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SUPPLEMENTARY NOTE 1: VIBRATIONAL FGR CALCULATIONS

Here we present a detailed calculation of the transition rate from |P+(k∥)⟩ to |Dk(k∥)⟩. All the other phonon-
mediated transition rates can be calculated similarly.

First, we identify the relevant coupling term in HI by writing the term |Sn⟩⟨Sn| in the polariton basis. That is,
singlet dephasing causes polariton transitions. Because moving from |P+(k∥)⟩ to |Dk(k∥)⟩ means creating a phonon

of the energy E+(k∥)− Es, we can omit the annihilation operators b̂n,l. We also omit multiphonon processes. Thus,

the relevant coupling term is
∑

n σ̃
s
l′
α(k∥)e

−i 2πnk
N

N |Dk(k∥)⟩⟨P+(k∥)|b̂†n,l′ . l′ labels the required transition energy, and
we have dropped the label n from σ̃s

n,l, because we assume equal coupling strengths at all molecular sites. The

initial system-environment eigenstate is, omitting the electromagnetic environment, |P+(k∥)⟩ ⊗ |nN−k,l′⟩, and the
final eigenstate is |Dk(k∥)⟩ ⊗ |nN−k,l′ + 1⟩. Here, N − k labels the momentum; note that it too is conserved in the
transition. Substituting to FGR, we get

ΓP+(k∥)→Dk(k∥) =
2π

ℏ

∣∣∣⟨Dk(k∥)| ⊗ ⟨nN−k,l′ + 1|
∑
n

σ̃s
l′
α(k∥)e

−i 2πnk
N

N
|Dk(k∥)⟩⟨P+(k∥)|b̂†n,l′ |P+(k∥)⟩ ⊗ |nN−k,l′⟩

∣∣∣2ρ(Eif).

(S1)
Next, we rearrange some terms and switch to the momentum domain,

ΓP+(k∥)→Dk(k∥) =
2π|α(k∥)|2

ℏN2

∣∣∣∑
n

σ̃s
l′e

−i 2πnk
N ⟨nN−k,l′ + 1|b̂†n,l′ |nN−k,l′⟩

∣∣∣2ρ(Eif) (S2)

=
2π|α(k∥)|2

ℏN2

∣∣∣∑
n

σ̃s
l′e

−i 2πnk
N ⟨nN−k,l′ + 1| 1√

N

N∑
h=1

e−i 2πnh
N b̂†h,l′ |nN−k,l′⟩

∣∣∣2ρ(Eif) (S3)

=
2π|α(k∥)|2

ℏN3

∣∣∣∑
n

σ̃s
l′⟨nN−k,l′ + 1|

(
b̂†N−k,l′ +

∑
h̸=N−k

e−i
2πn(k+h)

N b̂†h,l′
)
|nN−k,l′⟩

∣∣∣2ρ(Eif) (S4)

=
2π|α(k∥)|2

ℏN3

∣∣∣∑
n

σ̃s
l′⟨nN−k,l′ + 1|b̂†N−k,l′ |nN−k,l′⟩

∣∣∣2ρ(Eif) (S5)

=
2π|α(k∥)|2

ℏN3

∣∣Nσ̃s
l′

√
⟨nN−k,l′⟩+ 1

∣∣2ρ(Eif) (S6)

=
2π|α(k∥)|2

ℏN
∣∣σ̃s

l′

∣∣2(⟨nN−k,l′⟩+ 1
)
ρ(Eif). (S7)

Finally, we use the standard definitions ρ(Eif) := δ(|Ef − Ei| − Ej) [3] and J (E) := 2π
ℏ
∑

j |σj |2δ(E − Ej) [53] to
obtain

ΓP+(k∥)→Dk(k∥) =
|α(k∥)|2

N
J̃s

(
E+(k∥)− Es

)[〈
n
(
E+(k∥)− Es

)〉
+ 1

]
. (S8)

Transitions between the exciton reservoir and lower polariton are weighted by |β(k∥)|2 instead of |α(k∥)|2, while
transitions between the polaritons are weighted by the product |α(k∥)|2|β(k∥)|2. If the system goes up in energy,
⟨n(•)⟩ + 1 is replaced by ⟨n(•)⟩, because such a transition cannot occur spontaneously. If the energy of the system
does not change, both ⟨n(0)⟩ + 1 and ⟨n(0)⟩ contribute to the transition rate. If the system relaxes to the global
ground state, the factor of 1/N becomes 1; the global ground state |G⟩ ⊗ |0⟩ is already an eigenstate and does not

contain 1/
√
N . Here, we would also replace the Ohmic J̃s with the super-Ohmic Js(t).
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SUPPLEMENTARY NOTE 2: TRUNCATING THE ISC AND RISC RATES

