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Characterization 

FTIR spectra were collected on a Bruker Tensor 27 FTIR spectrophotometer with a resolution of 

4 cm-1 by using the KBr disk method. 13C nuclear magnetic resonance (NMR) spectra were 

examined by using an INOVA 500 instrument with DMSO-d6 and CDCl3 as the solvents and 

TMS as the external standard. Chemical shifts are reported in parts per million (ppm). The 

thermal stabilities of the samples were performed by using a TG Q-50 thermogravimetric 

analyzer under a N2 atmosphere; the sample (ca. 5 mg) was put in a Pt cell with a heating rate of 

20 °C min–1 from 100 to 800 °C under a N2 flow rate of 60 mL min-1. Solid-state 13C NMR was 

measured by JEOL JNM-LA300 spectrometer and a standard CPMAS probe at 75.577 MHz. The 

morphologies of the polymer network samples were examined by Field emission scanning 

electron microscopy (FE-SEM; JEOL JSM7610F). Surface area and porosity measurements of 

samples weighing approximately 40-60 mg were conducted using the BEL MasterTM/BEL 

simTM (version 3.0.0) apparatus. Nitrogen (N2) adsorption and desorption isotherms were 

generated by gradually exposing the samples to ultrahigh-purity N2 gas, reaching pressures of up 

to about 1 atmosphere, while maintaining a temperature of 77 K in a liquid nitrogen bath. Before 

these measurements, the samples underwent a degassing process at 150 °C for 8 h. The 

instrument's software was utilized to calculate surface parameters using the BET adsorption 

models. Furthermore, the pore size of the prepared samples was determined using the nonlocal 

density functional theory (NLDFT). 
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Synthesis of 1,3,6,8-tetrakis(4-bromophenyl)pyrene [PyPh-4Br] 

 

Scheme S1. Synthesis of PyPh-4Br. 

In a mixture of 1,4-dioxane (100 mL) and H2O (40 mL), a reaction was carried out under 

vacuum using Pd(PPh3)4 (0.8 g, 0.68 mmol), 4-bromophenylboronic acid (3.3 g, 22 mmol), 

K2CO3 (4.3 g, 30.8 mmol), and Py-4Br (2.0 g, 3.8 mmol). The reaction mixture was then heated 

at 110 °C under a N2 for 48 h. Upon completion, the resulting suspension was filtered, and the 

solid product was thoroughly washed with H₂O, THF, and MeOH to afford a yellow powder 

[Scheme S1]. FTIR: 3038 (C–H aromatic), 1593 cm-1. HR-FD-MS: m/z: 822.90. 

 

Synthesis of 3,7-dibromodibenzo[b,d]thiophene 5,5-dioxide [DBZS-2Br] 

 

Scheme S2. Synthesis of DBZS-2Br. 
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Synthesis of 3,7-dibromodibenzo[b,d]thiophene 5,5-dioxide [DBZS-2Br] 

DBZS (6.0 g, 28 mmol) was dissolved in H2SO4 (195 mL) at 0 °C. Subsequently, N-

bromosuccinimide (NBS, 9.91 g, 56 mmol) was added portion-wise over time, and the reaction 

mixture was stirred at room temperature (25 °C) for 10 h. Upon completion, the reaction mixture 

was carefully poured into ice-cold water and extracted with CHCl3. The combined organic layers 

were dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure. The crude 

product was purified by column chromatography using a hexane/DCM (1:1, v/v) eluent to afford 

DBZS-2Br as a white solid (8.0 g) [Scheme S2]. FTIR (Figure S1): 3083, 1303, 1169 (SO2) cm-1. 

1H NMR (Figure S2): 8.4, 8.2, 8.03 ppm.  

Synthesis of 2,5,9,12-tetrabromoanthra[1,2-b:4,3-b':5,6-b'':8,7-b''']tetrathiophene [ANTh-

4Br 

 

Scheme S3. Synthesis of BZTh, BZTh-4Br and ANTh-4Br. 
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Photocatalytic H2 evolution test 

The photocatalytic experiments were carried out in a 40 mL Pyrex reactor. The reactor was 

closed using a rubber septum. In a typical photocatalytic reaction, PyPh-DBZS CMP or ANTh-

DBZS CMP (1 mg) was dispersed in 10 mL of the mixture of water/NMP (9/1 V/V) with 0.1M 

AA as the sacrificial electron donor. The suspension was purged with argon for 5 minutes to 

remove dissolved air. A 350 W Xenon lamp equipped with a cut-off filter (1000 W/m2, λ: 380-

780 nm) was used as the light source. The light intensity of the Xe lamp was like that of the 

visible light region in standard 1 sun, as verified using a solar cell. Hydrogen samples were taken 

with a gas-tight syringe and injected into a Shimazhu GC-2014 gas chromatograph with Ar as 

carrier gas. Hydrogen was detected with a thermal conductivity detector, referring to standard 

hydrogen gases with known concentrations.  

