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1. Dataset Building

The 378 non-fullerene small-molecule acceptors with a well-defined A-DA'D-A type are

obtained from the literature in Google Scholar search with the keywords "organic solar cells

(OSCs)" and "non-fullerene acceptors (NFAs)" published from 2019 to 2025 as the original dataset.

For each datapoint, it contained the simplified molecular input line entry system (SMILES) of the

acceptor, the HOMO/LUMO energy levels of the paired donor, and the corresponding device

performance (Jsc, Voc, FF and PCE). The dataset is then pre-screened to retain the samples with

PCE higher than 10%, yielding 312 molecules for the subsequent analysis. This threshold is chosen

from the fact that the primary objective of this work is to screen potential NFAmolecules with high

efficiency, and the device efficiencies of most A-DA'D-A type NFAs reoprted in the literature is

higher than 15%. Since there are also a few cases where the PCE is between 10% and 15%, the

threshold is set at 10% after comprehensive considering all these factors. The entries of sub-dataset,

including the name of Acceptor and Donor, the corresponding PCE, and references is summarized

in Table S1.

2. Data Preprocessing

Each acceptor molecular is first decomposed in Chem2D under the A-DA'D-A type

small-molecule acceptors as five positional fragments (A1, D1, A', D2, and A2), which are exported

and stored as SMILES. Given the close structural and functional similarity for A1/A2 and D1/D2,
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these five fragments are consolidated into three functional fragment libraries: end acceptor units

(53 A fragments), conjugated donor units (69 D fragments), and electron-deficient core units (72 A'

fragments). Because raw SMILES cannot be used directly as model inputs, we construct one-hot

encodings for each fragment library (A, D, and A′), and we use a fixed-length vector whose length

equals the number of fragments in that library. For any given molecule, setting the entry for a

fragment to "1" if it appears at the library's designated positions, and to "0" otherwise. Finally,

concatenate the A, D, and A′ vectors in order to obtain a fixed-length binary descriptor for the

molecule, as seen in Fig. S1. In addition, the donor's HOMO and LUMO values are additionally

incorporated as supplementary donor descriptors for effectively predict the corresponding PCE in

the model. Furthermore, a correlation-based redundancy filter is applied: when the absolute value

of pearson correlation coefficient (r) between two input features is higher than 0.9, only one

feature with the stronger r value for the target feature is kept for reducing to 152 input features

from 194 features and thus minimizing redundancy while retaining informative predictors for

model training.

3. Model Building

All machine learning (ML) models are implemented in Python. The dataset is randomly

divided into training and testing subsets with the 8:2 ratio. The training set is used for model

construction and the testing set is used to evaluate the generalization ability of the model. Initially,

six regression models were applied, including eXtreme gradient boosting (XGBoost) distinguishes

itself from other ensemble algorithms by employing a gradient boosting framework that iteratively

fits residuals to minimize error, enabling superior prediction accuracy [1]. Categorical boosting

(CatBoost) has a symmetrical tree structure and built-in categorical feature handling mechanism,

which can naturally handle high-dimensional sparse binary molecular fingerprint data and has a

strong resistance to overfitting in small sample cases [2]. Support vector regression (SVR) performs

reliably on high-dimensional fingerprint features and small-to-medium datasets, though the

training cost scales with sample size and careful kernel and hyperparameter selection is required [3].

Random forest (RF) uses random sampling and feature subsets to construct a large number of

decision trees, and obtains the final prediction results through voting or averaging. It has strong

robustness against discrete features and noise, and is suitable for high-dimensional binary data like

molecular fingerprints, although its prediction performance is slightly lower than that of the

gradient boosting methods [4]. Gradient boosting regression (GBR) builds additive ensembles of

shallow trees via stage-wise optimization with shrinkage and subsampling; it delivers strong

accuracy on tabular and sparse binary data but is less memory-efficient [5]. Gaussian process



regression (GPR) is a nonparametric Bayesian approach that models functions via kernels and

provides both predictive means and uncertainties; it is well-suited to small datasets and can capture

complex relations in molecular fingerprints [6].

Hyperparameter tuning and random seed optimization were performed for all six algorithms to

obtain the optimal models for this dataset. Specifically, an automatic hyperparameter tuning

framework, Optuna, was employed to search the hyperparameter space. Compared with traditional

grid search, Optuna dynamically adjusts the search strategy adopting bayesian optimization and

intelligent sampling methods, improving the efficiency of model training. Optuna supports the

dynamic definition of continuous search spaces, providing greater flexibility and useing pruning

strategies to prematurely terminate unproductive trials, saving computational resources [7].

Additionally, Optuna optimizes the sampling strategies based on experimental data to make it more

adaptable to complex optimization problems. Table S2 and Fig. S2 compare the optimization

efficiencies of three hyperparameter tuning methods, including Optuna, GridSearchCV and

RandomizedSearchCV. Under identical hardware conditions, Optuna achieve the best predictive

performance with the fewestern number of trials and the shortest tuning time, underscoring its

advantage in efficiently exploring the search space and conserving computational resources,

whereas the traditional GridSearchCV and RandomizedSearchCV are slower and have lower

accuracy. And Optuna yields the highest testing R² of 0.88 after 60 trials, as illustrated in Fig. S2b.

The comparison between the predicted PCE values from the six models and the experimental

values is shown in Fig. 2b-c and Fig. S3. To further assess robustness of the models, we

additionally performed 5-fold cross-validation and report the corresponding performance estimates

in Fig. S4. Model performance and hyperparameters were evaluated using 5-fold cross-validation

on the training set. In 5-fold cross-validation, the data are partitioned into five mutually exclusive

subsets of approximately equal size; in each round, one subset is used as the validation set and the

remaining four as the training set. This procedure is repeated five times so that each sample serves

exactly once as validation data, providing a more reliable estimate of model performance on

unseen data.

4. Model Evaluation

The model performance is quantitatively evaluated using key evaluation metrics, including the

coefficient of determination (R2), root mean squared error (RMSE), and mean absolute error

(MAE). Among the six models, XGBoost demonstrated the best overall performance and is thus

selected for subsequent prediction tasks.



