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Supplementary Text 1. Database development for information extraction of HEA

To construct the knowledge base for the information extraction module, We 

designed a specialized instruction template for the HEA domain to guide the model in 

identifying and extracting critical information. Each data sample was formatted using 

few-shot prompts, which enabled the model to learn to extract relevant parameters. For 

each selected paper, fifteen pieces of information are extracted, which includes 

bibliographic information (title, abstract, authors, publication year, journal, and DOI) and 

core data of the article (material, composition, testing condition, phase, research method, 

content of the study, performance indicators, innovation point, and conclusion). The 

former serves as a key for article identification, while the latter represents the focus of 

our analysis. To ensure the high quality of data entries, we implemented a strict multi-

step preprocessing workflow: (1) Using DOI as a unique identifier, we identified and 

merged redundant entries that might appear multiple times in different literature retrieval 

queries; (2) Entries with missing core data of the article were manually supplemented by 

domain experts; if the information could not be recovered, "Null" was filled in to ensure 

entry integrity; (3) All data were organized into key-value pairs and stored in JSON 

documents to facilitate the training and retrieval of downstream models. 



Supplementary Text 2. Extended technical details

2.1 Model training dynamics

The training process was monitored via loss and learning rate curves (Fig. S5). A 

rapid decrease in loss values within the first 10 epochs indicated efficient initial learning, 

followed by a gradual stabilization of both training and validation losses. The close 

alignment between these losses throughout training confirms strong model generalization 

without overfitting. Optimization employed a cosine annealing scheduler with a warm-

up phase. The learning rate increased during an initial ~25-epoch warm-up period to a 

peak, fostering rapid progress, before decaying via a cosine curve to enable fine-grained 

convergence. The stable, coordinated evolution of the loss and learning rate curves 

validates the effectiveness of the training strategy, resulting in a robust and efficient 

optimization process.

2.2 Detailed SHAP interpretation for Young’s modulus prediction

The dominance of VEC is explained by its control over phase selection: VEC < 6.87 

favors BCC, VEC > 8 favors FCC, with BCC phases exhibiting higher modulus due to 

stronger covalent bonding [1]. Element-specific roles: Ti and Zr act as BCC stabilizers. 

Zr (radius 160 pm) contributes significantly to lattice distortion, indirectly increasing 

modulus by hindering dislocation motion [2]. Electronegativity difference drives local 

charge redistribution (e.g., in Al-Ti/Zr pairs), forming strong polar bonds that resist elastic 

deformation more effectively than geometric distortion alone. The composite 

feature Mixing Entropy × VEC highlights synergy: entropy stabilizes the solid solution, 

while VEC fine-tunes phase selection for optimal stiffness.High-melting-point elements 

(Mo, W, Nb) enhance bonding via d-orbital participation, directly increasing elastic 

constants (e.g., shear modulus in BCC phases) [3].



2.3 Detailed SHAP interpretation for yield strength prediction

Niobium is the top contributor due to severe lattice distortion from its large atomic 

size (radius 1.46 Å) and its tendency to segregate to grain boundaries, pinning dislocations 

[4]. Atomic radius difference generates substantial lattice distortion energy (~0.75 

eV/atom for a 4.6% difference), elevating the Peierls-Nabarro stress (up to 200 MPa) and 

hindering dislocation motion [5]. The “enthalpy-entropy competition”: Negative mixing 

enthalpy favors stable solid solutions, while mixing entropy promotes single-phase 

formation; their lower relative importance suggests kinetic effects (short-range order) 

outweigh pure thermodynamic entropy in strengthening. The Electronegativity difference 

× Atomic radius difference product captures nano-scale clustering (e.g., Ni-Al pairs), 

inducing a precipitation-like strengthening effect. A high Young‘s modulus strengthens 

the lattice against dislocation nucleation by increasing phonon stiffness. Synergy of 

specific elements: Zr causes shear modulus fluctuations (±15%) due to its large radius 

(1.60 Å); Ni reduces stacking fault energy (SFE < 30 mJ/m²) promoting nano-twinning; 

Cr segregation to grain boundaries inhibits crack propagation.

