Solar-light driven h-WO $_3$ /2H-WS $_2$ -microalgae derived photocatalyst for rapid multi-dye degradation

Shrinath Bhat ^{a, c}, U. T. Uthappa ^{b*}, Shervin Kabiri ^c, Heon-Ho Jeong ^{d*} and Mahaveer D. Kurkuri ^{a*}

- ^a Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru-562112, Karnataka, India
- ^b College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
- ^c Adelaide University, School of Agriculture, Food and Wine, Waite Campus, Urrbrae, SA 5064, Australia
- ^d Department of Chemical and Biomolecular Engineering, Chonnam National University, 50 Daehak-ro, Yeosu, Jeollanam-do 59626, Republic of Korea

E-mail address: <u>sanjuuthappa@gmail.com</u>, <u>jeonghh29@jnu.ac.kr</u> & mahaveer.kurkuri@jainuniversity.ac.in.

1. Characterization:

The surface chemistry of DE, WS_xO_y and DE- WS_xO_y were analyzed via the PerkinElmer FTIR instrument by the KBr pellet method, and the analysis was done in the range of 4000-500 cm⁻¹. Brunauer Emmett and Teller (BET) analysis was carried out to determine the multipoint surface area and Barrett-Joyner-Halenda (BJH) studies were done to calculate the total pore volume. Adsorption-desorption studies were carried out by using N_2 at liquid nitrogen temperature (-196 °C) on Belsorp-Max (M/s. Microtarc BEL, Japan). To explore the structural features of the catalysts, Powder X-ray diffraction (XRD) patterns for the samples were recorded on an Ultima-IV X-ray diffractometer (M/s. Rigaku Corporation, Japan) Ni filtered Cu K α radiations (1=1.5406 A°) with a 2 θ scan speed of 2 degrees/min and a scan range of 5 to 80 degrees at 40 kV and 30 Ma. The surface morphological features of the prepared DE, WS $_xO_y$ and DE-WS $_xO_y$ were observed by Jeol JSM-7100F Field-Emission Scanning Electron Microscopy (FESEM). The surface charges of the DE, WS $_xO_y$ and DE-WS $_xO_y$ were measured by Litesizer 500 (Anton Paar) zeta potential instrument in an aqueous solution using Omega Cuvete Z. The state of elements and elemental composition in the samples (DE, WS $_xO_y$ and

^{*} Corresponding authors.

DE-WS_xO_y) were analysed by X-ray Photoelectron Spectroscopy (XPS; Thermo Scientific K-Alpha system and Al K-alpha X-ray source and an ion source energy range of 100 V to 3 KeV). Further, the thermal stability of the materials was evaluated from thermal gravimetric analysis (TGA) by PerkinElmer Diamond TG/DTA at a heating rate of 10 °C in an N₂ atmosphere. Photoluminescence (PL) Spectroscopy (Edinburgh instruments, FLS 1000; Detector R928P visible, Lamp-Xenon) was used to acquire PL spectra under identical settings and background-subtracted; inner-filter correction and integration window used for quantitative analysis. Metal ion analysis was carried out through Inductively Coupled Plasma - Optical Emission Spectroscopy (PerkinElmer AvioTM 200).

2. EDXS Elemental Mapping:

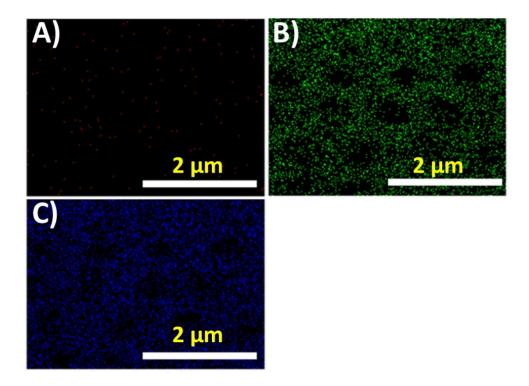


Figure S1: EDXS elemental mapping of A) C, B) O, C) Si elements for DE.