R2 is used as a metric to assess the fit of the predictive model, representing the proportion of

the variance in the data that the model can explain. The calculation formula is as follows:
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RMSE quantifies the square root of the average squared differences between the predicted

values and the actual values. It gives an indication of the magnitude of the prediction errors, with

larger errors having a greater impact on the RMSE. RMSE is commonly used to evaluate the

accuracy of a model, with lower values indicating better alignment with the actual values. The

calculation formula is as follows:
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MAE means the average magnitude of the errors in a set of predictions, without considering

their direction, and is used to measure how closely the predictions align with the actual values. The

calculation formula is as follows:
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Where, n represents the number of observation objects, xi and yi is the i-th observation of x and

y in equation, respectively. yi and ŷ stand for the tested and predicted values,
__

y is the average

values of the tested and predicted values in equations, respectively.

5. Shapley Additive Explanations (SHAP) Analysis

SHAP analysis is a technique for model interpretability based on the Shapley value theory in

cooperative game theory, aiming to quantify the contribution of each feature to the model

prediction [8]. SHAP calculates the marginal contribution of features under different inputs of the

model and assigns a contribution value to each feature in ML. And the SHAP method can be used

to decompose the model prediction of a single sample into a baseline value plus feature attributions,

as shown in Equation (4):
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Where, �� � is the final predicted value of sample x. ∅0 is the average predicted value of the

training samples, that is the baseline value. ∅� is the SHAP value of feature i for this sample.

Positive values of ∅� indicate that this feature increases the predicted value, while negative values



of ∅� indicate a decrease in the predicted value. The larger the absolute value, the stronger the

contribution. N is the total number of features.
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Where, � � measures how strongly feature � influences predictions on average. We compute

SHAP with TreeSHAP for XGBoost, which provides consistent, polynomial-time Shapley values

for tree ensembles, as shown in Fig. S5.

6. Molecular Recombination Rules

In this work, the reconstruction of the A-DA'D-A type NFA is the focus for new molecule

generation and design. The SHAP importance ranking based on the XGBoost model selected the

top 50 structural units, including 15 end acceptor unit (A), 15 conjugated donor unit (D), and 20

electron-deficient core unit (A'). When one A' unit is fixed, the D and/or A unit libraries are shared

on both sides of the A-DA'D-A architecture respectively, while independent sampling is allowed to

achieve the construction of symmetric and asymmetric structures. Through the chemical space

combination method, a total of 1,012,500 new NFA molecules are generated after eliminating

duplicates, and the arrangement and combination are shown in Equation (6):

� = �� × �� × ��' × �� × �� 6

Where, T represents the total number of candidates, ��, ��, and �A' are the number of A, D,

and A' important units after SHAP sorting, respectively. (�� = 15, �� = 15, and �A' = 20).

This includes 4,500 new molecules with the D units and A units that are completely

symmetrical about the central electron-deficient unit. We present the potential candidates with a

predicted PCE greater than 18% in the form of a three-dimensional spatial distribution as shown in

Fig. S5. Due to structural symmetry, the original five fragment libraries of A-DA'D-A is actually

simplified into three dimensions of A, D, and A'. It is easy to observe that the decreasing trend of

PCE decreases along the order of SHAP importance of the three fragments (A, D, and A'), and that

is to say, for symmetric structures, it seems that combining the most critical structural units can

produce a relatively high PCE. However, compared with asymmetric structures, the selectivity for

symmetric candidates with high PCE are very limited.

Genetic algorithm (GA) is a method based on population optimization to simulate the process

of biological evolution, which helps to improve the search efficiency for the combination design of

A-DA'D-A type molecules [9]. The specific process of GA is as follows:

Firstly, an initial population is constructed to preserve the inheritance of excellent genetic

materials and the search for diversity. Some individuals are extracted from the parent sample pool



are directly injected into the initial population to retain the known high-quality genes (molecular

units), while the remaining individuals are generated via uniformly sampling from various

fragment libraries. Guided by the SHAP values, the A' units of the parent seed are set as A'.51 and

A'.14, which have the potential genes for obtaining high-performance PCE.

Secondly, the fitness assessment provides a clear criterion for ranking individuals in the

population in terms of their superiority or inferiority. The genotype of each individual is first

decoded and mapped to the corresponding feature subset. To ensure compatibility with the

chemical combination method for training the model, the system selects the top 50 features to

construct the feature vector for model inference. Further, this feature vector is input into a

pre-trained XGBoost model to predict PCE. The predicted value is directly defined as the fitness of

the individual, following the basic principles of the GA. A higher predicted value indicates a better

individual.

Thirdly, the offspring population is generated through three core genetic operations, including

selection, crossover, and mutation. The selection operation aims to retain high-quality individuals.

It typically employs tournament selection (for example, randomly selecting three individuals from

the population and retaining the one with the highest fitness) or random sampling method from the

parent pool to increase the probability of passing high-quality genes to the offspring. The crossover

operation simulates gene recombination. According to the set crossover probability, the selected

parent individuals are paired up in pairs, and the gene fragments are exchanged using a two-point

crossover method. To meet the problem constraints, if the invalid genes exist in the individuals

generated after crossover, the repair mechanism will be activated to adjust them to valid solutions.

The mutation operation acts on individuals with a given probability, randomly replacing each allele

at the gene locus of the individual with a certain probability from the same gene pool, thereby

introducing new genetic material and maintaining population diversity.

Finally, this algorithm incorporates an elitist mechanism to ensure the convergence of the

evolutionary process and the quality of the solution. This mechanism compares the newly

generated offspring population with the parent population after each generation of evolution, and

directly replaces the individual with the lowest fitness with the one with the highest fitness. It can

effectively prevent the loss of the current optimal solution during the generation transition, thereby

ensuring the monotonic improvement of the algorithm's performance. The termination condition of

the algorithm is to reach the preset maximum number of evolutionary generations. Convergence

detection is usually carried out based on indicators such as the fitness change of solutions and the

population diversity. When the fitness of solutions no longer improves significantly, the diversity

of the population decreases to a certain extent, or the preset number of iterations is reached, it can



be considered that the GA has converged. Convergence detection helps to avoid excessive iteration

of GA and waste of computational resources. Here, we choose to directly consider the GA as

converged when the number of iterations reaches 150 generations.

Overall, this workflow through efficient search in a vast chemical space, can systematically

retain favorable structural fragments and continuously explore new combinations through

recombination and mutation, ultimately successfully and rapidly exploring A-DA'D-A type

candidate molecules with the target performance.