2.4 Region-wise quantitative interpretation for interaction plots

To avoid overloading the main text, we provide here the detailed region-wise 

thresholds and representative numeric values used to describe the interaction patterns in 

Fig. 2g-h. Based on Fig. 2g, the pattern of synergistic regulation of elastic modulus (E) 

by electronegativity difference (ΔEN) and atomic radius difference (ΔR) is clearly 

presented: Low-modulus stability zone (ΔR > 8, ΔEN < 10): E stabilizes at 132-135 GPa 

(e.g., 134.8 GPa at ΔR=9.3), dominated by atomic size mismatch. Peak-stiffness 

region (ΔEN=25.8-33.8, ΔR=2.3-3.3): Maximum E values (160-164 GPa) occur at 

ΔEN=29.8/ΔR=3.3 (164.15 GPa), where electronegativity-driven charge redistribution 

synergizes with controlled lattice distortion. Gradient transition belt (ΔEN=17.8-21.8): 



E increases 28% (132→169 GPa) as ΔR decreases from 9.3 to 0.3, demonstrating atomic 

size matching as the stiffness determinant. Critically, the stiffness enhancement 

window (ΔEN=25.8-33.8, ΔR=2.3-3.3) exhibits a 10+ GPa modulus gain per 5-unit ΔEN 

increase, quantifying cooperative bond-strengthening effects.

Fig. 2h reveals the non-monotonic synergistic effect of mixed entropy (ΔS) and 

valence electron concentration (VEC) on yield strength (YS). High-strength 

plateau (VEC < 5): YS sustains >1300 MPa (e.g., 1357 MPa at VEC=3.6/ΔS=17), 

minimally affected by ΔS (7-17 J·mol⁻¹·K⁻¹). Critical collapse zone (VEC=5.8-9.8, 

ΔS=10-12): YS drops 30% to 980-1100 MPa, reaching a minimum (1008 MPa at 

VEC=7.3/ΔS=10). Entropy-compensated strengthening (VEC>9.8, ΔS>14): YS recovers 

to 1300-1357 MPa (peak 1357 MPa at VEC=9.5/ΔS=17), confirming entropy-mediated 

reversal of VEC softening. The inflection point (VEC=7.3) shows each 1 J·mol⁻¹·K⁻¹ ΔS 

increase elevates YS by ≈ 40 MPa (349 MPa gain at ΔS:10→17). This establishes 

an entropic pinning pathway for high-VEC alloys (>9.5): optimizing strength at ΔS > 14 

J·mol⁻¹·K⁻¹.



Supplementary Text 3. Human-computer interaction module design 

Based on the integrated materials design system, this section focuses on the proposed 

human-computer interaction (HCI) module, which follows the core logic of dynamic 

perception-real-time feedback-closed-loop optimization. The module aims to achieve 

bidirectional collaboration between users and the AI system through multimodal 

interaction technologies, including voice input, emotion recognition, and visual feedback.

3.1 Key components of the module

Multimodal Input Interface. 

Voice Command Parsing: User voice commands (e.g., "prioritize yield strength 

optimization") are captured in real time via browser-native speech recognition 

APIs. Semantic parsing is performed by integrating domain knowledge bases 

(e.g. composition rules of high-entropy alloys) to generate structured query 

requests. 

Emotion State Mapping: User emotion scores (1-5) are quantified in real time 

through facial expression recognition (face-api model) and acoustic feature 

analysis (e.g., fundamental frequency, rhythm), which are dynamically injected 

into the optimization algorithm’s weight parameters.

Intelligent Decision Engine. 

Dynamic Weight Adjustment: User emotion scores are converted into objective 

function weight adjustment factors, driving a novel NSGA-II algorithm to 

balance performance metrics (YS, E) and user preferences during Pareto front 

exploration. Real-Time Optimization Trigger: When emotion scores ≤2 or 

voice commands request re-optimization, the system automatically enhances 

population diversity to avoid local optima. Integrated Extraction-Optimization: 



This system seamlessly integrates key information extraction, critical property 

prediction, and composition system optimization directly from scientific texts. 

By unifying these three functionalities, the framework significantly broadens its 

user base, enabling both novices and experts to efficiently obtain tailored 

assistance for their specific research or application needs.

3.2 Design principles and innovations

Real-Time Assurance.

Computationally intensive tasks (e.g., NSGA-II optimization) are decoupled 

from interaction tasks using Web Worker multithreading technology, ensuring 

interface response times <100 ms. 

Multimodal Fusion.

A pioneering "emotion-voice-visualization" tri-channel interaction 

mechanism is proposed, where emotion feedback and voice commands 

collaboratively regulate optimization directions, significantly improving user 

satisfaction compared to single-modality systems.

