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1. Dataset Building

The 378 non-fullerene small-molecule acceptors with a well-defined A-DA'D-A type are
obtained from the literature in Google Scholar search with the keywords "organic solar cells
(OSCs)" and "non-fullerene acceptors (NFAs)" published from 2019 to 2025 as the original dataset.
For each datapoint, it contained the simplified molecular input line entry system (SMILES) of the
acceptor, the HOMO/LUMO energy levels of the paired donor, and the corresponding device
performance (Js., Voc, FF and PCE). The dataset is then pre-screened to retain the samples with
PCE higher than 10%, yielding 312 molecules for the subsequent analysis. This threshold is chosen
from the fact that the primary objective of this work is to screen potential NFA molecules with high
efficiency, and the device efficiencies of most A-DA'D-A type NFAs reoprted in the literature is
higher than 15%. Since there are also a few cases where the PCE is between 10% and 15%, the
threshold is set at 10% after comprehensive considering all these factors. The entries of sub-dataset,
including the name of Acceptor and Donor, the corresponding PCE, and references is summarized
in Table S1.

2. Data Preprocessing
Each acceptor molecular is first decomposed in Chem2D under the A-DA'D-A type
small-molecule acceptors as five positional fragments (A1, D1, A', D2, and A»), which are exported

and stored as SMILES. Given the close structural and functional similarity for Ai/A2 and Di/Da,
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these five fragments are consolidated into three functional fragment libraries: end acceptor units
(53 A fragments), conjugated donor units (69 D fragments), and electron-deficient core units (72 A'
fragments). Because raw SMILES cannot be used directly as model inputs, we construct one-hot
encodings for each fragment library (A, D, and A’), and we use a fixed-length vector whose length
equals the number of fragments in that library. For any given molecule, setting the entry for a
fragment to "1" if it appears at the library's designated positions, and to "0" otherwise. Finally,
concatenate the A, D, and A’ vectors in order to obtain a fixed-length binary descriptor for the
molecule, as seen in Fig. S1. In addition, the donor's HOMO and LUMO values are additionally
incorporated as supplementary donor descriptors for effectively predict the corresponding PCE in
the model. Furthermore, a correlation-based redundancy filter is applied: when the absolute value
of pearson correlation coefficient () between two input features is higher than 0.9, only one
feature with the stronger » value for the target feature is kept for reducing to 152 input features
from 194 features and thus minimizing redundancy while retaining informative predictors for

model training.

3. Model Building

All machine learning (ML) models are implemented in Python. The dataset is randomly
divided into training and testing subsets with the 8:2 ratio. The training set is used for model
construction and the testing set is used to evaluate the generalization ability of the model. Initially,
six regression models were applied, including eXtreme gradient boosting (XGBoost) distinguishes
itself from other ensemble algorithms by employing a gradient boosting framework that iteratively
fits residuals to minimize error, enabling superior prediction accuracy [!l. Categorical boosting
(CatBoost) has a symmetrical tree structure and built-in categorical feature handling mechanism,
which can naturally handle high-dimensional sparse binary molecular fingerprint data and has a
strong resistance to overfitting in small sample cases [?!. Support vector regression (SVR) performs
reliably on high-dimensional fingerprint features and small-to-medium datasets, though the
training cost scales with sample size and careful kernel and hyperparameter selection is required 31,
Random forest (RF) uses random sampling and feature subsets to construct a large number of
decision trees, and obtains the final prediction results through voting or averaging. It has strong
robustness against discrete features and noise, and is suitable for high-dimensional binary data like
molecular fingerprints, although its prediction performance is slightly lower than that of the
gradient boosting methods “l. Gradient boosting regression (GBR) builds additive ensembles of
shallow trees via stage-wise optimization with shrinkage and subsampling; it delivers strong

accuracy on tabular and sparse binary data but is less memory-efficient 1. Gaussian process



regression (GPR) is a nonparametric Bayesian approach that models functions via kernels and
provides both predictive means and uncertainties; it is well-suited to small datasets and can capture
complex relations in molecular fingerprints 61,