7. Quantum Chemistry (QC)

All the calculations of the model compounds in this work are performed using the Gaussian 09

software package [10] . The alkyl side chains are replaced with methyl groups for saving

computation time without affecting the description of electronic properties. Ground state geometry

optimizations of PM6, K01-K12 molecules are calculated by density functional theory at the

B3LYP/6-31G (d, p) level [11, 12]. Then the electrostatic potential (ESP) characteristic parameters

are calculated based on the optimal structure with electronic wave function information using

Multiwfn 3.7(dev) program [13, 14]. The visualization of the molecular orbitals and ESP distribution

is performed using VMD and GaussView 6.0, respectively, as shown Figs. S9 and S10 [15, 16]. The

excited states of asymmetric acceptors are calculated by time-dependent density functional theory

(TD-DFT) on CAM-B3LYP/def2tzvp IOp (9/40=4) level based on the geometries which are

optimized at the CAM-B3LYP/def2svp level [17]. This function has been widely used in the

majority of quantum chemical studies on non-fullerene photovoltaic acceptors, and the B3LYP in

combination with a medium-sized basis set has been proven to achieve a reasonable balance

between accuracy and computational cost. The lowest point of the excited state energy is

determined and the corresponding rigid energy scan is shown in Fig. S11. Meanwhile, SMD

solvation model is used for the calculation using chloroform as a solvent [18]. The solvent effect is

modeled by CPCM, and dispersion correction is carried out using the Grimme' D3 dispersion

method with Becke-Johnson damping (D3(BJ)) [19]. Then the electron-hole analysis is performed

by Multiwfn 3.7(dev) program to visualize electron-hole distribution and obtain electron excitation

characteristic parameters.

8. Synthetic Accessibility (SA) Scores

The synthesis accessibility scores (SA_Scores) of all NFAs are calculated based on the

Ertl-Schuffenhauer method in the RDKit software. This score integrates the contribution based on

fragment frequency and the penalty term for structural complexity. The penalty term covers factors



such as molecular size, the number of chiral centers, fused, bridged or spiro ring systems,

macrocycles structures, and heteroatoms diversity [20]. The score results fall within a continuous

range of 1 to 10, which is used to approximately assess the relative synthesis difficulty of the

molecules, with an increase in the score from 1 to 10 indicating a gradual increase in the synthetic

difficulty. Before scoring, all molecular structures are standardized and preprocessed to generate

standardized SMILES codes. This work presents the SA scores of each candidate molecule and

uses them for qualitative comparison to evaluate their relative synthesis feasibility. This indicator

should be regarded as a supplement to the analysis of synthesis route planning, rather than a

replacement.



Figure S1. The unit splitting of NFA and the corresponding one-hot encoding process, that is,

converting the SMILES molecular codes into binary encoding (''0'' and ''1'').

Figure S2. (a)The R2 comparison of three different hyperparameter optimization methods (Optuna,

GridSearch CV, and RandomizedSearch CV) on six ML model testing sets, respectively. (b) The

stability of R2 values in the testing set of the optimal XGBoost model under 60 rounds of

hyperparameter optimization via Optuna hyperparameter optimization methods.



Figure S3. The fitting relationship between the PCE values predicted by the (a) SVR, (b) RF, (c)

GBR, and (d) GPR models and the values reported in the literature. The gray dashed line indicates

the ideal reference line of y = x.



Figure S4. The R2 values of the six models during the 5-fold cross-validation process, where k

represents the number of folds.

Figure S5. The SHAP interpretation force plot for the predicted PCE of the (a) PM6:CH14, (b)

PM6:L8-BO, and (c) PM6:SY2 samples, where red (blue) bars indicate the increase (decrease)

effect on the predicted target of PCE.



Figure S6. The three-dimensional distribution of the chemical composition space of 549

candidates with a PCE greater than 18% in PM6 based OSCs among 4500 virtually generated

symmetric NFAs.

Figure S7. Twelve potential NFAs molecular structure for the D18 based OSCs, including the

Asymmetric_A type (K13-K16), Asymmetric_D type (K17-K20), and Asymmetric_A&D type

(K21-K24).



Figure S8. Twelve potential NFAs molecular structure for the PTQ10 based OSCs, including the

Asymmetric_A type (K25-K28), Asymmetric_D type (K29-K32), and Asymmetric_A&D type

(K33-K36).



Figure S9. Calculated HOMO and LUMO orbital distributions of the potential NFA candidate

molecules (K01-K12).



Figure S10. The surface ESP of the 12 potential NFA candidate molecules (K01-K12), where blue

represents negative potential energy and red indicates positive potential energy.



Figure S11. The rigid scanning of the PM6:K01, PM6:K05, and PM6:K09 combination in (a)

horizontal and (b) vertical directions.

Figure S12. The evolutionary curve of PCE with the reproduction of offspring in GA.



Figure S13. The frequency of the top 10 genes/fragments in each of the three types of

sub-structures (A, D, and A') during the 150 reproduction process in GA.

Figure S14. The SA_Scores of G01-G08 molecules.



Table S1. The OSCs data set including donor, acceptor, LUMO and HOMO of corresponding donor, and device performance parameters (Voc, Jsc,

FF, and PCE).

