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S1. Supporting Figures and Tables.

Figure S1. Ratio of surface atoms of GaN spinodoid metamaterials as a function of evolutionary
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Figure S2. The change of the polarization (AP3) of GaN spinodoid metamaterials (phase a) at different
evolutionary times and bulk GaN as a function of mechanical strain, where external normal strains are

applied along the (a) [0110] and (b) [2110] directions, respectively.



Table S1. Piezoelectric stress constants of Wurtzite bulk GaN

This MD DFT Experiment
work

€33 0.895 0.69 [1], 0.723 0.554[7], 0.63 [8], 0.67 1.12 [17],

(C/m?) [2],0.772[2],0.80  [9],0.73 [10],0.74 [11], 0.75 1.15+0.05
[3],0.81[4],1.06  [12],0.78 [13], 0.83 [14], 0.86 [18]
[5], 1.28 [6] [9], 1.02 [15], 1.05 [16]

el -0.422 - —0.32[8], -0.34 [9], -0.37 —0.14 +0.02
(C/m?) [9], —0.42 [13], —0.44 [9], [18],-0.55 [17]

~0.45 [14], —0.47 [9], —0.49
[10,19], —0.551[15], =0.55
[16]

Table S2. Piezoelectric strain constants of Wurtzite GaN

This work Literature (Experiment and
DFT)
ds3 (pm/V) 3.605 2.0 [20],2.13 [21], 2.7 [22], 3.1
[21,23], 3.7 [17]
ds1 (pm/V) —-1.793 -1.4122],-1.9 [17]

Table S3. Elastic constants of Wurtzite GaN

This work Wright [24] Polian et al. [25]
Ci1 (GPa) 353.58 367 390+ 15
Ci2 (GPa) 139.93 135 145 £ 20
Ci3 (GPa) 123.89 103 106 + 20
Cs3 (GPa) 369.53 405 398 +£20
Ca4 (GPa) 97.18 95 10510

Table S4. Elastic constants of bulk GaN and GaN metamaterials (phase a) at different evolutionary
times.

Cu Ca Ci2 Cis Cas Css Casq Css Ces
2500t 63.89 30.88 14.54 19.24 13.98 70.60 14.97 22.20 15.39
5000t 75.36 29.49 15.22 19.97 14.36 70.21 14.36 23.79 16.30
10000t  78.72 39.07 15.99 20.24 14.52 79.97 17.42 27.11 18.76
15000t 70.99 39.22 16.44 18.98 15.36 76.73 17.76 22.97 17.52
20000t 75.78 40.19 17.92 22.07 17.84 87.29 20.33 29.24 20.43
25000t  80.52 43.20 17.59 21.86 18.42 87.92 20.65 31.00 22.37
Bulk 353.58 353.59 13993 123.89 123.88 369.53 97.18 97.15 106.83
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Table S5. Elastic constants of bulk GaN and GaN metamaterials (phase b) at different evolutionary

times.
Cu Cx Ci2 Cis Cas Css Caq Css Ces
2500t 51.01 20.33 9.84 14.23 9.34 54.81 11.42 17.57 11.89
50001 61.98 18.72 9.98 15.02 7.53 56.77 9.62 20.26 12.44
10000t 67.51 29.35 14.86 18.42 12.12 67.03 12.28 20.59 15.31
15000t 71.52 41.93 13.26 16.79 15.86 78.64 20.36 26.60 20.21
20000t 68.54 32.22 14.06 17.86 14.53 77.98 18.98 26.95 18.74
25000t 75.36 41.99 12.57 16.67 14.83 90.67 23.41 29.44 23.02
Bulk 353.58 353.59 13993 123.89 123.88  369.53 97.18 97.15 106.83
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Figure S3. Piezoelectric strain constants (d31, d32) of bulk GaN and GaN metamaterials at different
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Figure S4. The ratio between d31 and d32 for bulk GaN and GaN spinodoid metamaterials at different

evolutionary times.
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Figure S5. The change of the polarization (AP3) of GaN spinodoid metamaterials (phase a)

characterized by different relative densities and bulk GaN as a function of mechanical strain, where

external normal strains are applied along the (a) [0110] and (b) [2110] directions, respectively.

