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Supporting Discussions

Note S1. Average solar reflectance and average infrared emissivity of atmospheric transparent
windows!

The spectrally-averaged solar reflectance, Rsolar, can be evaluated using the spectral solar radiation
intensity of air mass 1.5 (I Solar()‘), AM1.5) as a weighting factor, as given by,
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where “'solar\™"/ is spectral reflectance in solar region.
The spectrally-averaged absorption efficiency, €, can be evaluated using the spectral blackbody
emissive power in the 8—13 pm range as a weighting factor. This is given by,

13
f" E,(AT)e(A)dA

8um

13
fﬂ E,(AT)dA

8um (S2)
ZhCS

th
exp ( ) -1
AkyT) [ s black

body emissivity, h=6.626x10-34 J-s is the universal Plank constant, k, =1.381 x 10723J/K is the
Boltzmann constant, and ¢, = 2.998 x 10% m/s is the speed of light in vacuum.
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where, €(4) is spectral emissivity in the 8-13 um range,

Note S2. Radiative cooling power estimation®#

The net cooling power (Pcqoling) Of the sample can be estimated from
P ooting = Praa = Psun = Pamb = Peon (S3)
where,

P..q is the power density of thermal radiation emitted by the samples,

Py 1s the heating power density of solar irradiation,

Pamp 1s the power density of downward thermal radiation from the atmosphere,

Py 18 the effective power density loss including convection and conduction from the samples,

P..q4 can be derived from the measured emittance spectrum of the sample by,
2
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where €(4) is the sample emittance and is blackbody radiation intensity as a function of

emitter temperature according to Planck’s law.

Psun from solar irradiation is calculated by integrating sample emittance over the Air Mass 1.5
(AML1.5) solar spectrum as,
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Pamb is the amount of power emitted from the atmosphere and absorbed by the sample. The



emittance spectra of the atmosphere and the cellulose sample are used.
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the angular part of the atmospheric emittance can be obtained by Eamp(40 , where 1

is the angular atmospheric transmittance.
The Pcon can be evaluated via the sample temperature T, ambient temperature Tamb, and the

effective heat transfer coefficient heon as,
(Togmp—T) (S7)

Here, we evaluate and compare the isothermal theoretical cooling power of the samples

on = hCOTl

assuming the same temperature for the sample and the ambient such that the convection loss

term can be neglected.
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Fig. S1. (a) Schematic diagram of the co-exfoliation of BN and cellulose. (b) SEM image of BN
before co-exfoliation. (¢) TEM image of CBN suspension. (d) DLS of BN and CBN suspension.

Fig. S2. TEM image of CNC suspension.
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Fig. S5. (a) Photographs and POM images of CBN/CNC with different CBN mass production. (b)

Reflectance spectra of CBN/CNC with different CBN mass production.




Fig. S6. Photographs (a) and CIE chromaticity coordinates (b) of CBN/CNC with different colors
(Scale bar =1 cm).
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Fig. S7. The adhesion strength (a) and reflectance spectra (b) of CBN/CNC on different substrates.




Fig. S9. Photograph of large-scale CBN/CNC.
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Fig. S10. FTIR spectrums of CBN/CNC.
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Fig. S11. Reflectance spectrums of BN/CNC (a) and CBN/CNC (b) with different BN (or CBN)
loading. The average reflectance of BN/CNC and CBN/CNC across the solar spectrum.
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Fig. S12. Scattering efficiency of BN before and after co-exfoliated with cellulose.
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Fig. S13. (a) The zeta potential of BN/CNC and CBN/CNC. (b) Photograph and POM image of
BN/CNC with a 30wt% BN loading.
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Fig. S14. Temperature variations over time of CBN/CNC coating PET (a), glass (b), steel (¢) and
Al (d). Temperature change tracking (e) and thermal infrared images (f) of CBN/CNC coated



substrates and bare substrates.

Fig. S15. Reflectance stability of CBN/CNC resistance to UV and high/low temperature
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Fig. S16. The adhesion strength of CBN/CNC on different substrates before and after extreme
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Fig. S17. Stress—strain curves (a) and strength (b), modulus (c), and toughness (d) of CBN/CNC and

PDRC paint.
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Fig. S18. Reflectance spectra (a) and thermal emissivity spectra (b) of CBN, CBN/CNC, and

commercial paint.
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Fig. S19. Detailed recordings of solar irradiance and relative humidity during the outdoor testing
period in the winter (a) and summer (b).
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Fig. S20. Detailed recordings of solar irradiance and relative humidity during the outdoor testing
period with the heat flux of 500 W/m? (a) and 1500 W/m? (d). Temperature recordings of bare
equipment, commercial paint coating and CBN/CNC coating with the heat flux of 500 W/m? (b)
and 1500 W/m? (e). Temperature below the bare equipment for commercial paint coating and
CBN/CNC coating with the heat flux of 500 W/m? (¢) and 1500 W/m? (f).
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Fig. S21. The average AT between CBN/CNC coating box and bare box with different heat flux.
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Fig. S22. (a) Temperature recordings of bare equipment, CBN/CNC coating and common PDRC
coating. (b) Temperature below the bare equipment for CBN/CNC coating and common PDRC
coating. (c) Detailed recordings of solar irradiance and relative humidity during the outdoor testing
period.
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Fig. S23. (a) Detailed recordings of solar irradiance and relative humidity during the outdoor testing



period with the heat flux of 0 W/m?. (b) Temperature recordings of bare equipment, commercial
paint coating, CBN/CNC coating and ambient air with the heat flux of 0 W/m?. Temperature below
the ambient air (¢) and bare equipment (d) for commercial paint coating and CBN/CNC coating.
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Fig. S24. (a) Calculated net cooling power of blue CBN/CNC at nighttime, with different h values. (b) Calculated
net cooling power of CBN/CNC with different colors and CBN. Calculated net cooling power of CBN/CNC with
different colors and CBN at daytime (c) and nighttime (d), with the h=0 W/m*-K.

Table S1. Above- and sub-ambient cooling performance of thermal radiation cooling solutions.

Above-Ambient Radiative Cooling Sub-ambient Radiative Cooling
Materials Lsolar/ Heat flux/ Reference
AT ax/°C Lsolar/ W/m? AT ax/°C
W/m? W/m?
700 3.9
hBN/PDMS 800 700 4 3
2000 14.3
hBN/PVA 643.9 3000 13.49 - - 6
SiO,-BNNS 800 - 8 - - 7
2000 8
15-25 (compared
3600
BN-PFA >900 with polymer) 800 ~5 8
30 (compared
8000 (comp
with PFA)

ANF/BN/Si  836.4 - 13.98 927.65 10.82 9




O,/

graphene
BN/ALO;/P
685 150 13.7 650 10.8 10
DMS
hBN/PVDF - - 11 950 7 1
BN/CNF/M
- 700 9.1 800 33 12
TMS
LNS/HEM
~900 - 2.1 ~900 2.4 13
A
BN/TiO,/P 8 (compared with 5-8 (compared
800 AY 800 ) 14
S-AA polymer) with polymer)
ANF/BNNS 1000 LED chip 17.2 1000 >10 15
900 500 8.8
CBN/CNC 900 1500 13.5 900 6.8 This work
>950 2500 17.8
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