Quantum efficiency measurements 

In the AQY experiments, the catalyst solution was prepared by dispersing PyPh-DBZS CMP or 

ANTh-DBZS CMP (1 mg) in 10 mL of the mixture of water/NMP (9/1 V/V) with 0.1M AA as 

sacrificial electron donor and cocatalyst (2 wt% Pt). The suspension was illuminated with a 350 

W Xe lamp with different bandpass filters (420 and 460 nm). The formation of hydrogen was 

quantified using a Shimadzu gas chromatograph (GC2014) operating at isothermal conditions 

using a semi-capillary column equipped with a thermal conductivity detector.  

The AQY was calculated as follows: 

AQY = [(Number of evolved hydrogen molecules ×2) / Number of incident photons] × 100% 
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Where, M is the amount of H2 molecules (mol), NA is Avogadro constant (6.022 × 1023/mol), h is 

the Planck constant (6.626 × 10-34 J⋅s), c is the speed of light (3 × 108 m/s), S is the irradiation 

area (m2), P is the intensity of irradiation light (W/m2), t is the photoreaction time (s), λ is the 

wavelength of the monochromatic light (m). 

Photocatalytic H2O2 evolution 

For the preparation of the aqueous suspension, 30 mg of the PyPh-DBZS CMP or ANTh-DBZS 

CMPs photocatalysts was dispersed in a 100 ml solution of deionized water and ethanol as a 

sacrificial agent (1% of volume). The suspension was sonicated for 15 minutes under dark 

conditions and subsequently was purged with O2 gas for another 15 minutes in a 250 ml reactor 

(Lenz, Germany). For the photocatalytic experiment, two 800 W visible light lamps were used as 

the light source. At specific time intervals (0, 0.5, 1, 2, and 3 hours), aliquots of 2 ml were 

collected from the reactor and filtered through a 0.22 μm filter. In a vial, 0.3 ml of the 

aforementioned filtrate was mixed with 3 ml of a 0.2 mM solution of Ce(SO4)2 and 0.7 ml of 

deionized water. The concentration of produced H2O2 was measured via the ceric sulphate 

titration method using a UV-Vis spectrophotometer. The concentration of evolving H2O2 was 

measured through the absorbance of Ce4+ at 316 nm and the use of the calibration curve. The 

yellow-colored Ce4+ was transformed into colorless Ce3+, according to the following reaction 

2Ce4+ + H2O2 → 2Ce3+ + 2H+ + O2 

where C(H2O2) = ½ C(Ce4+). 
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The formation of hydrogen peroxide by two-electron oxygen reduction may take place either 

through a concerted or a stepwise mechanism. In the former case, the half-reaction has a 

potential of -5.18 eV (vs vacuum) (see Eq. 1). Alternatively, oxygen molecules may be reduced 

to superoxide radical species, which may be further reduced to hydrogen peroxide (Eq. 2 and 3). 

These half-reactions have a potential of -4.17 eV and -5.94 eV, respectively. As a parallel 

scenario, superoxide radicals may participate in a disproportionation scheme, giving rise to 

hydrogen peroxide molecules (Eq. 4). Besides the reductive approach, the peroxide may be 

formed via the participation of valence band holes, which demonstrate an oxidative character. 

The so-called sacrificial agent, water, may be converted to H2O2 through a two-hole-mediated 

concerted reaction (Eq. 5, potential -6.26 eV). Alternatively, the process may take place through 

two consecutive steps (Eq. 6 and 7).” 

                                            O2 + 2e− + 2H+ → H2O2    (Eq. 1) 

                      O2 + e− → O2
−●     (Eq. 2) 

                    O2
−● + e− + 2H+ → H2O2    (Eq. 3) 

      O2
−● + ●O2H + H2O → H2O2 + O2 + OH−              (Eq. 4) 

                  2H2O + 2h+ → H2O2 + 2H+   (Eq. 5) 

                H2O + h+ → HO●
 + H+    (Eq. 6) 

                  2HO● → H2O2                 (Eq. 7) 
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Figure S1. FTIR spectrum of DBZS-2Br. 
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Figure S2. 1H NMR spectrum of DBZS-2Br. 
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Figure S3. FTIR spectrum of BZTh. 
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Figure S4. 1H NMR spectrum of BZTh. 
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Figure S5. 13C NMR spectrum of BZTh. 
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Figure S6. FTIR spectrum of BZTh-4Br. 
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Figure S7. 1H NMR spectrum of BZTh-4Br. 
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Figure S8. 13C NMR spectrum of BZTh-4Br 

 

 

 



17 
 

3000 2500 2000 1500 1000 500

C-H aromatic C=C

A
b

s
o

rb
a
n

c
e
 (

a
.u

.)

Wavenumber (cm-1)
Figure S9. FTIR spectrum of ANTh-4Br. 

 

 

 

 

 



18 
 

150 200 250 300 350 400 450 500 550 600

In
te

n
s
it
y
 (

a
.u

.)