A fully quantum mechanical treatment (in the weak- and no-coupling regimes) would give us the ISC/RISC rates
[3]

Γ(R)ISC =
V 2
st

ℏ

√
π

λkBT

∞∑
l=0

Sl

l!
e−Se

− (λ+lℏω+∆E)2

4λkBT , (S9)

where the ls label different vibrational levels, S is the Huang-Rhys parameter quantifying the strength of phonon
couplings, and ℏω is the phonon energy. Expanding the expressions, we get

Γ(R)ISC =
V 2
st

ℏ

√
π

λkBT
[1− S +O(S2)]

[
e
− (λ+∆E)2

4λkBT + Se
− (λ+ℏω+∆E)2

4λkBT +O(S2)

]
. (S10)

Because we are working in the weak system-environment coupling regime, we can only keep the linear terms in S.
Hence,

Γ(R)ISC ≈ V 2
st

ℏ

√
π

λkBT

[
(1− S)e

− (λ+∆E)2

4λkBT + Se
− (λ+ℏω+∆E)2

4λkBT

]
. (S11)

The difference to the rate given in the main text is therefore

V 2
st

ℏ

√
π

λkBT
S

[
e
− (λ+ℏω+∆E)2

4λkBT − e
− (λ+∆E)2

4λkBT

]
. (S12)

Since both S and ω are small, this difference can be omitted. For example, S = 0.001 and ℏω = 20 meV result in
< 1 % difference for both ISC and RISC. In fact, the difference would become even smaller for polaritons due to the
1/N scaling.
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SUPPLEMENTARY NOTE 3: OPTICAL FGR CALCULATIONS

Here we calculate just the rate of emission to free space, Γfree. Γcavity is then obtained from Γfree by multiplying
it by the Purcell factor, which accounts for the modified density of states in the cavity, and the spectral mismatch
factor obtained from the time coarse graining.

Since it is the singlets that are coupled with the free-space modes, the photonic parts of the polaritons vanish in
FGR. The excitonic weights follow as previously in Supplementary note 1. Hence, it is enough to examine jumps
from |Dk(k∥)⟩, k ∈ [1, N ], to |G⟩ ⊗ |0⟩. Note that k = N is the momentum index of the polaritons and 0 refers to the
number of cavity photons.

ΓDk(k∥)→G⊗0 =
2π

ℏ

∣∣∣⟨G| ⊗ ⟨0| ⊗ ⟨nk∥ + 1|
∑
n

f(k∥)
ei

2πnk
N

√
N

|G⟩ ⊗ |0⟩⟨Dk(k∥)|ĉ†k∥
|Dk(k∥)⟩ ⊗ |nk∥⟩

∣∣∣2ρ(Eif) (S13)

=
2π

ℏ
|f(k∥)|2

N

(
⟨nk∥⟩+ 1

)∣∣∣∑
n

ei
2πnk

N

∣∣∣2ρ(Eif) (S14)

≈ 2π

ℏ
|f(k∥)|2

N

∣∣∣∑
n

δk,N

∣∣∣2ρ(Eif) (S15)

=
2π

ℏ
N |f(k∥)|2ρ(Eif)δk,N (S16)

=
2π

ℏ
Nµ2E±(k∥)

2ϵ0Vf

VfE±(k∥)
2

π2ℏ3c3
δk,N (S17)

= N
µ2E±(k∥)

3

πϵ0ℏ4c3
δk,N . (S18)

Here we used the density of states ρ(Eif) =
VfE±(k∥)

2

π2ℏ3c3 [48]. Furthermore, for the energies we are interested in,
⟨nk∥⟩ ≈ 0. As already mentioned, the emission rate is still multiplied by the excitonic weight of the emitting
polariton. And note that it is only the polaritons that emit; due to destructive interference, the sum over n survives
only when k = N .
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SUPPLEMENTARY NOTE 4: DECOHERENCE FUNCTION AND PURE-DEPHASING RATE

With a free Hamiltonian H0, interaction Hamiltonian of the form
∑

X |X⟩⟨X| ⊗EX , and initial environment state
|ξ⟩, coherence terms ⟨X|ρ(t)|Y ⟩ can be generally written as ⟨X|ρ(0)|Y ⟩κXY (t), where

κXY (t) = ⟨ξY (t)|ξX(t)⟩ (S19)

= ⟨ξ|ei
∫ t
0
dseiH0t/ℏEY e−iH0t/ℏ/ℏe−i

∫ t
0
dseiH0t/ℏEXe−iH0t/ℏ/ℏ|ξ⟩ (S20)

is the decoherence function [53]. While our interaction Hamiltonian (3) contains cross-terms |X⟩⟨Y |, all couplings
are assumed weak, and so we can use Eq. (S20) to estimate the contribution of vibrational fluctuations to the actual
decoherence function.

