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Supplementary Fig. S1. Photographs of the PEG/IL precursor and PDMS/IL precursor 

before and after mixing. The similar polarity of PEG precursor and ionic liquids allows 

for a homogeneous mixture after mixing, while the PDMS precursor and ionic liquids 

kept separated and cannot be mixed well.    
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Supplementary Fig. S2. Cycling tests of PEG BBIs with different concentrations of ionic 

liquids at the strain of 100% showing a reversible stress-strain curve and good elasticity.  
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Supplementary Fig. S3. (a) Young’s modulus and (b) conductivity of EG-1 ionogel and 

PEG-9 BBI with 70 wt% ILs. Asterisks indicate statistical significance, with **** 

representing p < 0.0001. 
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Supplementary Fig. S4. (a) Synthesis of [METAc][TFSI] (b) Synthesis of [EMIM][SPA] (c) 

Polymerization and crosslinking for PEG-co-[EMIM][SPA] ionogel and PEG-co-

[METAC][TFSI] ionogel.  
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Supplementary Fig. S5. Young’s modulus of PEG BBE-based ionogels prepared using 

[EMIM][OTf], and the reactive ionic liquids ES and MT, respectively. 
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Supplementary Fig. S6. (a)-(d) Loading-unloading tests of PEG/IL bottlebrush ionogels with 

different ionic liquids contens [IL weight ratio: (a) 0%, (b) 33%, (c) 50%, and (d) 60%] for 

10 cycles under the strain of 0 – 100%.  (e)-(f) Loading-unloading tests of PEG/IL bottlebrush 

ionogels with different ionic liquids contens [IL weight ratio: (c) 0%, (d) 33%, (e) 50%, and 

(f) 60%] for 1 cycle under the strain of 0 – 100%.  
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Supplementary Table S1. The fitted mechanical properties of PEG/IL BBIs. 

IL weight ratio 
Fitted Young's modulus 

(E, kPa) 

Engineering Young's modulus 

(Eeng, kPa) 
β 

0% 29.84 20.64 0.10 

33% 9.46 8.58 0.11 

50% 3.43 3.25 0.12 

60% 1.08 1.03 0.14 

 

The strain-stress curves were fitted by the model for bottlebrush elastomers 1,2: 

𝜎𝑡𝑟𝑢𝑒 =
𝐸

9
[(𝜀 + 1)2 − (𝜀 + 1)−1] {1 + 2 [1 −

𝛽[(𝜀 + 1)2 − (𝜀 + 1)−1]

3
]} 

where 𝜎𝑡𝑟𝑢𝑒 and ε are true stress and engineering strain, and β is the strand-extension ratio and 

E is the structural Young’s modulus, respectively. The engineering Young’s modulus (Eeng) 

was determined by linear fitting the nominal stress-strain curve at the strain range of 0-10%. 

The Young’s modulus calculated by the two methods exhibited similar levels, and the fitted 

Young’s modulus was used for analysis. It should be noted that the fitted parameter β has a 

value of <0.3, lower than those of some tissues (e.g., β of fat >0.6), indicating an unmatched 

strain-hardening behaviour with that of tissues. The sample size is 5, and the presented values 

are the average calculated from results of 5 samples.   
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Supplementary Fig. S7. The storage modulus G’ and loss modulus G’’ aas a function of 

sweeping frequency at the strain of 1% for samples with PEG/IL ratios of 1:0 (IL: 0 

wt%), 1:0.5 (IL: 33 wt%), 1:1 (IL: 50 wt%), and 1:1.5 (IL: 60 wt%). The storage 

modulus is nearly independent of angular frequency for pure PEG BBE. With the 

addition of ionic liquids, the storage modulus started to be dependent with the 

frequency, and the trend that the storage modulus increases with the increase of angular 

frequency becomes more noticeable for higher weight ratio of ionic liquids (e.g., IL: 60 

wt%). The results indicate that the incorporation of ionic liquids as a viscous component 

within the elastic PEG bottlebrush matrix could enhance the viscoelastic behavior. This 

is possibly attributed to the addition of ionic liquids that affected the relaxation process 

of the bottlebrush networks 3,4. 
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Supplementary Fig. S8. Bode plot of PEG/IL BBI with different weight ratios of ionic 

liquids.    
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Supplementary Fig. S9. The Ashby-style plot of Young’s modulus and conductivity of 

different ionic conductive elastomers including ionogels, hydrogels, and PEG/IL BBIs in 

this work, showing our PEG/IL BBI (1:1.5) is the softest ionically conductive elastomer 

in the graph. Here, we mainly selected soft materials with Young’s modulus ranging 

from 1 kPa to 1 MPa, and materials with higher modulus were not included.  
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Supplementary Table S2. The summary of Young’s modulus and conductivity of 

ionically conductive materials including ionogels, hydrogels, and PEG/IL BBIs in this 

work.  