Hyperparameter tuning and random seed optimization were performed for all six algorithms to
obtain the optimal models for this dataset. Specifically, an automatic hyperparameter tuning
framework, Optuna, was employed to search the hyperparameter space. Compared with traditional
grid search, Optuna dynamically adjusts the search strategy adopting bayesian optimization and
intelligent sampling methods, improving the efficiency of model training. Optuna supports the
dynamic definition of continuous search spaces, providing greater flexibility and useing pruning
strategies to prematurely terminate unproductive trials, saving computational resources [,
Additionally, Optuna optimizes the sampling strategies based on experimental data to make it more
adaptable to complex optimization problems. Table S2 and Fig. S2 compare the optimization
efficiencies of three hyperparameter tuning methods, including Optuna, GridSearchCV and
RandomizedSearchCV. Under identical hardware conditions, Optuna achieve the best predictive
performance with the fewestern number of trials and the shortest tuning time, underscoring its
advantage in efficiently exploring the search space and conserving computational resources,
whereas the traditional GridSearchCV and RandomizedSearchCV are slower and have lower
accuracy. And Optuna yields the highest testing R? of 0.88 after 60 trials, as illustrated in Fig. S2b.
The comparison between the predicted PCE values from the six models and the experimental
values is shown in Fig. 2b-c and Fig. S3. To further assess robustness of the models, we
additionally performed 5-fold cross-validation and report the corresponding performance estimates
in Fig. S4. Model performance and hyperparameters were evaluated using 5-fold cross-validation
on the training set. In 5-fold cross-validation, the data are partitioned into five mutually exclusive
subsets of approximately equal size; in each round, one subset is used as the validation set and the
remaining four as the training set. This procedure is repeated five times so that each sample serves
exactly once as validation data, providing a more reliable estimate of model performance on

unseen data.

4. Model Evaluation

The model performance is quantitatively evaluated using key evaluation metrics, including the
coefficient of determination (R?), root mean squared error (RMSE), and mean absolute error
(MAE). Among the six models, XGBoost demonstrated the best overall performance and is thus

selected for subsequent prediction tasks.



R? is used as a metric to assess the fit of the predictive model, representing the proportion of

the variance in the data that the model can explain. The calculation formula is as follows:

P=-— (D

RMSE quantifies the square root of the average squared differences between the predicted
values and the actual values. It gives an indication of the magnitude of the prediction errors, with
larger errors having a greater impact on the RMSE. RMSE is commonly used to evaluate the

accuracy of a model, with lower values indicating better alignment with the actual values. The
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MAE means the average magnitude of the errors in a set of predictions, without considering

calculation formula is as follows:

their direction, and is used to measure how closely the predictions align with the actual values. The

calculation formula is as follows:
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Where, n represents the number of observation objects, x; and y; is the i-th observation of x and
y in equation, respectively. y; and y stand for the tested and predicted values, y is the average

values of the tested and predicted values in equations, respectively.

5. Shapley Additive Explanations (SHAP) Analysis

SHAP analysis is a technique for model interpretability based on the Shapley value theory in
cooperative game theory, aiming to quantify the contribution of each feature to the model
prediction [, SHAP calculates the marginal contribution of features under different inputs of the
model and assigns a contribution value to each feature in ML. And the SHAP method can be used
to decompose the model prediction of a single sample into a baseline value plus feature attributions,

as shown in Equation (4):

()= ot = [ ()] + 4
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Where, (y is the final predicted value of sample x.  is the average predicted value of the
training samples, that is the baseline value. is the SHAP value of feature i for this sample.

Positive values of indicate that this feature increases the predicted value, while negative values



of indicate a decrease in the predicted value. The larger the absolute value, the stronger the

contribution. N is the total number of features.
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Where, () measures how strongly feature  influences predictions on average. We compute
SHAP with TreeSHAP for XGBoost, which provides consistent, polynomial-time Shapley values

for tree ensembles, as shown in Fig. S5.