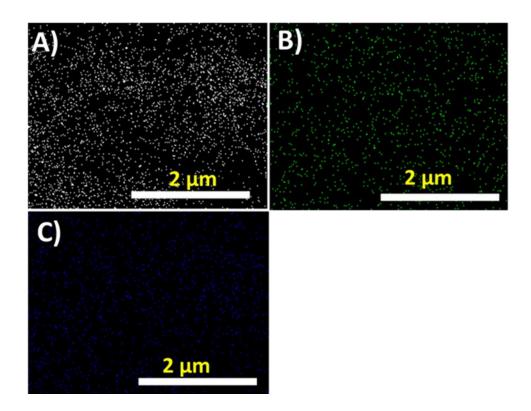


Figure S2: EDXS elemental mapping of A) O, B) W, C) S elements for WS_xO_y .

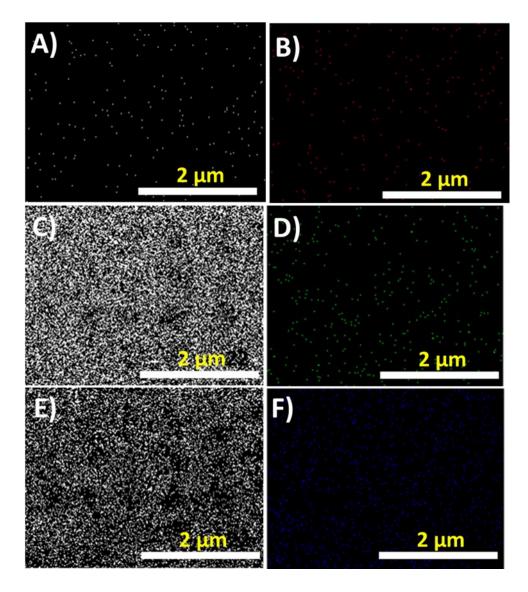


Figure S3: EDXS elemental mapping of A) C, B) N, C) Si, D) W, E) O, F) S elements for DEWS $_xO_y$.

3. EDAX Spectra:

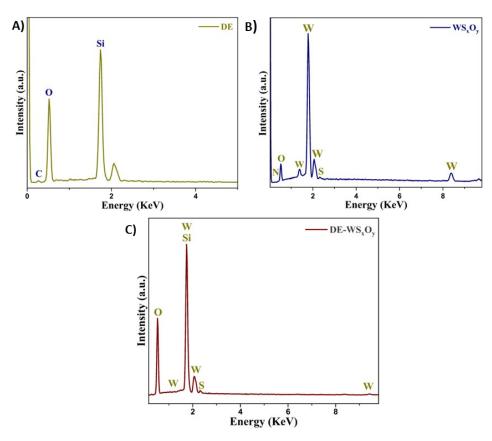


Figure S4: The energy dispersive X-ray analysis (EDAX) spectra of A) DE, B) WS_xO_y and C) DE- WS_xO_y .

4. EDS Elemental Mapping Images (TEM):

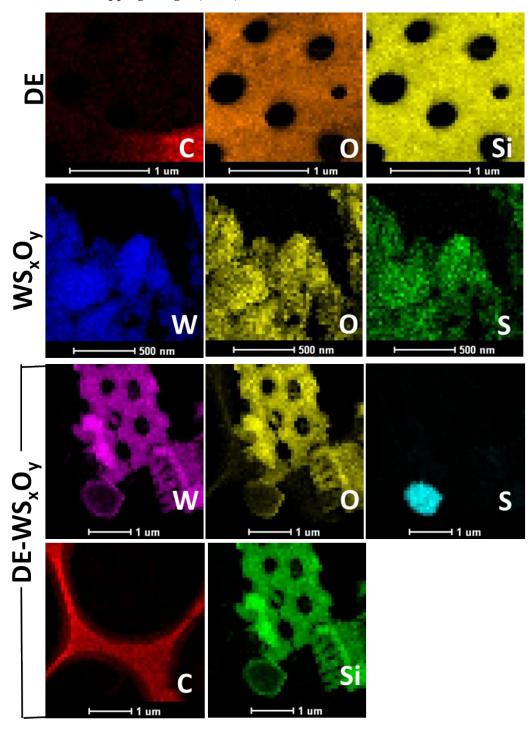


Figure S5: The energy dispersive X-ray spectroscopy (EDS) elemental mapping images.