Young's 

modulus 

(kPa) 

Conductivity 

(mS/cm) 
Matrix materials Ion species Reference 

Ionogels 

600 
3.18 for ionic 

liquids 

Sylgard 184 (dielectric 

materials) 

1-ethylpyridinium 

tetrafluoroborate, -

butyl-4-

methylpyridinium 

tetra-fluoroborate 

5 

29.51 1 

Polymeric ionic liquids 

with reido-pyrimidinone 

pendantgroups (PIL-UPy) 

2-dimethyl-3-

ethoxyethyl 

imidazolium 

bis(trifluoromethanes

ulfonyl)imide 

6 

420 1.2 Poly(urea-urethane) 

1,2-dimethyl-3-

ethoxyethyl-

imidazolium    

bis(trifluoromethanes

ulfonyl)imide 

7 

4 2.2 Poly(acrylic acid) 

1-thyl-3-

methylimidazoliumet

hylsulfate 

8 

15 1.33 
Poly(ethyl acrylate) 

(PEA)-based elastomer 

1-ethyl-3-

methylimidazolium 

bis- 

(trifluoromethylsulfon

yl)imide 

9 

20 0.1 

Eth-ylene glycol methyl 

ether acrylate (MEA) and 

isobornyl acrylate 

1-ethyl-3-

methylimidazolium  

bis(trifluoromethyl-

sulfonyl)imide 

10 

815 0.25 

Polymerizable [2-

(methacryloy-

loxy)ethyl]trimethylammo

nium     

bis(trifluoromethanesulfon

yl)imide 

Butyltrimethylammon

ium 

bis(trifluoromethanes

ulfonyl)imide 

11 

600 8.4 
Water-dispersible  

polyurethane 

1-ethyl-3-

methylimidazolium 

dicyanamide 

12 

220 0.11 

Polymerizable 

acryloyloxyethyltrimethyla

mmonium  

bis(trifluoromethanesulfon

yl)imide   

  

Butyltrimethylammon

ium    

bis(trifluoromethanes

ulfonyl)imide 

13 
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Young's 

modulus 

(kPa) 

Conductivity 

(mS/cm) 
Matrix materials Ion species Reference 

4.7 9.3 
Tetramethoxysilane and 

formic acid 

1-Ethyl-3-

methylimidazolium 

bis(trifluoromethylsul

fonyl)imide 

14 

60 9 

Poly(vinylidene fluoride-

cohexafluoropropylene) 

(PVdF-HFP) 

1-ethyl-3- 

methylimidazolium 

tetracyanoborate 

15 

700 1 

Poly(vinylidenefluoride-

co-hexafluoropropylene) 

(P(VDF-co-HFP)) and 

poly(methyl methacrylate-

co-butylmetha-crylate) 

(P(MMA-co-BMA)) 

elastomer 

1-Ethyl-3-

methylimidazolium 

bis(trifluoromethylsul

fonyl)imide 

16 

2.4 0.15 Butyl acrylate 
Bis(trifluoromethylsul

fonyl imide) 
17 

140 
6.63 for ionic 

liquids 

Poly(tert-butyl styrene-

block-(4-hydroxystyrene-

random-methyl acrylate)) 

and  poly(tert-butyl  

styrene-block-(2-vinyl    

pyridine-random-methyl    

acrylate)) 

1-Ethyl-3-

methylimidazolium 

bis(trifluoromethylsul

fonyl)imide 

18 

720 14 Polyurethane 

1-propyl-3-methyl-

imidazolium 

bis(trifluoromethyl-

sulfonyl) imide 

19 

400 7.8 

Cellulose nanocrystals  

(CNCs) grafted with  

poly(ionic liquid)s 

1-ethyl-3-

methylimidazolium    

bis(trifluoromethylsul

fonyl)imide 

20 

200 22.5 Poly(urethane-urea) 

1-Ethyl-3-

methylimidazolium 

dicyanamide 

21 

1100 1 Microcrystalline cellulose 

1-ethyl-3-

methylimidazolium 

acetate 

22 

6.7 10 Poly(acrylic acid) 