Table S6. Elastic constants of bulk GaN and GaN metamaterials (phase a) with different relative

densities.

Cu Cn Ci2 Ci Cas Css Caa Css Ces
0.3 22.78 6.21 4.21 7.74 3.71 22.43 3.92 6.68 4.36
0.4 47.66 20.58 9.18 13.78 9.55 45.99 9.34 13.91 9.73
0.5 75.36 29.49 15.22 19.97 14.36 70.21 14.36 23.79 16.30
0.6 110.31 57.35 23.14 27.44 21.94 100.99 25.34 34.88 27.42
0.7 143.21 106.01 36.901 37.83 33.32 149.91 39.24 46.73 41.91
0.8 191.82 119.21 48.52 53.80 43.68 190.98 47.84 58.66 52.03
0.9 253.47 206.32 80.48 79.97 71.89 270.21 69.14 75.97 74.49
Bulk 353.58 353.59 13993 123.89 123.88  369.53 97.18 97.15 106.83

Table S7. Elastic constants of bulk GaN and GaN metamaterials (phase b) with different relative

densities.
Cu Cx Ci2 Ci Cas Css Caa Css Ces
0.3 9.01 1.12 1.21 2.43 0.93 5.89 0.89 2.19 1.03
04 13.97 5.15 1.89 4.48 1.39 13.05 2.54 4.39 2.91
0.5 61.98 18.72 9.98 15.02 7.53 56.77 9.62 20.26 12.44
0.6 61.98 18.72 9.98 15.02 7.53 56.76 9.61 20.25 12.44
0.7 88.14 42.82 16.19 21.72 15.02 88.79 19.33 27.20 20.20
0.8 114.31 56.92 25.53 32.35 22.79 115.86 28.94 38.61 34.97
09 170.60 113.93 44.03 49.44 39.77 187.69 45.95 56.22 48.21
Bulk 353.58 353.59 139.93 123.89 123.88  369.53 97.18 97.15 106.83
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Figure S6. (a) d33 and (b) d31 and d32 of GaN spinodoid metamaterials (phase b) characterized by

different relative densities. p = 1 represents bulk GaN.
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Figure S7. The ratio between d31 and d3> for GaN spinodoid metamaterials characterized by different

relative densities. p = 1 represents bulk GaN.



Table S8. Mechanical properties of bulk GaN and GaN metamaterials (phase a) with different relative

densities.

[0170] [2110] [0001]
p E(GPa) o(GPa) E(GPa) o(GPa) E(GPa) o (GPa)
03 1994  1.62 5.59 087  20.68  1.60
04 3935 3.5 15.9 138 3741 321
0.5 6259 534 2271 233 5816 495
06 89.76 775 4256 388 8265 629
07 11514 973 8197 750 12463 933
0.8 15874 13.07 97.64 889 16453  13.19
09 20387 18.03 163.04 1434 22869  18.12
Bulk 271.69 5025 262.09 49.19 299.61  57.32

Table S9. Mechanical properties of bulk GaN and GaN metamaterials (phase b) with different relative

densities.

[0170] [2110] [0001]
p E(GPa) o(GPa) E(GPa) o(GPa) E(GPa) o (GPa)
03 1453 125 566 066  13.56  1.02
04 3523 284 1055 147 3022  2.65
0.5 5522 487  17.79 183 5266  4.67
06 7655 655 3549 282 7787  6.07
07 9871  7.80 5298 471 10258 7.6l
0.8 13929 10.80 9048 740 15941  10.93
09 19201 1620 14879 12.66 22659  17.09
Bulk 271.69 5025 262.09 49.19  299.61  57.32