Acceptors Donors LUMO (D) HOMO (D) Voc (V)
Jsc (mA

cm-2)
FF (%) PCE (%) Structures References

AQx-2F D18 -2.77 -5.51 0.937 26.10 80.4 19.7 10.1016/j.joule.2024.01.005

BOCl-I PM6 -3.64 -5.48 0.872 28.7 78.3 19.6 10.1021/acsenergylett.4c03168

AQx-22 D18 -2.77 -5.51 0.97 25.8 78 19.5 10.1002/adma.202413376

Y2CF3 D18 -2.77 -5.51 0.862 27.64 80.09 19.08 10.1021/jacs.4c13471

CH22 PM6 -3.64 -5.48 0.884 26.74 80.62 19.06 10.1038/s41467-023-40423-6

BO4Cl PM6 -3.64 -5.48 0.87 25.72 81.5 18.32 10.1021/acsenergylett.4c03168

Y1CF3 D18 -2.77 -5.51 0.866 27.31 80.08 18.96 10.1021/jacs.4c13471



BO4I PM6 -3.64 -5.48 0.845 29.1 77.1 18.96 10.1021/acsenergylett.4c03168

CH23 PM6 -3.64 -5.48 0.876 26.64 80.45 18.77 10.1002/adfm.202301573

Y3CF3 D18 -2.77 -5.51 0.854 27.71 78.65 18.61 10.1021/jacs.4c13471

N3 D18 -2.77 -5.51 0.86 27.44 78.5 18.56 10.1088/1674-4926/42/1/010502

T2EH PTQ10 -2.98 -5.54 0.872 26.57 80.05 18.55 10.31635/ccschem.022.202202056

m-TEH PTQ10 -2.98 -5.54 0.88 26.61 79 18.51 10.1002/sus2.82

Se46 PM6 -3.64 -5.48 0.879 26.22 80.1 18.46 10.1021/acsenergylett.3c00743

CH-FCF PM6 -3.64 -5.48 0.894 25.21 78.86 18.41 10.1016/j.cej.2023.147091

L8-BO PM6 -3.64 -5.48 0.905 26.6 76.1 18.32 10.1038/s41560-021-00820-x

AsymSSe-2F D18 -2.77 -5.51 0.84 27.44 79.46 18.31 10.1002/aenm.202301292



BTP-4F-T3EH D18-Cl −2.78 −5.56 0.873 26.84 77.85 18.25 10.1007/s11426-022-1290-y

BTP-4F-P2EH PM6 -3.64 -5.48 0.88 25.85 80.08 18.22 10.1002/aenm.202102596

CH-BBD PM6 -3.64 -5.48 0.882 26.15 78.9 18.19 10.1002/anie.202308832

G6-EHep PM6 -3.64 -5.48 0.85 27.6 77.67 18.13 10.1007/s11426-022-1451-2

CH21 PM6 -3.64 -5.48 0.873 26.57 78.13 18.12 10.1038/s41467-023-40423-6

Y6-1OBO PM6 -3.64 -5.48 0.93 25.13 77.1 18.02 10.1021/acs.chemmater.2c02851

BTP-4Cl-C9-16 PM6 -3.64 -5.48 0.85 27.3 77.8 18 10.1021/acsmaterialslett.2c00764

CH-iBQ PM6 -3.64 -5.48 0.879 26.04 78.5 17.97 10.1002/anie.202308832

CH17 PM6 -3.64 -5.48 0.883 26.19 77.2 17.84 10.1007/s11426-022-1264-y



CY-O PM6 -3.64 -5.48 0.863 26.21 78.81 17.83 10.1016/j.xcrp.2023.101303

BTzC4IC-2F-2
PFBT4T-T

20
-3.69 -5.34 0.783 28.59 76.95 17.82 10.1016/j.cej.2023.141281

CH14 PM6 -3.64 -5.48 0.869 26.35 77.79 17.81 10.1002/adfm.202301573

BTP-e9 PBDB-T-F -3.5 -5.5 0.839 26.67 81.1 17.8 10.1002/nano.202100036

m-BTP-PhC6 PTQ10 -2.98 -5.54 0.883 25.3 79.3 17.7 10.1039/D0EE03506H

Y6-Se D18 -2.77 -5.51 0.839 27.98 75.3 17.7 10.1021/jacs.0c08557

eC9 PM6 -3.64 -5.48 0.837 26.5 78.9 17.7 10.1021/acsmaterialslett.1c00328

AQx-1F D18 -2.77 -5.51 0.947 24.3 76.9 17.7 10.1016/j.joule.2024.01.005

BTP-4Cl PM6 -3.64 -5.48 0.838 26.7 79 17.7 10.1002/anie.202102622

eC9-2Cl PBQx-TF -3.58 -5.48 0.868 25.9 78.6 17.7 10.1002/adma.202102420



AsymSSe-2Cl D18 -2.77 -5.51 0.841 27.56 76.24 17.68 10.1002/aenm.202301292

CH-CF PM6 -3.64 -5.48 0.886 25.29 76.3 17.62 10.1016/j.cej.2023.147091

BTP-4F-P3EH PM6 -3.64 -5.48 0.861 26.11 78.13 17.57 10.1002/aenm.202102596

BTP-S9 PM6 -3.64 -5.48 0.846 26.47 78.44 17.56 10.1038/s41467-021-24937-5

Y-BO-FCl PM6 -3.64 -5.48 0.85 26.58 77.5 17.51 10.1002/anie.202104766

P2EH PTQ10 -2.98 -5.54 0.892 24.91 78.75 17.5 10.31635/ccschem.022.202202056

BTP-4Cl-C9-12 PM6 -3.64 -5.48 0.84 26.9 77.2 17.5 10.1021/acsmaterialslett.2c00764