5. FE-SEM Images:

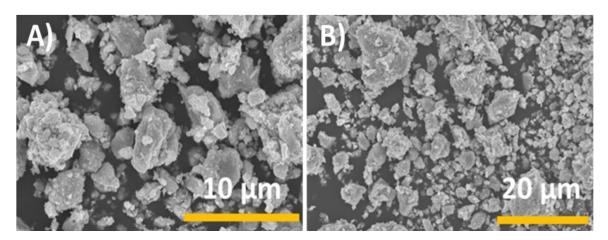


Figure S6: FE-SEM images for WS_xO_y.

6. TEM Images and Analysis:

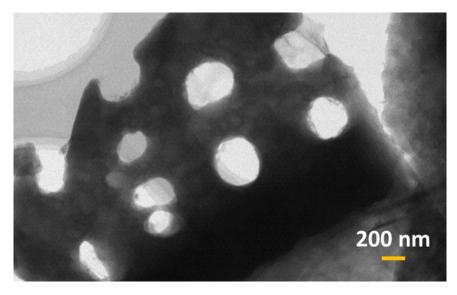


Figure S7: TEM images for DE frustule.

Table S1: Calculation of Miller indices for WS_xO_y .

S.No.	1/2r (nm ⁻¹)	1/r (nm ⁻¹)	r (nm)	d-spacing	(hkl)
				(A ⁰)	
1	5.574446	2.787223	0.35878	3.587801	(100)
2	6.383706	3.191853	0.313298	3.132976	(2 0 0)
3	8.272085	4.136043	0.241777	2.41777	(101)
4	10.61623	5.308117	0.188391	1.883907	(106)

5	12.27494	6.137468	0.162934	1.629336	
6	14.9603	7.480151	0.133687	1.336871	

Table S2: Calculation of Miller indices for DE-WS $_xO_y$.

S.No.	1/2r (nm ⁻¹)	1/r (nm ⁻¹)	r (nm)	d-spacing (A°)	(hkl)
1	4.569131	2.284565256	0.43772004	4.377200421	(100)
2	6.432651	3.21632529	0.31091383	3.109138256	(2 0 0)
3	7.903356	3.951678075	0.25305705	2.53057051	(1 0 1)

7. BET Surface Area Analysis:

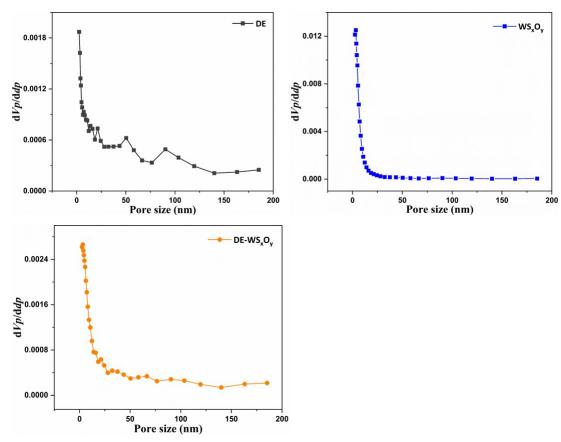


Figure S8: The pore size distribution plots for DE, WS_xO_y and DE-WS_xO_y.

 Table S3: Outline of the BET surface area parameters.

Material	Surface area (m ² /g)	Pore diameter (nm)	Pore volume (cm ³ /g)

DE	26.169	12.983	0.084936
WS _x O _y	100.15	4.1696	0.1044
DE-WS _x O _y	24.383	11.952	0.072856
,,			