6. Molecular Recombination Rules

In this work, the reconstruction of the A-DA'D-A type NFA is the focus for new molecule
generation and design. The SHAP importance ranking based on the XGBoost model selected the
top 50 structural units, including 15 end acceptor unit (A), 15 conjugated donor unit (D), and 20
electron-deficient core unit (A'). When one A' unit is fixed, the D and/or A unit libraries are shared
on both sides of the A-DA'D-A architecture respectively, while independent sampling is allowed to
achieve the construction of symmetric and asymmetric structures. Through the chemical space
combination method, a total of 1,012,500 new NFA molecules are generated after eliminating

duplicates, and the arrangement and combination are shown in Equation (6):

= X X X X (6)
Where, T represents the total number of candidates, , ,and . are the number of A, D,
and A' important units after SHAP sorting, respectively. (=15, =15, and A = 20).

This includes 4,500 new molecules with the D units and A units that are completely
symmetrical about the central electron-deficient unit. We present the potential candidates with a
predicted PCE greater than 18% in the form of a three-dimensional spatial distribution as shown in
Fig. S5. Due to structural symmetry, the original five fragment libraries of A-DA'D-A is actually
simplified into three dimensions of A, D, and A". It is easy to observe that the decreasing trend of
PCE decreases along the order of SHAP importance of the three fragments (A, D, and A'), and that
is to say, for symmetric structures, it seems that combining the most critical structural units can
produce a relatively high PCE. However, compared with asymmetric structures, the selectivity for
symmetric candidates with high PCE are very limited.

Genetic algorithm (GA) is a method based on population optimization to simulate the process
of biological evolution, which helps to improve the search efficiency for the combination design of
A-DA'D-A type molecules 1. The specific process of GA is as follows:

Firstly, an initial population is constructed to preserve the inheritance of excellent genetic

materials and the search for diversity. Some individuals are extracted from the parent sample pool



are directly injected into the initial population to retain the known high-quality genes (molecular
units), while the remaining individuals are generated via uniformly sampling from various
fragment libraries. Guided by the SHAP values, the A' units of the parent seed are set as A'.51 and
A'.14, which have the potential genes for obtaining high-performance PCE.

Secondly, the fitness assessment provides a clear criterion for ranking individuals in the
population in terms of their superiority or inferiority. The genotype of each individual is first
decoded and mapped to the corresponding feature subset. To ensure compatibility with the
chemical combination method for training the model, the system selects the top 50 features to
construct the feature vector for model inference. Further, this feature vector is input into a
pre-trained XGBoost model to predict PCE. The predicted value is directly defined as the fitness of
the individual, following the basic principles of the GA. A higher predicted value indicates a better
individual.

Thirdly, the offspring population is generated through three core genetic operations, including
selection, crossover, and mutation. The selection operation aims to retain high-quality individuals.
It typically employs tournament selection (for example, randomly selecting three individuals from
the population and retaining the one with the highest fitness) or random sampling method from the
parent pool to increase the probability of passing high-quality genes to the offspring. The crossover
operation simulates gene recombination. According to the set crossover probability, the selected
parent individuals are paired up in pairs, and the gene fragments are exchanged using a two-point
crossover method. To meet the problem constraints, if the invalid genes exist in the individuals
generated after crossover, the repair mechanism will be activated to adjust them to valid solutions.
The mutation operation acts on individuals with a given probability, randomly replacing each allele
at the gene locus of the individual with a certain probability from the same gene pool, thereby
introducing new genetic material and maintaining population diversity.

Finally, this algorithm incorporates an elitist mechanism to ensure the convergence of the
evolutionary process and the quality of the solution. This mechanism compares the newly
generated offspring population with the parent population after each generation of evolution, and
directly replaces the individual with the lowest fitness with the one with the highest fitness. It can
effectively prevent the loss of the current optimal solution during the generation transition, thereby
ensuring the monotonic improvement of the algorithm's performance. The termination condition of
the algorithm is to reach the preset maximum number of evolutionary generations. Convergence
detection is usually carried out based on indicators such as the fitness change of solutions and the
population diversity. When the fitness of solutions no longer improves significantly, the diversity

of the population decreases to a certain extent, or the preset number of iterations is reached, it can



be considered that the GA has converged. Convergence detection helps to avoid excessive iteration
of GA and waste of computational resources. Here, we choose to directly consider the GA as
converged when the number of iterations reaches 150 generations.

