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1. Stability evaluation of APNs  

 

Fig. S1. Zeta potential of APNs under different storage temperatures (4, -20 and -80 ℃) for 4 

weeks (n = 3).  
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Fig. S2. Protein content of APNs under different storage temperatures (4, -20 and -80 ℃) for 

4 weeks (n = 3).  



  

4 

 

2. FTIR spectrum of NEs  

 

Fig. S3. FTIR spectra of CA, ICG and NEs. 
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3. TEM of NAPNs 

 

Fig. S4. The membrane structure and black contents of NAPNs. Scale bar: 100 nm.   
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4. Characterization of particle size and zeta potential 

 

Fig. S5. Size distribution of APNs, NEs and NAPNs (n = 3). **p < 0.01, ***p < 0.001.  
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Fig. S6. Zeta Potential of APNs, NEs and NAPNs (n = 3). ***p < 0.001.  
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5. Encapsulation efficiency and drug loading of NAPNs 

 

Fig. S7. Encapsulation efficiency and loading capacity of NAPNs (n = 3).   
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6. Temperature variations at different powers of NAPNs 

 

Fig. S8. Photothermal heating curves of NAPNs under different laser powers.  
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7. The loading efficiency 

 

Fig. S9. The loading efficiency of AGSs for NAPNs (n = 3).  
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8. In vitro degradation 

 

Fig. S10. In vitro degradation of the sponges in PBS over 21 days (n = 3).   
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9. Temperature changes under different power levels of AMSs 

 

Fig. S11. Photothermal heating curves of AMSs under different laser powers.  
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10. Anti MRSA effects of AMSs in Vitro 

 

Fig. S12. Agar plate images showing MRSA growth following different treatments.  
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Fig. S13. Corresponding quantitative analysis of bacterial colonies. The groups are labeled as 

follows: a - AGSs, b - AAGSs, c - NAGSs, d - AMSs. Data were presented as mean ± s.d. 

****p < 0.0001. 
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Fig. S14. Agar plate images of MRSA after treatments with NO donor addition. 
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Fig. S15. Corresponding quantitative analysis of bacterial reduction (n = 3). The groups are 

labeled as follows: a - AGSs, b - AAGSs, c - NAGSs, d - AMSs. Data were presented as mean 

± s.d. ****p < 0.0001. 
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Fig. S16. Confocal fluorescence images of MRSA stained with Calcein-AM/PI under different 

treatment conditions. Scale bar: 20 μm. 
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Fig. S17. SEM images of MRSA treated with various sponges, before and after laser irradiation. 

Scale bar: 1 μm. 
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Fig. S18. Crystal violet-stained images of MRSA biofilms after different treatments. 
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Fig. S19. Quantitative analysis of antibiofilm efficiency across treatments (n = 3). The groups 

are labeled as follows: a - AGSs, b - AAGSs, c - NAGSs, d - AMSs. Data were presented as 

mean ± s.d. ****p < 0.0001. 
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Fig. S20. 3D confocal fluorescence images of MRSA biofilm stained with Calcein-AM/PI 

under different treatment conditions. Scale bar: 30 μm. 
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11. Screening of LPS concentration 

 

Fig. S21. The effect of LPS concentrations on RAW 264.7 (n = 3). *p < 0.05, **p < 0.01, 

***p < 0.001.   
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Fig. S22. NO production after stimulation with different concentrations of LPS (n = 6). *p < 

0.05, **p < 0.01.  
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12. Quantitative analysis of TGF-β 

 

Fig. S23. Levels of TGF-β in LPS-induced RAW 264.7 cells after treatments. The letters C, L, 

a, b, c and d represent the control group and the experimental groups treated with LPS, AGSs, 

AAGSs, NAGSs and AMSs, respectively (n = 3). ***p < 0.001.   
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13. RT-qPCR analysis  

 

Fig. S24. The mRNA expression levels of Arg1 in Raw 264.7 cells detected by RT-qPCR. 

Groups are labeled as follows: C - Control group, L - LPS only group, a - AGSs, b - AAGSs, c 

- NAGSs, d - AMSs. Data were presented as mean ± s.d. *p < 0.05, ***p < 0.001. 
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Fig. S25. The mRNA expression levels of iNOS in Raw 264.7 cells detected by RT-qPCR. 

Groups are labeled as follows: C - Control group, L - LPS only group, a - AGSs, b - AAGSs, c 

- NAGSs, d - AMSs. Data were presented as mean ± s.d. **p < 0.01, ****p < 0.0001. 
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14. Quantitative analysis of immunofluorescence 

 

Fig. S26. Corresponding quantitative analysis of TNF-α in wound tissues (n = 3). ***p < 0.001.   
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Fig. S27. Corresponding quantitative analysis of TGF-β in wound tissues (n = 3). *p < 0.05, 

***p < 0.001.  
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15. In vivo evaluation of biosafety of different sponges 

 

Fig. S28. In vitro hemolysis results of different concentration of AMSs. The inserted image 

shows hemolysis of PBS, 0 μg/mg of AMSs, 112 μg/mg of AMSs, 224 μg/mg of AMSs, 448 

μg/mg of AMSs and Water (from left to right).  
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Fig. S29. In vitro hemolysis results of different sponges. The inserted image shows hemolysis 

of PBS, AGSs, AAGSs, NAGSs, AMSs and Water (from left to right). 
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Fig. S30. H&E staining images of major organs. Scale bar: 200 μm.   
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16. Transcriptome sequencing results of skin wound tissues 

 

Fig. S31. The intergroup correlation of samples. Group A was the control group, Group B was 

the AMS (+) group.   
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17. GSEA analysis of gene sets 

 

Fig. S32. GSEA analysis showing the enriched pathway: antimicrobial peptides.   
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Fig. S33. GSEA analysis showing the enriched pathway: complement cascade.  
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Fig. S34. GSEA analysis showing the enriched pathway: cell cycle.  
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18. Images and quantitative analysis of immunohistochemical staining 

 

Fig. S35. Immunohistochemical diagram for FGG of infected skin wounds on day 10. Scale 

bar: 100 µm.   
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Fig. S36. Quantitative analysis of immunohistochemical staining for FGG in wound tissues (n 

= 3). **p < 0.01, ***p < 0.001.  
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Fig. S37. Immunohistochemical diagram for CAMP of infected skin wounds on day 10. Scale 

bar: 100 µm.  
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Fig. S38. Quantitative analysis of immunohistochemical staining for CAMP in wound tissues 

(n = 3). *p < 0.05, **p < 0.01, ***p < 0.001.  
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Fig. S39. Immunohistochemical diagram for CCL5 of infected skin wounds on day 10. Scale 

bar: 100 µm.  
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Fig. S40. Quantitative analysis of immunohistochemical staining for CCL5 in wound tissues 

(n = 3). **p < 0.01, ***p < 0.001.  
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Fig. S41. Immunohistochemical diagram for TNFRSF12A of infected skin wounds on day 10. 

Scale bar: 100 µm.  
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Fig. S42. Quantitative analysis of immunohistochemical staining for TNFRSF12A in wound 

tissues (n = 3). *p < 0.05. 