8. XPS Analysis:

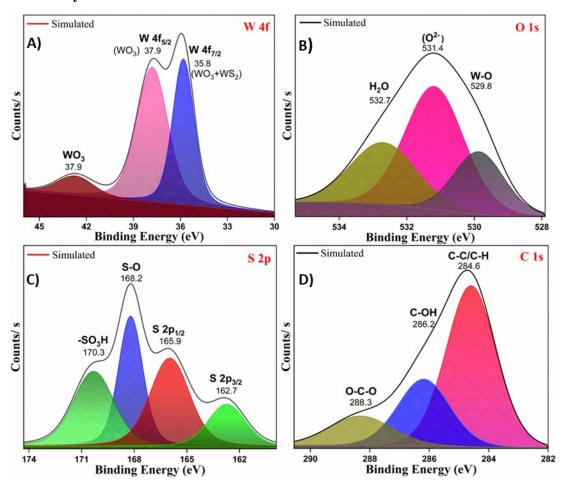
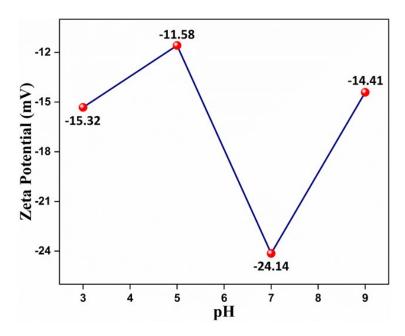
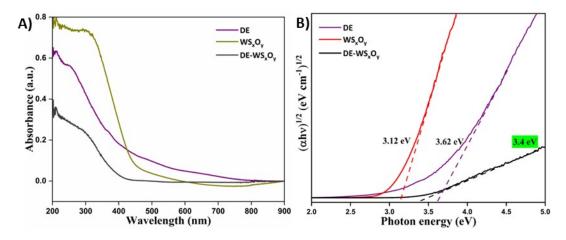



Figure S9: High-resolution spectra for W 4f, S 2p, O 1s and C 1s electrons of WS_xO_y.

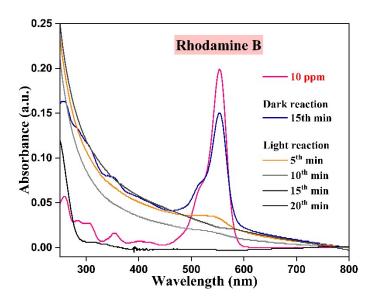
Table S4: Elemental percentage of different atoms by XPS analysis.


	Atomic Composition (%)				
Material	С	Si	О	W	S
DE	59.48	7.31	33.21	-	-
WS _x O _y	50.77	-	44.37	0.13	1.5
DE-WS _x O _y	45.6	6.87	46.69	0.12	0.42

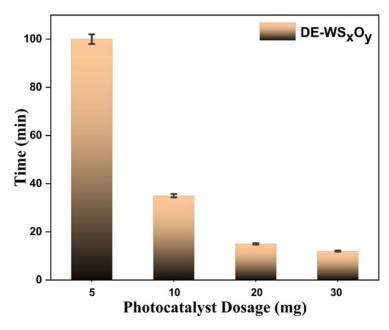
9. Zeta potential Analysis:

Figure S10: Zeta potential measurement of the DE-WS_xO_y at different pH.

10. UV-Visible-DRS Analysis:


Figure S11: Energy band structure of DE, WS_xO_y and DE-WS_xO_y. A) UV-Visible diffuse reflectance spectra, B) the corresponding tauc plot.

The band gap energies were calculated using the Tauc-equation:


Where, E_g - The energy of optical band gap, k (constant) and m=1/2 in case of direct energy gap, m=2 in case of indirect energy gap.

 $(\alpha h v)^{1/2}$ was plotted versus h v and the linear portion of the plot was extrapolated to the ordinate as shown in Figure S11B.

11. Results and Discussions:

Figure S12: UV-Visible plot for the Decoloration of Rh B with DE- WS_xO_y as catalyst.

Figure S13: Effect of DE-WS_xO_y photocatalyst dosage on photodegradation time.