Using the thermal equilibrium state |ψth⟩ (purification of ρth) as |ξ⟩, the time-dependent phonon state coupled with
nth singlet becomes

|ξn(t)⟩ = exp
[
− i

ℏ

∫ t

0

dt′
∑
l

σ̃s
n,l(e

−iωn,lt
′
b̂n,l + eiωn,lt

′
b̂†n,l)

]
|ψth⟩ (S21)

= exp
[
− i

ℏ
∑
l

σ̃s
n,l

(1− eiωn,lt

ωn,l
b̂†n,l −

1− e−iωn,lt

ωn,l
b̂n,l

)]
|ψth⟩ (S22)

=
∏
l

D
( σ̃s

n,l

ℏ
1− eiωn,lt

ωn,l

)
|ψth⟩. (S23)

Here, D(•) is the displacement operator. The phonon state coupled with the ground state is simply |ψth⟩.
Calculating the inner product ⟨ψth|ξn(t)⟩, using the thermal displacement average, and taking the continuum limit,

we get

⟨G|ρ(t)|Sn⟩
⟨G|ρ(0)|Sn⟩

= κn(t) = ⟨ψth|
∏
l

D
( σ̃s

n,l

ℏ
1− eiωn,lt

ωn,l

)
|ψth⟩ (S24)

= exp
{
−

∑
l

|σ̃n,l|2

ℏ2ω2
n,l

[
1− cos(ωn,lt)

]
coth

( ωn,l

2kBT

)}
(S25)

→ exp
{
− ℏ

2π

∫
dE

J̃s(E)

E2

[
1− cos

(Et
ℏ

)]
coth

( E

2ℏkBT

)}
. (S26)

Fig. S1 shows both a sample of |κn(t)| and the function exp(−Φ2t2) fitted to it using a nonlinear least-squares
method. The fitting yields the pure-dephasing rate Φ ≈ 3.105× 1013 s−1, which is used in the main text to determine
which coupling regime the system is in.

10 20 30 40 50

FIG. S1. The decoherence function |κn(t)| (or the pure-dephasing contribution of it; red dots) and the fitted function exp(−Φ2t2)
(gray curve).
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SUPPLEMENTARY NOTE 5: OMITTING UNITARY DYNAMICS AND DEPHASING

Expressing |Sn⟩⟨G| in the eigenbasis reveals that electrical pumping creates coherences between the upper and lower
polaritons, which we denote by ρ+−(k∥, t). Thus, the exact ground-state dynamics, with coherent contributions,
acquires an extra term,

d

dt
⟨G ⊗ 0(t)⟩ = · · · − 2|α(k∥)||β(k∥)|κ(k∥)ℜ

[
ρ+−(k∥, t)

]
, (S27)

and the coherences evolve according to

d

dt
ρ+−(k∥, t) =|α(k∥)||β(k∥)|

JA

4eN
⟨G ⊗ 0(t)⟩

− 1

2

[ ∑
X ̸=P+(k∥)

ΓP+(k∥)→X +
∑

X ̸=P−(k∥)

ΓP−(k∥)→X +
i

ℏ
2
(
E+(k∥)− E−(k∥)

)]
ρ+−(k∥, t).

(S28)

Dark-state coherences vanish when summed over n as a result of destructive interference.
We can neglect coherences in the main text for several reasons. 1) Their effective pumping rate is negligible,

scaling as 1/N . 2) The prefactor |α(k∥)||β(k∥)| implies that coherences are created even less efficiently when moving
away from the Es = Ec(k∥) resonance. 3) The magnitude of coherences is bounded from above by |ρ+−(k∥, t)| ≤√
⟨P+(k∥, t)⟩⟨P−(k∥, t)⟩, and the polariton populations themselves are very small due to their short lifetimes. 4) The

coherences directly influence only the ground-state population, so any indirect influence on other states is greatly
diminished. 5) Various dephasing mechanisms—though not explicitly considered here in the polariton basis—will
further suppress the impact of coherences.