Binding Energy (eV)

 PyPh-DBZS CMP

 ANTh-DBZS CMP

C 1s

O 1s

S 2p

 

Figure S10. High-resolution XPS (HR XPS)  profiles of (a) PyPh-DBZS CMP and (b) ANTh-

DBZS CMP. 
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Figure S11. High-resolution XPS (HR XPS) fitting profiles of C 1s, and S 2p elements for (a, b) 

PyPh-DBZS CMP and (c, d) ANTh-DBZS CMP. 
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Figure S12. (a) and b) Onset potential of the first oxidation peak of Cyclic voltammetry for 

PyPh-DBZS CMP and ANTh-DBZS CMP using Ag/AgCl as a reference electrode based on the 

following equation (E-HOMO = Eox, onset-ERef+4.4) eV, ERef = 0.159+0.059*pH). 
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Figure S13. Time-dependent HER of PyPh-DBZS and ANTh-DBZS CMPs without Pt-loading. 
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Figure S14. FTIR spectra before and after H2 production reaction, (a) PyPh-DBZS CMP and (b) 

ANTh-DBZS CMP. 
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Figure S15. The H2O2 generation was measured by Ce4+ titration. The change of absorption 

intensity at λmax = 316 nm was measured by a UV-vis spectrometer. (b) The H2O2 concentration-

absorbance calibration curve. 
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Table S1. Elemental compositions of ANTh-DBZS CMP and PyPh-DBZS CMP as determined 

by X-ray photoelectron spectroscopy (XPS). 

 

 

Table S2. Summary of the fitted XPS data for C and S elements in ANTh-DBZS CMP and 

PyPh-DBZS CMP, as obtained from X-ray photoelectron spectroscopy (XPS) analysis. 
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Table S3. Comparison of the photocatalytic hydrogen evolution performance of ANTh-DBZS 

CMP and PyPh-DBZS CMP with representative covalent organic frameworks (COFs), COF-

based composites, conjugated microporous polymers (CMPs), polymer-based composites, and 

graphitic carbon nitride-based composites. 

Photocatalyst λ (nm) SDE Co-cat. 

HER 

(µmol 

g-1 h-1) 

AQY 

% 
Ref. 

PyPh-DBZS CMP 
380-

700 nm 
AA 

Pt 

(2 wt%) 
133241 

21.6 

(at 420 nm) 
This work 

PyPh-DBZS CMP 
380-

700 nm 
AA 

Pt 

(2 wt%) 
34791 

5.6 

(at 420 nm) 
This work 

FS-COF+WS5F >420 AA 
Pt 

(8 wt%) 
16300 

~7.2 

(at 420 nm) 
[S1] 

g-C18N3-COF >420 AA 
Pt 

(3 wt%) 
292 

1.06 

(at 420 nm) 
[S2] 

COP-64/TiO2  >420 MeOH 
Pt 

(3 wt%) 
15020 - [S3] 

TBN-TBN CMP >420 AA 
Pt 

(2 wt%) 
8452 

4.19 

(at 420 nm) 
[S4] 

TBN-TBN-TPA 

CMP 
>420 AA 

Pt 

(2 wt%) 
9800 

5.07 

(at 420 nm) 
[S4] 

TBN-BT CMP >420 AA 
Pt 

(2 wt%) 
3060 

0.57 

(at 420 nm) 
[S4] 

COP-TP1:3 >420 TEOA 
Pt 

(3 wt%) 
4200 

1.5 

(at 420 nm) 
[S5] 

COP-TP1:3 >420 TEOA 
Pt 

(3 wt%) 
4200 

0.5 

(at 500 nm) 
[S5] 

DPBT-TP COP 

 
>420 AA 

Pt 

(7.5 wt%) 
17,806 

3.28 

(at 420 nm) 
[S6] 

BpZn-COP >420 TEOA 
Pt 

(3 wt%) 
162 - [S7] 

TiO2@BpZn-COP >420 TEOA - 1333 
2.5 

(at 420 nm) 
[S7] 

g-C40N3-COF >420 TEOA 
Pt 

(3 wt%) 
4120 

4.84 

(at 420 nm) 
[S8] 

g-C54N6-COF >420 TEOA 
Pt 

(3 wt%) 
2519 - [S9] 

ter-CTF-0.7 >420 TEOA 
Pt 

(2 wt%) 
19300 

22.8 

(at 420 nm) 
[S10] 

ZnPor-DETH-COF >400 TEOA 
Pt 

(8 wt%) 
413 

0.063 

(at 450 nm) 
[S11] 

TtaTfa >420 AA 
Pt 

(8 wt%) 
20700 

1.43 

(at 450 nm) 
[S12] 

CdS-COF >420 LA 
Pt 

(0.5 wt%) 
3678 

4.2 

(at 420 nm) 
[S13] 

Pt-PVP-TP-COF >420 AA Pt 8420 0.4 [S14] 
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