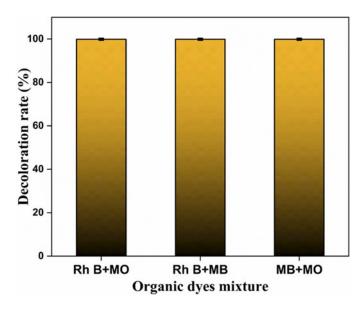
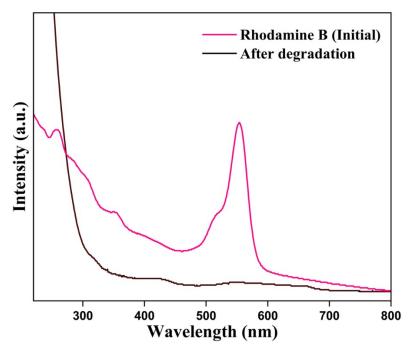
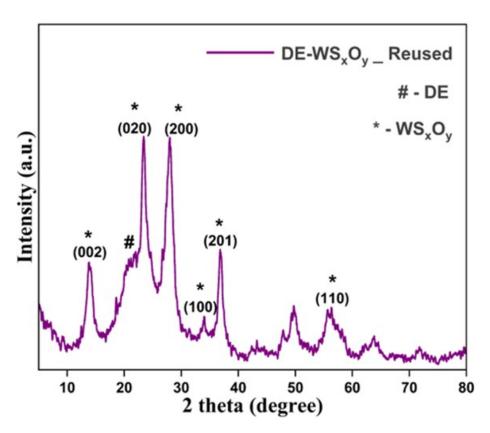
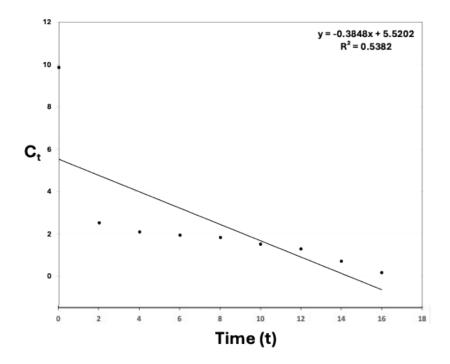
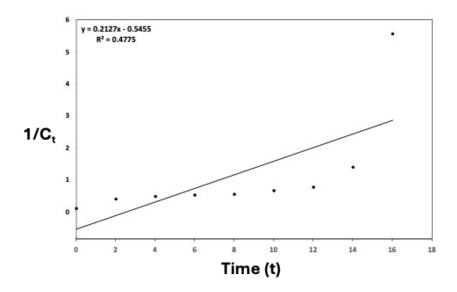
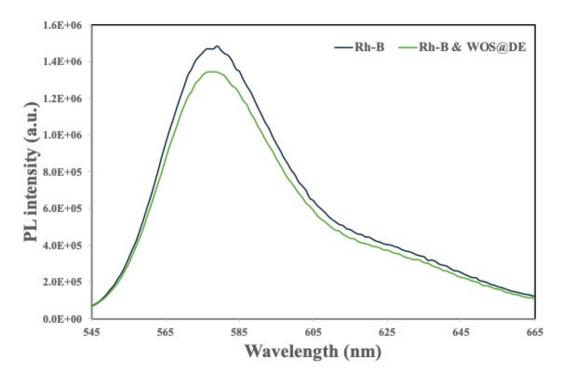



Figure S14: Photocatalytic activity for mixed dyes by DE-WS_xO_y.

 $\textbf{Figure S15:} \ \ UV\text{-}Visible \ plot \ showing \ Photocatalytic \ activity \ for \ Rh \ B \ dye \ by \ DE\text{-}WS_xO_y \ /PDMS \ cylindrical discs.}$


Figure S16: P-XRD analysis for phase structure analysis for reused DE-WS_xO_y photocatalyst.

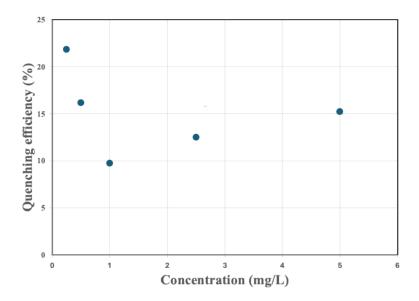

Figure S17: Zero-order kinetic model study for the photodegradation of rhodamine B by DE-WS $_x$ O $_y$ catalyst.

Figure S18: Second-order kinetic model study for the photodegradation of Rh B by $DE\text{-WS}_xO_y$ catalyst.

Figure S19. PL emission of Rhodamine B (1 mg L^{-1}) with and without DE-WS_xO_y (2 mg) catalyst.

Figure S20: Quenching of Rhodamine B fluorescence by DE-WS $_xO_y$ catalyst as a function of dye concentration.

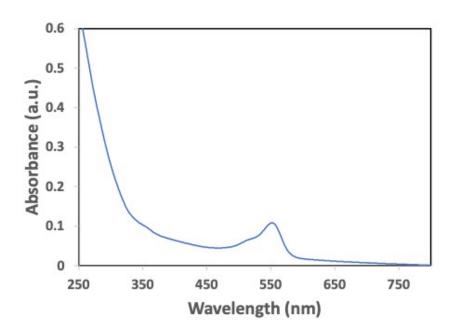


Figure S21: UV-visible plot showing sorption of Rh B on uncoated PDMS.