Overall, this workflow through efficient search in a vast chemical space, can systematically
retain favorable structural fragments and continuously explore new combinations through
recombination and mutation, ultimately successfully and rapidly exploring A-DA'D-A type

candidate molecules with the target performance.

7. Quantum Chemistry (QC)
All the calculations of the model compounds in this work are performed using the Gaussian 09

software package ['%

. The alkyl side chains are replaced with methyl groups for saving
computation time without affecting the description of electronic properties. Ground state geometry
optimizations of PM6, K01-K12 molecules are calculated by density functional theory at the
B3LYP/6-31G (d, p) level ' 121, Then the electrostatic potential (ESP) characteristic parameters
are calculated based on the optimal structure with electronic wave function information using
Multiwfn 3.7(dev) program U3 14, The visualization of the molecular orbitals and ESP distribution
is performed using VMD and GaussView 6.0, respectively, as shown Figs. S9 and S10 ['>- 16, The
excited states of asymmetric acceptors are calculated by time-dependent density functional theory
(TD-DFT) on CAM-B3LYP/def2tzvp IOp (9/40=4) level based on the geometries which are
optimized at the CAM-B3LYP/def2svp level ['7). This function has been widely used in the
majority of quantum chemical studies on non-fullerene photovoltaic acceptors, and the B3LYP in
combination with a medium-sized basis set has been proven to achieve a reasonable balance
between accuracy and computational cost. The lowest point of the excited state energy is
determined and the corresponding rigid energy scan is shown in Fig. S11. Meanwhile, SMD
solvation model is used for the calculation using chloroform as a solvent !'31. The solvent effect is
modeled by CPCM, and dispersion correction is carried out using the Grimme' D3 dispersion
method with Becke-Johnson damping (D3(BJ)) %!, Then the electron-hole analysis is performed
by Multiwfn 3.7(dev) program to visualize electron-hole distribution and obtain electron excitation

characteristic parameters.

8. Synthetic Accessibility (SA) Scores
The synthesis accessibility scores (SA Scores) of all NFAs are calculated based on the
Ertl-Schuffenhauer method in the RDKit software. This score integrates the contribution based on

fragment frequency and the penalty term for structural complexity. The penalty term covers factors



such as molecular size, the number of chiral centers, fused, bridged or spiro ring systems,

[20]. The score results fall within a continuous

macrocycles structures, and heteroatoms diversity
range of 1 to 10, which is used to approximately assess the relative synthesis difficulty of the
molecules, with an increase in the score from 1 to 10 indicating a gradual increase in the synthetic
difficulty. Before scoring, all molecular structures are standardized and preprocessed to generate
standardized SMILES codes. This work presents the SA scores of each candidate molecule and
uses them for qualitative comparison to evaluate their relative synthesis feasibility. This indicator

should be regarded as a supplement to the analysis of synthesis route planning, rather than a

replacement.
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Figure S1. The unit splitting of NFA and the corresponding one-hot encoding process, that is,

converting the SMILES molecular codes into binary encoding ("0" and "1").
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Figure S3. The fitting relationship between the PCE values predicted by the (a) SVR, (b) RF, (¢)
GBR, and (d) GPR models and the values reported in the literature. The gray dashed line indicates

the ideal reference line of y = x.
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Figure S6. The three-dimensional distribution of the chemical composition space of 549
candidates with a PCE greater than 18% in PM6 based OSCs among 4500 virtually generated
symmetric NFAs.
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Figure S10. The surface ESP of the 12 potential NFA candidate molecules (K01-K12), where blue
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Table S1. The OSCs data set including donor, acceptor, LUMO and HOMO of corresponding donor, and device performance parameters (Voc, Jsc,
FF, and PCE).

