improve_count = 0  # Record the number of times the validation set accuracy has not 

improved 

for epoch in range(num_epochs): 



37 

 

    model.train() 

    running_loss = 0.0 

    corrects = 0 

    total = 0 

    for inputs, labels in train_loader: 

        inputs, labels = inputs.to(device), labels.to(device) 

        optimizer.zero_grad() 

        outputs = model(inputs) 

        loss = criterion(outputs, labels) 

        loss.backward() 

        optimizer.step() 

        running_loss += loss.item() * inputs.size(0) 

 

        _, preds = torch.max(outputs, 1) 

        corrects += torch.sum(preds == labels.data) 

        total += labels.size(0) 

 

    epoch_loss = running_loss / len(train_dataset) 

    epoch_acc = corrects.double() / total 

    print(f"Epoch {epoch + 1}/{num_epochs} Training Loss: {epoch_loss:.4f} Training Acc: 

{epoch_acc:.4f}") 

scheduler.step() 



38 

 

-------------------------------------------------------------------------------------------------------------------------- 

# Evaluate the model on a validation set 

    model.eval() 

    test_loss = 0.0 

    test_corrects = 0 

    for inputs, labels in test_loader: 

        inputs, labels = inputs.to(device), labels.to(device) 

        with torch.no_grad(): 

            outputs = model(inputs) 

            loss = criterion(outputs, labels) 

            test_loss += loss.item() * inputs.size(0) 

            _, preds = torch.max(outputs, 1) 

            test_corrects += torch.sum(preds == labels.data) 

    test_loss = test_loss / len(test_dataset) 

    test_acc = test_corrects.double() / len(test_dataset) 

    print(f"Epoch {epoch + 1}/{num_epochs} Test Loss: {test_loss:.4f} Test Acc: 

{test_acc:.4f}") 

     

# Write training and test results to TensorBoard 

    writer.add_scalar('Loss/train', epoch_loss, epoch) 

    writer.add_scalar('Accuracy/train', epoch_acc, epoch) 

    writer.add_scalar('Loss/test', test_loss, epoch) 



39 

 

    writer.add_scalar('Accuracy/test', test_acc, epoch) 

-------------------------------------------------------------------------------------------------------------------------- 

# Define class tag 

classes = ['twill', 'gunny', 'elastic', 'polyester', 'gauze', 'hard froth', 'soft froth', 'leather', 'linen', 

'nonwovens', 'plastic', 'plaid fabric', 'stripe fabric', 'rubber', 'sponge'] 

-------------------------------------------------------------------------------------------------------------------------- 

# Evaluate the model on a validation set and generate a confusion matrix 

model.eval() 

true_labels = [] 

predicted_labels = [] 

for inputs, labels in test_loader: 

    inputs, labels = inputs.to(device), labels.to(device) 

    with torch.no_grad(): 

        outputs = model(inputs) 

        _, preds = torch.max(outputs, 1) 

        true_labels.extend(labels.cpu().numpy()) 

        predicted_labels.extend(preds.cpu().numpy())     

 

# Generate confusion matrix 

conf_matrix = confusion_matrix(true_labels, predicted_labels) 

 

# Plot confusion matrix 



40 

 

plt.figure(figsize=(8, 6)) 

sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues', xticklabels=classes, 

yticklabels=classes) 

plt.xlabel('Predicted Label') 

plt.ylabel('True Label') 

plt.title('Confusion Matrix') 

plt.xticks(np.arange(len(classes)) + 0.5, classes, rotation=45) 

plt.yticks(np.arange(len(classes)) + 0.5, classes, rotation=0) 

plt.show() 

-------------------------------------------------------------------------------------------------------------------------- 

# Calculate accuracy and recall rate 

from sklearn.metrics import accuracy_score, precision_score, recall_score 

 

# Calculates the training set's metrics 

train_true_labels = [] 

train_predicted_labels = [] 

for inputs, labels in train_loader: 

    inputs, labels = inputs.to(device), labels.to(device) 

    with torch.no_grad(): 

        outputs = model(inputs) 

        _, preds = torch.max(outputs, 1) 

        train_true_labels.extend(labels.cpu().numpy()) 



41 

 

        train_predicted_labels.extend(preds.cpu().numpy()) 

         

train_accuracy = accuracy_score(train_true_labels, train_predicted_labels) 

train_precision = precision_score(train_true_labels, train_predicted_labels, 

average='weighted') 

train_recall = recall_score(train_true_labels, train_predicted_labels, average='weighted') 

--------------------------------------------------------------------------------------------------------------------------     

# Calculates the testing set's metrics 

test_true_labels = [] 

test_predicted_labels = [] 

for inputs, labels in test_loader: 

    inputs, labels = inputs.to(device), labels.to(device) 

    with torch.no_grad(): 

        outputs = model(inputs) 

        _, preds = torch.max(outputs, 1) 

        test_true_labels.extend(labels.cpu().numpy()) 

        test_predicted_labels.extend(preds.cpu().numpy()) 

 

test_accuracy = accuracy_score(test_true_labels, test_predicted_labels) 

test_precision = precision_score(test_true_labels, test_predicted_labels, 

average='weighted') 

test_recall = recall_score(test_true_labels, test_predicted_labels, average='weighted') 



42 

 

-------------------------------------------------------------------------------------------------------------------------- 

# Print pointer 

print("training set：") 

print(f"acc: {train_accuracy:.4f}") 

print(f"precision: {train_precision:.4f}") 

print(f"recall: {train_recall:.4f}") 

print("testing set：") 

print(f"acc: {test_accuracy:.4f}") 

print(f"precision: {test_precision:.4f}") 

print(f"recall: {test_recall:.4f}") 

-------------------------------------------------------------------------------------------------------------------------- 

# Save model 

torch.save(model.state_dict(), "resnet18_texture_classification.pth") 

print("Model saved") 

 

 

 

6. References 

[1] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. 

Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al. Gaussian 09, Revision D.01; Gaussian, 

Inc.:Wallingford, CT, 2013. 

[2] T. Lu, F.W. Chen, J. Comput. Chem. 33 (2012) 580-592. 

[3] W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14 (1996) 33-38. 

[4] Y. Liu, J.H. Xue, D.X. Li , W.D. Zhang, T.K. Chiew, Z.J. Xu, Image recognition based on 



43 

 

lightweight convolutional neural network: Recent advances, Image and Vision Computing 

146 (2024) 105037. 

[5] X.L. Wei, B.Y. Hu, T.S. Gao, J. Wang, B. Deng, Multi-scale convolutional neural network for 

texture recognition, Displays 75 (2022) 102324. 

[6] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional 

neural networks, Commun. ACM 60 (2017) 84-90.  

[7] K.M. He, X.Y. Zhang, S.Q. Ren, J. Sun, Deep residual learning for image recognition, 

Proceedings of the IEEE conference on computer vision and pattern recognition (2016) 770-

778. 

 