Let us illustrate how negligible the coherences are in the large-N case. Fig. S2 shows the exact population and
coherence dynamics of the upper polariton at k∥ = 0, when the system is initially in the global ground state |G⟩⊗ |0⟩.
The magnitude of the coherence is nine orders of magnitude smaller than the corresponding population. In fact, the
approximate population used in the main text differs from its exact counterpart by less than 0.001 %.

For the above reasons, while polariton coherences might play a bigger role in single-molecule strong coupling, we
can safely ignore coherences and the dephasing that would just destroy them in the large-N case.

0.5

0

(a)

(b)

FIG. S2. Exact dynamics of (a) ⟨P+(0, t)⟩ and (b) |ρ+−(0, t)|, when Lc = 150 nm and N = 5× 105. All the other parameters
are given in Fig. 3(b).
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SUPPLEMENTARY NOTE 6: ANALYTICAL IQE IN THE WEAK- AND NO-COUPLING REGIMES

In the weak-coupling regime, it is simpler to evaluate the population dynamics and IQE using the molecular-site
basis {|Sn⟩}Nn=1. With fixed k∥, the system of coupled rate equations reads

d

dt
⟨S(t)⟩ = JA

4e
⟨G ⊗ 0(t)⟩+ ΓRISC⟨T (t)⟩ −

(
Γr + Γcavity(k∥) + Γs,nr + ΓISC

)
⟨S(t)⟩ (S29)

d

dt
⟨T (t)⟩ = 3JA

4e
⟨G ⊗ 0(t)⟩+ ΓISC⟨S(t)⟩ − (Γt,nr + ΓRISC)⟨T (t)⟩ (S30)

d

dt
⟨G ⊗ 1k∥(t)⟩ = Γcavity(k∥)⟨S(t)⟩ − κ(k∥)⟨G ⊗ 1k∥(t)⟩ (S31)

d

dt
⟨G ⊗ 0(t)⟩ = (Γr + Γs,nr)⟨S(t)⟩+ Γt,nr⟨T (t)⟩+ κ(k∥)⟨G ⊗ 1k∥(t)⟩ −

JA

e
⟨G ⊗ 0(t)⟩. (S32)

Under steady-state conditions, the IQE can be written as

IQE =
1

K

∑
k∥

Γr⟨S⟩+ κ(k∥)⟨G ⊗ 1k∥⟩
JA/e

× 100% (S33)

=
1

K

∑
k∥

(
Γr + Γcavity(k∥)

)
⟨S⟩

JA/e
× 100% (S34)

=
1

K

∑
k∥

(
Γr + Γcavity(k∥)

)(
ΓRISC + 1

4Γt,nr

)(
Γr + Γcavity(k∥) + Γs,nr

)(
3JA
4e + ΓRISC + Γt,nr

)
+ JA

e

(
ΓISC + ΓRISC + 1

4Γt,nr

)
+ ΓISCΓt,nr

× 100%.

(S35)

Fig. S3 shows the weak-coupling IQE as a function of cavity thickness, when K = 313. We reach the maximum IQE
of 97.41 % at 143.10 nm, i.e., when the cavity mode at normal incidence is slightly below the singlet resonance.

The no-coupling version of Eq. (S35) is obtained by simply setting Γcavity(k∥) = 0 ∀k∥. Physically, this can be
achieved by matching the refractive indices of the emitter and mirror materials. For example, the aluminum mirrors
considered in this work could be replaced with indium tin oxide. With Γcavity(k∥) = 0, Eq. (S35) yields the reference
IQE of 96.87 %. This is also evident in Fig. S3. When the cavity is very thin, the cavity modes are far out of singlet
resonance. Assuming too few molecules for polariton formation, the singlets couple only with the free-space modes.

FIG. S3. IQE in the weak-coupling regime, as a function of the cavity thickness. We get the no-coupling IQE at small cavity
thicknesses, where there is effectively no coupling due to large spectral mismatch (assuming small N).
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FIG. S4. IQE as a function of the dephasing cut-off Ẽs,cut and the rescaled light-matter coupling cut-off Ecut(k∥)/g(k∥), when

Lc = 125 nm and N = 105. All the other parameters are given in Fig. 3(b). Increasing Ẽs,cut leads to stronger dephasing
and thus the polaritons getting populated more efficiently. Increasing Ecut(k∥)/g(k∥) has the opposite effect, as it widens the
intrinsically inefficient strong-coupling regime.