Acceptors Donors LUMO py HOMO py Vo (V) JSCH(IH:A FF (%) PCE (%) Structures References
cm™)

AQx-2F D18 -2.77 -5.51 0.937 26.10 80.4 19.7 10.1016/j.joule.2024.01.005
BOCI-I PM6 -3.64 -5.48 0.872 28.7 78.3 19.6 10.1021/acsenergylett.4c03168
AQx-22 D18 -2.77 -5.51 0.97 25.8 78 19.5 10.1002/adma.202413376
Y2CF3 D18 -2.77 -5.51 0.862 27.64 80.09 19.08 10.1021/jacs.4c13471

CH22 PM6 -3.64 -5.48 0.884 26.74 80.62 19.06 10.1038/s41467-023-40423-6
BO4Cl PM6 -3.64 -5.48 0.87 25.72 81.5 18.32 10.1021/acsenergylett.4c03168
Y1CF3 D18 -2.77 -5.51 0.866 27.31 80.08 18.96 10.1021/jacs.4c13471
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-3.64

-3.64

-3.64

-3.64

-3.64

-3.64

-3.64

—5.56

-5.48

-5.48

-5.48

-5.48

-5.48

-5.48

-5.48
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0.85

0.879

0.883

26.84

25.85

26.15

27.6

26.57

25.13

273

26.04

26.19

77.85

80.08
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78.13
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CY-O

BTzC41C-2F-2

CH14

BTP-¢9

m-BTP-PhC6

Y6-Se

eC9

AQx-1F

BTP-4Cl

eC9-2Cl1

PM6

PFBT4T-T

20

PM6

PBDB-T-F

PTQ10

D18

PM6

D18

PM6

PBQx-TF

-3.64

-3.69

-3.64
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-2.77

-3.64

-2.77

-3.64

-3.58

-5.48

-5.34

-5.48
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-5.51

-5.48

-5.51

-5.48

-5.48
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0.783

0.869

0.839
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0.839

0.837

0.947

0.838
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28.59

26.35
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243

26.7
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AsymSSe-2Cl

CH-CF

BTP-4F-P3EH

BTP-S9

Y-BO-FCl
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BTP-4CI-C9-12

BTP-eC9-HD

BTP-4F-T2EH

D18

PM6

PM6

PM6

PM6

PTQ10

PM6

PM6

D18-Cl

-2.77

-3.64

-3.64

-3.64

-3.64

-2.98

-3.64

-3.64
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-5.51

-5.48

-5.48

-5.48

-5.48

-5.54
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-5.48
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0.846
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0.84

0.84
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27.56

25.29

26.11

26.47

26.58
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76.24
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78.13

78.44
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Y6-HU

L8-HD

CH-F

BTP-BO-4Cl

BT3-4Cl

BTP-O-S

BTP-4F-PC6

YDT-SeNF

A4

Y11-EB

PM6

PM6

PM6

PM6

D18

PM6

PM6

PM6

PBDT-CI

PM6

-3.64

-3.64

-3.64

-3.64

-2.77

-3.64

-3.64

-3.64

-3.64

-3.64

-5.48

-5.48

-5.48

-5.48

-5.51

-5.48

-5.48
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-5.53
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0.853
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0.855

0.836
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25.6

25.08

25.24

26.1

26.46
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25.08
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77.9

78.8

75.59

77.7

76.69

71.5

80.33
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17.31
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Y6

BTA-C5

BT4T-4F

BTP10-4CI-C12

BTP-Ph

CH1007

BTP-2F-ThCl

G6-BO

BTP-1IC-BO-M

PTQ10

PM6

PM6

PM6

PTQ10

PM6

PM6

PM6

PM6
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-3.64

-3.64

-3.64
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-3.64
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75.61

77.4

77.25

77.63

17.13

17.11

17.1

17.1

17.1

17.08

17.06

17.06

17.03

10.1007/s11426-021-1114-3

10.1021/acsami.1c07254

10.1002/aenm.202003177

10.1002/aenm.202003777

10.1002/aenm.202100079

10.1021/jacs.0c07083

10.1016/j.joule.2020.03.023

10.1007/511426-022-1451-2

10.1021/acsami.2¢c22972




BTP-4Cl-12

BDOTP-1

BTzC4IC-2F-1

SY1

BTP-CIBr

LL3

Y6-10

BTP-Th

BPT-4F

PM6

D18-B

PFBT4T-T
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PM6

PBDB-T
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PTQ10
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-3.64
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-3.69
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YHD-SeNF