BTP-eC9-HD PM6 -3.64 -5.48 0.84 26.59 78.32 17.49 10.1002/solr.202300206

BTP-4F-T2EH D18-Cl −2.78 −5.56 0.891 25.68 76.11 17.41 10.1007/s11426-022-1290-y



Y6-HU PM6 -3.64 -5.48 0.87 25.6 77.9 17.4 10.1016/j.nanoen.2022.107574

L8-HD PM6 -3.64 -5.48 0.88 25.08 78.8 17.39 10.1038/s41560-021-00820-x

CH-F PM6 -3.64 -5.48 0.875 25.24 75.59 17.34 10.1016/j.cej.2023.147091

BTP-BO-4Cl PM6 -3.64 -5.48 0.854 26.1 77.7 17.33 10.1039/D0EE02034F

BT3-4Cl D18 -2.77 -5.51 0.853 26.46 76.69 17.31 10.1002/solr.202100522

BTP-O-S PM6 -3.64 -5.48 0.912 23.74 77.5 17.3 10.1002/adfm.202213429

BTP-4F-PC6 PM6 -3.64 -5.48 0.855 25.08 80.33 17.22 10.1002/aenm.202102596

YDT-SeNF PM6 -3.64 -5.48 0.836 27.2 75.4 17.2 10.1007/s40820-023-01208-0

A4 PBDT-Cl -3.64 -5.53 0.84 26.9 0.76 17.19 10.1002/adfm.202201150

Y11-EB PM6 -3.64 -5.48 0.88 26.2 74.73 17.15 10.1016/j.jechem.2021.05.041



Y6 PTQ10 -2.98 -5.54 0.831 26.28 78.4 17.13 10.1007/s11426-021-1114-3

BTA-C5 PM6 -3.64 -5.48 0.847 26.51 76.19 17.11 10.1021/acsami.1c07254

BT4T-4F PM6 -3.64 -5.48 0.839 26.3 77.7 17.1 10.1002/aenm.202003177

BTP10-4Cl-C12 PM6 -3.64 -5.48 0.91 23.85 78.8 17.1 10.1002/aenm.202003777

BTP-Ph PTQ10 -2.98 -5.54 0.888 24.2 77.9 17.1 10.1002/aenm.202100079

CH1007 PM6 -3.64 -5.48 0.822 27.48 75.61 17.08 10.1021/jacs.0c07083

BTP-2F-ThCl PM6 -3.64 -5.48 0.869 25.38 77.4 17.06 10.1016/j.joule.2020.03.023

G6-BO PM6 -3.64 -5.48 0.91 24.22 77.25 17.06 10.1007/s11426-022-1451-2

BTP-IIC-BO-M PM6 -3.64 -5.48 0.87 25.35 77.63 17.03 10.1021/acsami.2c22972



BTP-4Cl-12 PM6 -3.64 -5.48 0.858 25.6 77.6 17 10.1093/nsr/nwz200

BDOTP-1 D18-B -2.71 -5.51 0.938 24.92 72.4 16.93 10.1002/cey2.250

BTzC4IC-2F-1
PFBT4T-T

20
-3.69 -5.34 0.81 26.84 75.82 16.91 10.1016/j.cej.2023.141281

SY1 PM6 -3.64 -5.48 0.871 25.41 76 16.83 10.1002/adfm.202000456

BTP-ClBr PM6 -3.64 -5.48 0.906 23.48 79 16.82 10.1002/aenm.202002649

LL3 PBDB-T -3.51 -5.34 0.86 26.97 72.27 16.82 10.1002/adfm.202103445

Y6-1O PM6 -3.64 -5.48 0.9 25.51 73.5 16.81 10.1021/acs.chemmater.2c02851

BTP-Th PTQ10 -2.98 -5.54 0.874 25.1 76.4 16.8 10.2139/ssrn.4013480

BPT-4F SZ5 -3.51 -5.34 0.853 24.8 79.1 16.8 10.1021/acsenergylett.0c01688



YHD-SeNF PM6 -3.64 -5.48 0.848 26.4 75.3 16.8 10.1007/s40820-023-01208-0

CH20 PM6 -3.64 -5.48 0.881 25.44 74.92 16.79 10.1038/s41467-023-40423-6

BTP-EDOT-4F PM6 -3.64 -5.48 0.87 2522 76.47 16.78 10.1002/adfm.202212290

BTP-S7 PM6 -3.64 -5.48 0.861 25.92 75.09 16.76 10.1038/s41467-021-24937-5

G6-EH PM6 -3.64 -5.48 0.89 24.33 77.13 16.74 10.1007/s11426-022-1451-2

BO-4F PM6 -3.64 -5.48 0.833 26.04 77.2 16.73 10.1038/s41467-022-30225-7

S-YSS-Cl PM6 -3.64 -5.48 0.86 25.85 75.58 16.73 10.1002/anie.202104766

BTP-PhC6 PM6 -3.64 -5.48 0.865 25 77 16.7 10.1016/j.nanoen.2020.105087

BT5T-4F PM6 -3.64 -5.48 0.85 25.3 77.8 16.7 10.1002/anie.201915030



BP5T-4F PM6 -3.64 -5.48 0.888 24.6 76.3 16.7 10.1002/aenm.202003177

Y11-M PM6 -3.64 -5.48 0.86 25.54 76.15 16.64 10.1016/j.jechem.2021.05.041

AQx-2 PM6 -3.64 -5.48 0.86 25.38 76.25 16.64 10.1002/adma.201906324

Y6-O PM6 -3.64 -5.48 0.95 22.4 78 16.6 10.1039/D0TA10953C

YBO-SeNF PM6 -3.64 -5.48 0.824 27.1 74.5 16.6 10.1007/s40820-023-01208-0

BTA-C8 PM6 -3.64 -5.48 0.837 26.18 75.67 16.59 10.1021/acsami.1c07254

A3 PBDT-Cl -3.64 -5.53 0.84 25.88 0.76 16.55 10.1002/adfm.202201150

Y6-HD PM6 -3.64 -5.48 0.85 25.4 76.5 16.5 10.1016/j.nanoen.2022.107574

AQx-3F D18 -2.77 -5.51 0.946 23.3 75 16.5 10.1016/j.joule.2024.01.005



PZIC-4F PM6 -3.64 -5.48 0.88 26.53 70.59 16.48 10.1016/j.jechem.2023.09.035

AQx-0F D18 -2.77 -5.51 0.961 23.2 73.5 16.4 10.1016/j.joule.2024.01.005

BTP10-4Cl-C10 PM6 -3.64 -5.48 0.9 23.42 77.6 16.4 10.1002/aenm.202003777

BTP-4F-12 PM6 -3.64 -5.48 0.855 25.3 76 16.4 10.1002/adma.201903441

BTP-2S PM6 -3.64 -5.48 0.851 24.86 74.3 16.4 10.1002/adfm.202213429

BTP-4F PM6 -3.64 -5.48 0.841 25.19 77.3 16.37 10.1016/j.joule.2020.03.023

BTP-S2 PM6 -3.64 -5.48 0.945 24.07 72.02 16.37 10.1002/adma.202001160

BT2-4Cl D18 -2.77 -5.51 0.841 25.73 75.48 16.35 10.1002/solr.202100522

TPT10 PTQ11 -2.76 -5.52 0.88 24.79 74.8 16.32 10.1021/jacs.9b09939

BTIC-2Cl-yCF3 PM6 -3.64 -5.48 0.84 25.09 76.99 16.31 10.1002/ange.202013053