S2. Theoretical calcualtion of piezoelectric strian constants

2
_ GGy — G Ches, —Cresy + CCey, +C, Gy — CiCines)

d (SD)
N GGG =G 1C223 o C122C33 +2C,C5Cp ~ C123C22
d. = CCrey; = CyCes, — C1iCresy + CiChey + G Cries — Crie, (S2)
31
GGG =G 1C223 o C122C33 +2C,C5Cp ~ C123C22
d.. = —C,Cey + G Gty + CyCrieys = C,Caey, — Gy, +G3Crneyy (S3)
32

C] 1C22C33 - Cl 1C223 - C122C33 + 2C12C13C23 - C123C22

S3. Universal anisotropy index (4v)

To characterize the elastic anisotropy of GaN spinodoid metamaterials, the universal anisotropy index
(Au) 1s applied, which is given by [26]:
AU:5ﬂ+ﬂ—6 (S4)
GR R
where Gy, Gr, By, and Br represent the Voigt shear modulus, Reuss shear modulus, Voigt bulk modulus,
and Reuss bulk modulus. Gy, Gr, By, and Bg are given by [27]:

(Cll+c22+c33)_(623_'_C13+c12)+3(c44+c55+c66)

G, = S5
v 15 (S5)
15
Gy = (S6)
K 4(s“+s22+s33)—4(s23+sl3+slz)+3(s44+s55+s66)
B, - (cll+c22+c33)+2(cz3+cl3+clz) (S7)
9
1
B, = (S8)

(81,4 S+ 833 ) +2(55+55+5,, )
where cjj and sjj represent the ealstic cosntnats of stiffness tensor and components of the compliance

tensor.



S4. Topology-dependent mechanical property

The reduced stiffness, ultimate tensile strength, and failure strain of GaN spinodoid metamaterials
compared to bulk GaN originate from a combination of porosity, surface effects, and topology-induced
stress concentration [28-31], all of which are intrinsic to the spinodoid architecture.

First, the introduction of a porous spinodoid topology significantly reduces the effective load-
bearing cross-sectional area. Under mechanical loading, stresses are concentrated within the thin
ligaments and struts of the spinodoid network, leading to reduced effective stiffness and strength
compared to bulk GaN. This effect becomes more pronounced at lower relative densities, where
ligament slenderness increases. From a theoretical perspective, this mechanical response is consistent
with the Hashin-Shtrikman (HS) bounds theory [32], which provides theoretical upper and lower
bounds for the effective stiffness of multiphase materials with arbitrary phase geometries. Treating
GaN as the solid phase and air as the void phase, the HS and Suquet upper (SU) bonds for stiffness

and ultimate strength of architected metamaterials can be given as [32-35]:

+ 2(p/po)x(5v-7)
R I v A I R (S9)
\/13(p0)+12v0 2(2)v-15(2 o2 +15v52 27

[1+21-p/p0)

where Ef¢ and o} represent the upper HS bounds for the stiffness and ultimate strength of the
architected metamaterials. E, 0y, and v, represent Young’s modulus, ultimate strength, and Poisson’s
ratio of bulk GaN, respectively. These expressions show that stiffness and strength decrease
nonlinearly with decreasing relative density, explaining why GaN spinodoid metamaterials exhibit
reduced mechanical properties compared to bulk GaN.

Second, the large fraction of free surface atoms in spinodoid metamaterials further weakens
mechanical performance. The nanoscale surface effect depends on both crystallographic orientation
and surface-to-volume ratio, and becomes more significant at lower relative densities [28].

Third, the asymmetric topological design of the spinodoid metamaterials breaks the in-plane
geometric symmetry, leading to direction-dependent and nonuniform stress distribution. While the
overall reduction in stiffness and strength is primarily governed by porosity and surface effects, the
asymmetric topology gives rise to anisotropic elastic responses, manifested as different mechanical
behaviors along the [0110] and [2110] directions. However, such topology design also contributes to
localized stress concentrations (Figure 6b in the manuscript), leading to the reduced failure strain
compared to bulk GaN.