CH20

BTP-EDOT-4F

BTP-S7

G6-EH

BO-4F

S-YSS-Cl1

BTP-PhC6

BTS5T-4F

PM6

PM6

PM6
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PM6

PM6

PM6

PM6

PM6
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-3.64

-3.64

-3.64

-3.64
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-5.48

-5.48

-5.48

-5.48

-5.48

-5.48

-5.48
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BP5T-4F

Y11-M

AQx-2

Y6-O

YBO-SeNF

BTA-C8

A3

Y6-HD

AQx-3F

PM6

PM6

PM6

PM6

PM6

PM6

PBDT-CI

PM6

D18

-3.64

-3.64

-3.64

-3.64

-3.64

-3.64

-3.64

-3.64

-2.77

-5.48

-5.48

-5.48

-5.48

-5.48
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-5.53
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0.824
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25.54

25.38
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76.15

76.25
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PZIC-4F

AQx-OF

BTP10-4CI-C10

BTP-4F-12

BTP-2S

BTP-4F

BTP-S2

BT2-4Cl

TPT10

BTIC-2Cl-yCF3

PM6

D18

PM6

PM6

PM6

PM6

PM6

D18

PTQI1

PM6

-3.64

-2.77

-3.64

-3.64

-3.64

-3.64

-3.64

-2.77

-2.76
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-5.48

-5.51

-5.48

-5.48

-5.48

-5.48

-5.48

-5.51
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BTP-4CI-8

BPS-4F

BTP-4CI-C12

L8-OD

BTA-Cé6

SY3

o-TEH

BTA-Cl1

Y6-0O2BO

PM6

SZ5

PM6

PM6

PM6

PM6

PBQ6

PM6

PM6

-3.64

-2.92

-3.64

-3.64
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Y6-2Cl

BTP-1IC-M

BTIC-2Br-m

Y6-10

BTP-ThCI

BTP-20
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BTPTT-4F
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SY2
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PM6

PM6

PM6

PM6

PM6

PM6

P2F-Ehp
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-3.64
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0-BTP-PhC6

Y6-PN

BO-6Cl

BTP-4F-T2C8

Y6-OD

Y6-C2

BTP-EDOT-4Cl

BTN-4F

BTP-CC

CY-S

PTQ10

PM6

PM6

D18-Cl

PM6

PM6

PM6

PM6

PM6

PM6
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-3.64

-3.64

—2.78

-3.64
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-3.64

-3.64

-3.64
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-5.54

-5.48

-5.48

—5.56

-5.48
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HD-4Cl

Y6-BO

PZIC-4C1

BTP-eC9

BTP-4CI-16

HDO-4Cl

BTP-4CI-C9-20

BTP20-4CI-C1
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BTIC-CF3-y

PM6

PM6

PM6

PM6

PM6

PM6

PM6

PM6
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-3.64

-3.64

-3.64

-3.64

-3.64

-3.64

-3.64
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A2

BTP-CIBr2

BTP-C6Ph

BDOTP-2

Y22

BTP-2Cl-d
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BTP-PBO-4F

Y6-PH
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Table S2. Performance comparison of three hyperparameter optimization methods on the optimal

XGBoost model, including the number of trial, tuning time, and testing R? value.

Methods Number of trial Tuning Time (s) R? Testing
Optuna 60 28.3 0.88
RandomizedSearchCV 80 40.6 0.85
GridSearchCV 36 9.0 0.84

Table S3. Performance metrics of six machine learning models with the Optuna hyperparameter

optimization.