1-ethyl-3-

methylimidazolium 

ethylsulfate 

23 

Hydrogels 

15 34 Polyvinyl alcohol (PVA) NaCl 24 

5 29 Polyacrylamide NaCl 25 
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Young's 

modulus 

(kPa) 

Conductivity 

(mS/cm) 
Matrix materials Ion species Reference 

7.6 0.334 
Poly-ligo(ethylene 

glycol)methacrylate 
NaCl 26 

53 17.9 

Copolymerized lauryl 

methacrylate and 

acrylamide 

LiCl 27 

5 0.548 

[2-(Methacryloyloxy) 

ethyl]dimethyl-(3-

sulfopropyl) ammonium 

hy-droxide hydrogels 

[2-(Methacryloyloxy) 

ethyl]dimethyl-(3-

sulfopropyl) 

ammonium hy-

droxide 

28 

38 39.6 

Acrylamide and amine-

functionalized monomer 

based hydrogels 

LiCl 29 

PEG/IL BBI 

10.78 0.31 PEG-based BBI [EMIM][OTF] 

This work 3.73 0.5 PEG-based BBI [EMIM][OTF] 

1.35 1.4 PEG-based BBI [EMIM][OTF] 
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Supplementary Fig. S10. The (a) images, (b) tensile tests, and (c) conductivity 

measurements of PEG/IL BBI and PEG/PBS hydrogels after exposed in air for 1 week. 

Compared to the PEG/IL bottlebrush ionogel, the PEG/PBS hydrogel experienced a decay of 

conductivity, stretchability, and softness due to the loss of water. These results show superior 

stability of PEG/IL BBI compared to PEG/PBS hydrogels.   
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Supplementary Fig. S11. The results of (a) tensile tests and (b) lap shear tests for samples 

with IL weight ratios of 50% and 60%. One can see that both the tensile strength and shear 

strength of samples with 60 wt% IL are lower than those samples with 50 wt% IL, indicating 

that the decline of shear strength of softer sample is possibly due to the its lower bulk strength 

than that of “harder” sample. 
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Supplementary Fig. S12. Photographs showing PEG/IL BBI can easily attach to skin 

and maintain the conformal contact when the finger was bending.       
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Supplementary Fig. S13. The much smaller resistance change from moving wires 

compared to that by stretching the sample shows the negligible electrical effect of 

contact at the wire-Ag/EGaIn interface. The stretching strain is 2%.  
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Supplementary Fig. S14.  (a-b) Skin impedance measurements using ionically conductive 

PEG/IL BBI electrodes and electronically conductive CNT BBE electrodes.  
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Supplementary Fig. S15. Normalized output voltage measured from the Venus trap with 

the applied DC voltage of 3 V.       
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Supplementary Fig. S16. The recorded signal response from the Venus flytrap 

stimulated by AC voltage inputs with the amplitude of 4 V and frequencies of 1 Hz and 2 

Hz, respectively. 
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Supplementary Fig. S17. (a) Photographs showing the lobe closure of the Venus flytrap 

stimulated by an AC voltage input with the amplitude of 4 V and frequencies of 1 Hz. The 

response time was 1.3 s. (b) Photographs showing the lobe closure of the Venus flytrap 

stimulated by an AC voltage input with the amplitude of 4 V and frequencies of 2 Hz. The 

response time was 1 s.      
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Supplementary Table S3. Comparison of different conductive bottlebrush elastomers. 

Materials 
Preparation 

method 
Applications 

Young's modulus, 

Stretchability, 

Conductivity 

Charge 

carriers 
Reference 

Poly(4-

methylcapro

lactone) 

BBE/carbon 

nanotubes 

Ring-opening 

polymerization; 

bottlebrush 

polymers need 

to be self-

synthesized 

Resistor  
66 

kPa 
/ 10–2 S/m Electrons 30 

PDMS 

BBE/carbon 

nanotubes 

Free radical 

polymerization; 

all materials are 

commercially 

available 

Force sensor 

for human-

machine 

interface 

2.98 

kPa 
>100% 2.06 S/m Electrons 31 

PEG/IL 

bottlebrush 

ionogels 

Free radical 

polymerization; 

all materials are 

commercially 

available 

Wearable 

electrodes for 

plants and 

human 

0.52 

kPa 

to 

9.46 

kPa 

>100% 

0.03 S/m 

to  

0.29 S/m 

Ions This work 
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