BTP-4Cl-8 PM6 -3.64 -5.48 0.872 25.2 74.3 16.3 10.1093/nsr/nwz200

BPS-4F SZ5 -2.92 -5.50 0.822 25.4 77.9 16.3 10.1021/acsenergylett.0c01688

BTP-4Cl-C12 PM6 -3.64 -5.48 0.85 25.73 74.6 16.3 10.1002/aenm.202003777

L8-OD PM6 -3.64 -5.48 0.89 24.57 74.6 16.26 10.1038/s41560-021-00820-x

BTA-C6 PM6 -3.64 -5.48 0.851 25.2 75.68 16.23 10.1021/acsami.1c07254

SY3 PM6 -3.64 -5.48 0.858 25.54 74.1 16.23 10.1002/adfm.202000456

o-TEH PBQ6 -3.18 -5.64 0.88 26.61 79 16.22 10.1002/sus2.82

BTA-C1 PM6 -3.64 -5.48 0.844 24.75 77.62 16.21 10.1021/acsami.1c07254

Y6-O2BO PM6 -3.64 -5.48 0.963 21.5 78.1 16.2 10.1021/acs.chemmater.1c03311



Y6-2Cl PM6 -3.64 -5.48 0.859 25.2 74.7 16.17 10.1002/adfm.202008767

BTP-IIC-M PM6 -3.64 -5.48 0.81 26.4 75.42 16.13 10.1021/acsami.2c22972

BTIC-2Br-m PM6 -3.64 -5.48 0.88 25.03 73.13 16.11 10.1002/advs.201903784

Y6-1O PM6 -3.64 -5.48 0.89 23.2 78.3 16.1 10.1002/aenm.202003141

BTP-ThCl PM6 -3.64 -5.48 0.889 24.2 72.8 16.1 10.1002/adfm.202305765

BTP-2O PM6 -3.64 -5.48 0.965 21.14 75.6 16.1 10.1002/adfm.202213429

Y18 PM6 -3.64 -5.48 0.84 24.91 76.4 16.02 10.1039/D0TA01260B

BTPTT-4F P2F-Ehp -3.13 -5.46 0.81 26.68 74.11 16.02 10.1007/s11426-019-9457-5

S-WSeSe-Cl PM6 -3.64 -5.48 0.828 26.35 73.41 16.01 10.1002/anie.202104766

SY2 PM6 -3.64 -5.48 0.852 25.29 74.3 16.01 10.1002/adfm.202000456



o-BTP-PhC6 PTQ10 -2.98 -5.54 0.924 22.8 76.2 16 10.1039/D0EE03506H

Y6-PN PM6 -3.64 -5.48 0.84 25.2 75.4 16 10.1016/j.nanoen.2022.107574

BO-6Cl PM6 -3.64 -5.48 0.944 23.22 72.9 15.94 10.1038/s41467-022-30225-7

BTP-4F-T2C8 D18-Cl −2.78 −5.56 0.88 24.56 73.59 15.92 10.1007/s11426-022-1290-y

Y6-OD PM6 -3.64 -5.48 0.87 24.3 75.2 15.9 10.1016/j.nanoen.2022.107574

Y6-C2 PM6 -3.64 -5.48 0.86 25.11 73.6 15.89 10.1007/s11426-019-9670-2

BTP-EDOT-4Cl PM6 -3.64 -5.48 0.86 24.14 76.41 15.87 10.1002/adfm.202212290

BTN-4F PM6 -3.64 -5.48 0.816 25.05 77.3 15.82 10.1002/sstr.202000052

BTP-CC PM6 -3.64 -5.48 0.823 26.05 73.49 15.76 10.1021/acsami.2c07883

CY-S PM6 -3.64 -5.48 0.837 24.91 75.34 15.71 10.1016/j.xcrp.2023.101303



HD-4Cl PM6 -3.64 -5.48 0.854 25.4 72.3 15.7 10.1039/D0QM00633E

Y6-BO PM6 -3.64 -5.48 0.84 15.1 74.5 15.7 10.1016/j.nanoen.2022.107574

PZIC-4Cl PM6 -3.64 -5.48 0.871 25.95 69.46 15.69 10.1016/j.jechem.2023.09.035

BTP-eC9 PM6 -3.64 -5.48 0.832 24.98 75.44 15.68 10.1002/adma.202206566

BTP-4Cl-16 PM6 -3.64 -5.48 0.862 24.2 74.8 15.6 10.1093/nsr/nwz200

HDO-4Cl PM6 -3.64 -5.48 0.94 21.9 76 15.6 10.1039/D0QM00633E

BTP-4Cl-C9-20 PM6 -3.64 -5.48 0.81 26.6 72.2 15.6 10.1021/acsmaterialslett.2c00764

BTP2O-4Cl-C1

2
PM6 -3.64 -5.48 0.96 21.14 77.2 15.6 10.1002/aenm.202003777

BTIC-CF3-y PM6 -3.64 -5.48 0.85 25.19 72.82 15.59 10.1016/j.joule.2020.02.004



A2 PBDT-Cl -3.64 -5.53 0.828 25.79 0.73 15.59 10.1002/adfm.202201150

BTP-ClBr2 PM6 -3.64 -5.48 0.845 24.97 73.6 15.54 10.1002/aenm.202002649

BTP-C6Ph PM6 -3.64 -5.48 0.839 24.3 76.2 15.5 10.1016/j.nanoen.2020.105087

BDOTP-2 D18-B -2.71 -5.51 0.977 22.29 71.1 15.48 10.1002/cey2.250

Y22 PM6 -3.64 -5.48 0.853 24.37 74.12 15.4 10.1039/D0TA01636E

BTP-2Cl-d PM6 -3.64 -5.48 0.89 24.3 71.1 15.4 10.1021/acsami.0c16389

BTP-ThMeCl PM6 -3.64 -5.48 0.9 23 73.4 15.4 10.1002/adfm.202305765

eC9-4F Tz6T -3.61 -5.73 0.863 25.14 70.86 15.38 10.1002/adma.202206566

Y-2Br-HD PM6 -3.64 -5.48 0.9 23.96 70.7 15.32 10.1039/D2TC03768H



BTP-PBO-4F PM6 -3.64 -5.48 0.85 25.59 70.62 15.3 10.1021/acsami.3c13833

Y6-PH PM6 -3.64 -5.48 0.83 25 73.7 15.3 10.1016/j.nanoen.2022.107574

BTIC-CF3-m PM6 -3.64 -5.48 0.85 24.89 72.32 15.3 10.1016/j.joule.2020.02.004

BTP-6F PM6 -3.64 -5.48 0.81 25.9 72.8 15.3 10.1002/anie.201915030

BTP-FCl-FCl BTR-Cl -3.70 -5.46 0.825 24.58 75.36 15.3 10.1002/advs.202004262

Y18-1D PM6 -3.64 -5.48 0.84 24.53 74 15.25 10.1039/D0SE01343A

BDTP-4F PM6 -3.64 -5.48 0.895 22.54 75.5 15.24 10.1002/smll.202001942

5Se PM6 -3.64 -5.48 0.812 25.74 72.93 15.23 10.1039/D3CC02560H

BTTPC-Br PBDB-T -3.51 -5.34 0.86 24.71 71 15.22 10.1039/C9TA11285E

BTP-M PM6 -3.64 -5.48 0.829 25.54 72.15 15.21 10.1039/C9EE03710A



BTP-S1 PM6 -3.64 -5.48 0.934 22.39 72.69 15.21 10.1002/adma.202001160

C6OB-F PBDT-F -3.5 -5.5 0.84 24.97 73 15.21 10.1002/adfm.202100870.