Importantly, reduced mechanical properties are a general feature of porous architected materials
and are not unique to asymmetric topologies. Symmetric architectures, such as triply periodic minimal

9



surface (TPMS) structures [28], also exhibit decreased stiffness and strength compared to bulk GaN
due to porosity and surface effects. However, different from symmetric topologies, the asymmetric
spinodoid design uniquely introduces elastic anisotropy, which plays a critical role in enabling the

direction-dependent piezoelectric and mechanical responses reported in this work.

S5. Manufacturing feasibility

Here we outline two potential fabrication strategies for GaN spinodoid metamateirals. One
potential route is two-photon lithography (TPL) with negative-tone photoresists such as IP-Dip [36,37],
which enables fully three-dimensional, free-form polymer spinodoid templates with precise control
over topology and connectivity [38-40]. These polymer architectures can subsequently be conformally
coated with GaN using plasma-enhanced atomic layer deposition (PE-ALD) or low-temperature metal-
organic chemical vapor deposition (MOCVD) [41], followed by template removal via thermal
decomposition or solvent-based dissolution to yield hollow GaN networks. Atomic layer deposition
(ALD) is particularly well suited for coating complex, high-aspect-ratio architectures due to its
excellent conformality and nanometer-scale thickness control.

An alternative route is directed self-assembly (DSA). Block copolymers can be thermally or
solvent annealed to form bicontinuous, spinodal-like morphologies. DSA strategies, including
graphoepitaxy and chemically patterned substrates, can be employed to improve long-range order and
orientation [42]. Selective removal of one polymer phase results in a nanoporous three-dimensional
template with characteristic length scales in the 10-50 nm range [43,44]. GaN can then be deposited
into or onto the template using atomic layer deposition or selective-area epitaxy, yielding either solid
or hollow spinodoid networks depending on the process. Removal of residual polymer produces
freestanding or substrate-supported GaN architectures.

In the present work, the characteristic length scale of the spinodoid architecture is approximately
L =20 nm, corresponding to ligament thicknesses of only a few nanometers at low relative densities.
While experimentally challenging, this length scale lies within or near the lower bound of current
nanofabrication capabilities. In particular, block copolymer self-assembly routinely yields
bicontinuous morphologies with characteristic dimensions in the 10-50 nm range, making it well
matched to the length scales considered in this study. When combined with conformal deposition
techniques such as atomic layer deposition, effective GaN ligament thicknesses of only a few
nanometers are experimentally attainable. In contrast, two-photon lithography offers unmatched
geometric freedom for three-dimensional architectures but typically produces feature sizes in the range
of 50-200 nm, making it challenging to fabricate the GaN spinodoid metamaterials explored in current
study.

10



While the primary focus of this study is computational, we explicitly acknowledge experimental
challenges to achieve ultralight, 3D GaN spinodoid metamaterials. Particularly, achieving nanometer-
scale ligament thicknesses in bicontinuous GaN networks requires precise control over deposition
uniformity, crystallinity, and residual stresses, especially when conformal coating or template-
inversion approaches are employed [45]. The brittle nature of GaN further increases the susceptibility
of low-density architectures to damage during template removal, handling, and characterization.
Moreover, establishing reliable electrical contacts and performing quantitative piezoelectric

measurements on highly porous three-dimensional geometries remain challenging tasks.

S6. Additional results
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Figure S8. Evaluation of potential energy of GaN Spinodoid metamaterials (¢ = 10000z, L = 20 nm,
and p = p/py = 0.5) as a function of relaxation steps.
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Before relaxation