Models  R? (Training/Testing) RMSE (Training/Testing) = MAE (Training/Testing)

XGBoost 0.93/0.88 0.64/0.80 0.34/0.40
CatBoost 0.85/0.80 1.10/1.00 0.77/0.89
SVR 0.77/0.73 1.32/1.01 1.00/0.82
RF 0.81/0.70 0.70/1.52 0.65/1.01
GBR 0.90/0.70 1.10/1.45 0.80/0.96

GPR 0.73/0.69 1.08/1.33 0.88/1.06




Table S4. External validation of the XGBoost model using data from 20 recent studies, including

predicted and experimental PCEs with relative errors.

E
Donors  Acceptors Ve (V) Ji (mAcm?) FF(%) PCE (%) Pre PCE (%) (zm Refs

(1)

PM6 R-EH 0.86 26.95 77.96 18.09 16.95 6.26 21]
PM6 R-M 0.86 26.60 77.75 17.88 16.91 5.43 21]
PM6 R-DTD 0.87 24.95 61.77 13.18 13.95 5.84 21]
D18 BTP-TC4Ph 0.89 27.93 79.36 19.65 18.22 7.28 (22
D18 BTP-TC6 0.86 27.53 77.67 18.47 17.96 2.76 22]
D18 BQx-F 0.96 21.46 69.72 14.41 15.75 9.30 (23]
D18 BQx-ClI 0.96 23.03 71.60 15.74 16.66 5.84 (23]
D18 BQx-Br 0.96 22.30 70.07 15.03 16.38 8.77 23]
D18 Z11 0.97 224 70.3 15.4 16.03 4.09 (24]
D18 712 0.93 253 79.6 19.5 18.11 7.13 24]
D18 Z13 0.89 24.8 76.7 17.8 17.15 3.65 24]
PM6 L8-PhF 0.86 25.63 77.70 17.17 18.11 5.47 (23]
PMo6 PzIC-SS-4F 0.89 26.22 7.40 17.02 16.76 1.53 26l
PM6 PzIC-SSe-4F 0.87 26.53 73.50 17.58 16.67 5.18 26l
PM6 PzIC-SeSe-4F 0.87 26.79 73.12 17.69 17.01 3.84 26l
PM1 DASe-4F 0.85 27.58 72.22 18.27 18.45 0.99 27
PM1 DASe-4Cl 0.85 26.71 75.80 17.25 16.85 232 27]
PM1 TASe-2CI2F 0.85 26.10 73.20 16.30 17.79 9.14 27]
PM1 TASe-2F2Cl 0.88 27.52 79.88 19.32 17.95 7.09 27]

PM6 BTIC-4Br 0.86 24.06 67.84 14.03 14.22 1.35 (28]




Table S5. The detailed electrostatic potential parameters of candidate KO1-K12 NFAs.

Donor Acceptors Min_value® Max_value® ESP_Ave? MPL® 0sa® (A2) Psa” (A?) Nsa? (A?)
(kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)
KOl -33.41 41.66 4.46 8.52 1324.79 1015.44 309.35
K02 -33.62 41.63 4.28 8.34 1323.96 979.07 344.89
K03 -34.20 37.26 4.34 8.34 1334.40 1009.46 324.94
K04 -34.45 41.11 4.08 8.39 1313.82 990.92 322.90
K05 -33.44 40.01 4.43 8.59 1329.93 1029.16 300.77
K06 -33.25 41.91 4.35 8.29 1346.02 1005.65 340.37
PMe Ko7 -33.10 41.67 4.29 8.58 1293.52 962.36 331.16
KO8 -33.05 41.64 4.30 8.52 1294.03 962.66 331.37
K09 -33.50 41.60 4.28 8.42 1316.00 980.22 348.96
K10 -34.26 41.73 3.96 8.49 1265.28 917.43 347.84
K11 -34.04 41.86 4.06 8.25 1291.90 946.33 345.57
K12 -33.38 41.77 4.37 8.47 1319.06 988.08 330.97

9 Min_value: the minimum values of the electrostatic potential on the molecular surface.
Y Max_value: the maximum values of the electrostatic potential on the molecular surface.
9 ESP_Avg: the overall average electrostatic potential.

9 MPI: the molecular polarity index.

® Osa: the overall surface area of the ESP isosurface.

D Psa: the positive ESP surface areas.

® Nsa: the negative ESP surface areas.
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