ABP4T-4F PM6 -3.64 -5.48 0.922 22 75.1 15.2 10.1002/aenm.202003177

LL4 PBDB-T -3.51 -5.34 0.82 26.05 70.87 15.18 10.1002/adfm.202103445

4Se PM6 -3.64 -5.48 0.822 25.96 71.08 15.17 10.1039/D3CC02560H

BTP-DF PTQ10 -2.98 -5.54 0.83 26.47 0.69 15.14 10.1039/D2TA00174H

H2 PBDB-T -3.51 -5.34 0.79 25.82 73 15.12 10.1002/anie.202006081

BTSe-IC2F D18 -2.77 -5.51 0.863 24.38 71.77 15.1 10.1021/acsami.1c20813

BTCT-2Cl PM6 -3.64 -5.48 0.877 24.4 70.4 15.1 10.1021/acs.chemmater.0c01245

BO-5Cl PM6 -3.64 -5.48 0.958 22.57 70.1 15.02 10.1038/s41467-022-30225-7



Y6-2Se PM6 -3.64 -5.48 0.83 24.32 70 14.94 10.1039/D0TA06658C

Y14 PBDB-T -3.51 -5.34 0.798 26.15 71.48 14.92 10.1039/C9QM00499H

Y10 PM6 -3.64 -5.48 0.89 21.21 71.55 14.92 10.1039/C9CP05015A

BTP-e7 PBDB-T-F -3.5 -5.5 0.843 24.1 73.5 14.9 10.1002/nano.202100036

Y11 PM6 -3.64 -5.48 0.87 23.69 72 14.85 10.1016/j.jechem.2021.05.041

Y1-4F PBDB-T-F -3.5 -5.5 0.83 25.8 70.6 14.8 10.1002/adma.201904215.