After relaxation

100 K 200 K 300 K 400 K 500 K

Figure S9. GaN spinodoid metamaterial (= 10000z, L =20 nm, and p = p/p, = 0.5) before and after
structural relaxation in MD simulations at different temperatures (100-500 K). The topologies remain
unchanged after relaxation, confirming the thermal stability of the spinodoid architecture.
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surface atoms.
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To better understand the role of the free surfaces in the piezoelectric metamateirals, we first
analyze their charge density difference distribution using first-principals calculations based on DFT.
The calculations utilize a projector augmented wave (PAW) pseudopotential [46], and employ the
Perdew-Burke-Ernzerh (PBE) method [47] to describe the exchange-correlation energy functional.
The wave cut-off energy for both valence electrons and ion cores is set at 500 eV to ensure precise
calculations across various electronic and structural configurations [48]. Additionally, stringent
convergence criteria are set at 10~ eV/A for force and 107 eV for energy during structural relaxation
to guarantee the accuracy and reliability of computational results. The geometry optimization of the
piezo-structure and the charge density calculations of bulk GaN are performed within the framework
of a periodic infinite crystal. To gain molecular-level insights into surface effects, the analysis is
extended to non-periodic piezo-structures. A substantial vacuum layer of 15 A is implemented to
effectively isolate upper and lower surface atoms to eliminate undesired interactions. The convergence
criteria for this non-periodic piezo-structure are consistent with those employed in the bulk models.
Figure S13a compares the charge density difference distributions of bulk GaN and GaN nanostructures
with representative free surfaces ((0110), (2110), and (0001), corresponding to the crystallographic
planes normal to the x-, y-, and z-axes in Figure. 1 in the manuscript). In bulk GaN, the charge density
difference is uniformly distributed, reflecting the symmetric coordination environment. In contrast, in
non-periodic structures, the charge density difference of the atoms on the free surfaces differs from
that of internal atoms. The difference observed in GaN NWs arises from changes in the sp® hybrid
orbital of electrons. Hence, in this study, we reduced the charge of the surface atoms to 75% of that of
bulk atoms. This treatment captures the negative contribution of surface polarization to the
piezoelectric response. Importantly, as the surface-to-volume ratio decreases, the proportion of surface
atoms is reduced, thereby weakening the influence of surface polarization.

We next examine the evolution of the dielectric constant with surface-to-volume ratio. In the
calculation of the dielectric constant of the GaN spinodoid metamaterials and bulk GaN, an external
electric field E; is applied while the simulation box is fixed to ensure no strain occurs in all directions.

Then, the dielectric constant can be obtained by [3,49]

oD,
K, =—*= S11
'~ (S11)
=0
where D, = x,E, + P, 1s the electric displacement in i-axis, k, is the vacuum permittivity, and P,
denotes the polarization. Substituting the expression of D, into Eq. (S11) yields
o(x,E. + P,
Ki_:aD,,| 0B, +B) ok s12)
7 OE, B OF, lop
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Hence the relative permittivity ( «;; ) expressing as a ratio relative to the vacuum permittivity (,) is

given by
K. .
K =—2L=1+——=L (S13)

r

The calculated relative dielectric constant of bulk GaN is & = 3.48, which is slightly smaller than

the theoretical results but agrees well with the previously reported MD results (K; =3.17 — 3.243)

[50,51]. As shown in Figure S13b, the relative dielectric constant of GaN spinodoid metamaterials
decreases with the increased surface-to-volume ratio.

Finally, we analyze volumetric shrinkage, defined as (V-Vo)/Vo, where V' and V, are the cubic
volume of the GaN metamateirals and bulk GaN, respectively. Figure S13c shows that the volumetric
shrinkage decreases as the surface-to-volume ratio decreases. At low surface-to-volume ratios (high
relative density), the relaxed volume of the spinodoid metamaterials closely approaches that of bulk
GaN, indicating weakened surface effects.

Taken together, these results demonstrate that decreasing surface-to-volume ratio weakens surface
polarization effect, increases dielectric constant, and reduces volumetric shrinkage. As a result, both
piezoelectric enhancement and anisotropy diminish at high relative densities. This trend explains why
GaN spinodoid metamaterials with high relative density exhibit piezoelectric properties and anisotropy

approaching those of bulk GaN (Figures 4d and 4e in the manuscript).
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