LL2 PBDB-T -3.51 -5.34 0.84 24.24 72.67 14.75 10.1002/adfm.202103445

BTP10-4Cl-C8 PM6 -3.64 -5.48 0.9 23.37 69.9 14.7 10.1002/aenm.202003777

BZ4F-O-3 PM6 -3.64 -5.48 0.85 23.51 73.72 14.69 10.1021/acsenergylett.2c00985

TPQx-6F PM6 -3.64 -5.48 0.92 22.37 72.16 14.62 10.1039/D0QM00034E



BTP-ClBr1 PM6 -3.64 -5.48 0.854 23.66 72.2 14.56 10.1002/aenm.202002649

C6 PM6 -3.64 -5.48 0.84 23.82 72.68 14.54 10.1039/D0TA05787H

BTTPC PBDB-T -3.51 -5.34 0.89 22.25 73 14.51 10.1039/C9TA11285E

BTP-4Cl PM6 -3.64 -5.48 0.85 25 68 14.5 10.1021/acsami.0c16389

BTP-2ThCl PM6 -3.64 -5.48 0.885 23.46 69.8 14.49 10.1016/j.joule.2020.03.023

BTP-IIC-P PM6 -3.64 -5.48 0.82 25.03 70.39 14.47 10.1021/acsami.2c22972

TB-4Cl PM6 -3.64 -5.48 0.835 23.2 74.56 14.45 10.1021/acsami.1c02652

LL3-2Cl PBDB-T -3.51 -5.34 0.79 26.96 67.7 14.4 10.1002/adfm.202103445

BT4-4Cl D18 -2.77 -5.51 0.824 24.35 71.73 14.39 10.1002/solr.202100522



N4 PBDB-T-F -3.5 -5.5 0.819 25.01 69.9 14.31 10.1002/aenm.202103422

Y-2Br-DT PM6 -3.64 -5.48 0.91 22.65 69.21 14.26 10.1039/D2TC03768H

BTP-1V-2F PM6 -3.64 -5.48 0.823 24.13 70.81 14.2 10.1021/acsami.1c20813

BTP-Se PBDB-T -3.51 -5.34 0.711 28.66 69.7 14.2 10.1016/j.cej.2021.132830

Y-2Br-OD PM6 -3.64 -5.48 0.92 22.35 68.8 14.19 10.1039/D2TC03768H

Y18-DMO PBDB-T -3.51 -5.34 0.81 23.98 73 14.18 10.1021/acsaem.0c02165

BTP-2F PM6 -3.64 -5.48 0.89 22.1 71.7 14.1 10.1002/anie.201915030

Y5 PBDB-T -3.51 -5.34 0.88 22.8 70.2 14.1 10.1002/adma.201807577

H1 PBDB-T -3.51 -5.34 0.76 25.74 71 14.06 10.1002/anie.202006081

BTIC-BO-4Br PM6 -3.64 -5.48 0.86 24.06 67.84 14.03 10.1002/advs.201903784



BTTT-2Cl PBDB-T-F -3.5 -5.5 0.896 23.8 65.19 13.8 10.1002/nano.202100036

BZ4F PM6 -3.64 -5.48 0.85 22.53 71.98 13.79 10.1021/acsenergylett.2c00985

BTSe-4F PM6 -3.64 -5.48 0.811 22.52 75.4 13.79 10.1002/sstr.202000052

Y19-N3 PBDB-T -3.51 -5.34 0.78 24.46 72 13.77 10.1016/j.cclet.2020.10.042

Y6-C3 PM6 -3.64 -5.48 0.852 24.07 67.4 13.76 10.1007/s11426-019-9670-2

H3 PBDB-T -3.51 -5.34 0.757 25.84 70 13.75 10.1039/D0TA06907H

BTIC-F-m PM6 -3.64 -5.48 0.92 21.41 69.09 13.61 10.1016/j.joule.2020.02.004

TPQ-F PM6 -3.64 -5.48 0.857 23.7 66.5 13.51 10.1016/j.orgel.2021.106282

BZ4F-O-1 PM6 -3.64 -5.48 0.91 19.57 75.61 13.5 10.1021/acsenergylett.2c00985



BZ4F-O-2 PM6 -3.64 -5.48 0.82 21.62 74.74 13.43 10.1021/acsenergylett.2c00985

BTP-(Br,Me)-1 PM6 -3.64 -5.48 0.92 21.38 68.25 13.43 10.1021/acsami.1c08060

Y1 PBDB-T -3.51 -5.34 0.87 22.44 69.1 13.42 10.1038/s41467-019-08386-9

Y2 PBDB-T -3.51 -5.34 0.82 23.56 69.4 13.4 10.1038/s41467-019-08386-9

BTP-0Cl PBDB-T -3.51 -5.34 0.902 21.4 70.1 13.4 10.1002/anie.202102622

Y26 PM6 -3.64 -5.48 0.83 21.63 74.33 13.34 10.1002/solr.202100281

Y6-BO P3HT -3.10 -5.00 0.72 24.39 74.33 13.34 10.1002/adma.202008158

A1 PBDT-Cl -3.64 -5.53 0.771 24.13 0.71 13.33 10.1002/adfm.202201150

AQx-1 PM6 -3.64 -5.48 0.89 22.18 67.14 13.31 10.1002/adma.201906324

QIP-4Cl P2F-Ehp -3.13 -5.46 0.94 19.62 72.11 13.3 10.1039/D0CC00896F



TPQ-Cl PM6 -3.64 -5.48 0.837 25.19 62.99 13.28 10.1016/j.orgel.2021.106282

Y9 PBDB-T -3.51 -5.34 0.9 23.28 63 13.26 10.1016/j.jechem.2019.07.002

BTIC-COOMe PM6 -3.64 -5.48 0.9 22.13 66.71 13.25 10.1021/acs.jpclett.1c01077

Y3 PM6 -3.64 -5.48 0.81 24.1 66.4 13.24 10.1039/D0TA01260B

BT-LIC PBDB-T -3.51 -5.34 0.86 24.3 63.2 13.2 10.1021/jacs.1c00211

BTIC-Cl-m PM6 -3.64 -5.48 0.88 21.35 69.7 13.16 10.1016/j.joule.2020.02.004

BTDTP-4F PM6 -3.64 -5.48 0.866 21.25 71.3 13.12 10.1002/smll.202001942

BTP-OF PTQ10 -2.98 -5.54 0.83 24.37 0.64 12.96 10.1039/D2TA00174H

LL2-2Cl PBDB-T -3.51 -5.34 0.72 26.66 67.1 12.95 10.1002/adfm.202103445



Table S2. Performance comparison of three hyperparameter optimization methods on the optimal

XGBoost model, including the number of trial, tuning time, and testing R2 value.

Methods Number of trial Tuning Time (s) R²_Testing

Optuna 60 28.3 0.88

RandomizedSearchCV 80 40.6 0.85

GridSearchCV 36 9.0 0.84

Table S3. Performance metrics of six machine learning models with the Optuna hyperparameter

optimization.

Models R² (Training/Testing) RMSE (Training/Testing) MAE (Training/Testing)

XGBoost 0.93/0.88 0.64/0.80 0.34/0.40

CatBoost 0.85/0.80 1.10/1.00 0.77/0.89

SVR 0.77/0.73 1.32/1.01 1.00/0.82

RF 0.81/0.70 0.70/1.52 0.65/1.01

GBR 0.90/0.70 1.10/1.45 0.80/0.96

GPR 0.73/0.69 1.08/1.33 0.88/1.06



Table S4. External validation of the XGBoost model using data from 20 recent studies, including

predicted and experimental PCEs with relative errors.

Donors Acceptors Voc (V) Jsc (mA cm-2) FF (%) PCE (%) Pre_PCE (%)
Error
(%)

Refs

PM6 R-EH 0.86 26.95 77.96 18.09 16.95 6.26 [21]

PM6 R-M 0.86 26.60 77.75 17.88 16.91 5.43 [21]

PM6 R-DTD 0.87 24.95 61.77 13.18 13.95 5.84 [21]

D18 BTP-TC4Ph 0.89 27.93 79.36 19.65 18.22 7.28 [22]

D18 BTP-TC6 0.86 27.53 77.67 18.47 17.96 2.76 [22]

D18 BQx-F 0.96 21.46 69.72 14.41 15.75 9.30 [23]

D18 BQx-Cl 0.96 23.03 71.60 15.74 16.66 5.84 [23]

D18 BQx-Br 0.96 22.30 70.07 15.03 16.38 8.77 [23]

D18 Z11 0.97 22.4 70.3 15.4 16.03 4.09 [24]

D18 Z12 0.93 25.3 79.6 19.5 18.11 7.13 [24]

D18 Z13 0.89 24.8 76.7 17.8 17.15 3.65 [24]

PM6 L8-PhF 0.86 25.63 77.70 17.17 18.11 5.47 [25]

PM6 PzIC-SS-4F 0.89 26.22 7.40 17.02 16.76 1.53 [26]

PM6 PzIC-SSe-4F 0.87 26.53 73.50 17.58 16.67 5.18 [26]

PM6 PzIC-SeSe-4F 0.87 26.79 73.12 17.69 17.01 3.84 [26]

PM1 DASe-4F 0.85 27.58 72.22 18.27 18.45 0.99 [27]

PM1 DASe-4Cl 0.85 26.71 75.80 17.25 16.85 2.32 [27]

PM1 TASe-2Cl2F 0.85 26.10 73.20 16.30 17.79 9.14 [27]

PM1 TASe-2F2Cl 0.88 27.52 79.88 19.32 17.95 7.09 [27]

PM6 BTIC-4Br 0.86 24.06 67.84 14.03 14.22 1.35 [28]



Table S5. The detailed electrostatic potential parameters of candidate K01-K12 NFAs.

Donor Acceptors
Min_valuea)

(kcal/mol)
Max_valueb)

(kcal/mol)
ESP_Avgc)

(kcal/mol)
MPId)

(kcal/mol)
Osae) (Å²) Psaf) (Å²) Nsag) (Å²)

PM6

K01 -33.41 41.66 4.46 8.52 1324.79 1015.44 309.35

K02 -33.62 41.63 4.28 8.34 1323.96 979.07 344.89

K03 -34.20 37.26 4.34 8.34 1334.40 1009.46 324.94

K04 -34.45 41.11 4.08 8.39 1313.82 990.92 322.90

K05 -33.44 40.01 4.43 8.59 1329.93 1029.16 300.77

K06 -33.25 41.91 4.35 8.29 1346.02 1005.65 340.37

K07 -33.10 41.67 4.29 8.58 1293.52 962.36 331.16

K08 -33.05 41.64 4.30 8.52 1294.03 962.66 331.37

K09 -33.50 41.60 4.28 8.42 1316.00 980.22 348.96

K10 -34.26 41.73 3.96 8.49 1265.28 917.43 347.84

K11 -34.04 41.86 4.06 8.25 1291.90 946.33 345.57

K12 -33.38 41.77 4.37 8.47 1319.06 988.08 330.97

a) Min_value: the minimum values of the electrostatic potential on the molecular surface.
b) Max_value: the maximum values of the electrostatic potential on the molecular surface.
c) ESP_Avg: the overall average electrostatic potential.
d) MPI: the molecular polarity index.
e) Osa: the overall surface area of the ESP isosurface.
f) Psa: the positive ESP surface areas.
g) Nsa: the negative ESP surface areas.
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