Scalable Architecture. 

The modular design enables rapid adaptation to other material systems (e.g., 

battery electrode materials) by updating feature databases and domain-specific 

knowledge parsing rules.

3.3 Speech interaction module 

Fig. S4(a) shows the Speech interaction module. It employs a real-time stream 

processing architecture that integrates native browser speech recognition APIs with 

asynchronous front-end programming models, constructing an end-to-end speech input 

parsing system. This system comprises three hierarchical layers: speech capture, 



recognition-parsing, and error control, achieving comprehensive audio-to-text conversion 

through multithreading coordination.

During the speech capture phase, the system accesses browser media device layers 

via the WebKitSpeechRecognition interface, invoking the underlying AudioContext API 

to acquire microphone audio streams [6]. An event-driven mechanism enables real-time 

speech signal acquisition, configured with appropriate sampling rates (Hz) and mono-

channel audio streams to meet speech recognition engine specifications. Intermediate 

result feedback is disabled to ensure full-sentence recognition triggered exclusively by 

endpoint detection, thereby minimizing redundant computational overhead.

Upon audio stream acquisition, the system initializes a speech recognition engine 

instance using the standard Web Speech API. While the current implementation is 

optimized for Mandarin Chinese (zh-CN) as a proof of concept, the API inherently 

supports multiple languages (e.g., English 'en-US'). The recognition language can be 

easily configured by setting the corresponding language code, ensuring broad 

international accessibility and adaptability. The system then selects optimal transcription 

texts. The workflow encompasses acoustic feature extraction, phoneme alignment, and 

context-aware word graph search based on n-gram language models [7], ultimately 

generating textual sequences for linguistic-to-text conversion [8].

The error control layer implements dual-level fault tolerance:

(1) Automatic reconnection via exponential backoff strategies handles capture device 

permission exceptions, network interruptions, and engine internal errors [9].

(2) UI feedback components (ElMessage) deliver real-time error codes and user 

guidance.By leveraging Web Workers to migrate speech recognition tasks to background 

threads, the system prevents main-thread blocking-induced interaction latency, ensuring 



interface response times remain below 100 ms [10].

3.4 Emotion recognition module 

Fig. S4(b) shows the emotion recognition module. It employs the Face-API model, 

adopting a cascaded multimodal processing architecture [11] that integrates computer 

vision and deep learning technologies to construct an end-to-end emotion analysis system. 

This model consists of two hierarchical layers: a facial information perception layer and 

an emotion pattern matching layer, achieving comprehensive emotion classification 

through multi-stage feature propagation [12] from face detection to emotion 

categorization.

During facial information acquisition, the system first captures camera video streams 

via browser APIs. Utilizing an SSD (Single Shot Multibox Detector) architecture [13] 

based on the MobileNetV1 feature extraction network, it generates candidate bounding 

boxes through a sliding window approach and filters regions with confidence scores 

exceeding predefined thresholds to localize facial areas.

Following facial localization, the model invokes a lightweight dlib-based keypoint 

detection model [14], which returns coordinates for 68 facial landmarks, including eye 

contours, eyebrow arches, and mouth boundaries, forming a structural facial mesh. The 

system applies affine transformation to align faces and normalize pose variations, 

ensuring standardized inputs for subsequent analysis.

After processing facial data, the system activates a convolutional neural network 

(CNN)-based emotion classification model [15], which calculates probability 

distributions across seven emotional states (e.g., happiness, sadness, anger) and selects 

the highest-probability emotion as the dominant output. This emotional weight is then 

integrated into downstream decision-making modules to guide adaptive processing.



The emotion recognition module innovatively implements a cascaded "detect-align-

classify" pipeline, progressively reducing computational complexity—for instance, 

performing coarse face detection before fine-grained feature analysis. Technical 

optimizations include replacing standard convolutions with depthwise separable 

convolutions, reducing computational costs by approximately 75%, and integrating 

feature pyramids within the SSD framework to enhance detection accuracy through multi-

scale feature map fusion. For emotion classification, a 3-5 layer CNN architecture extracts 

texture features from critical regions (e.g., eye corners, mouth edges). Additionally, 

WebGL backend utilization enables GPU-accelerated parallel computing to optimize 

inference speeds.



Figure S1. Workflow of information extraction for HEA literature database 
construction.



Figure S2. Frequency distribution of constituent elements in the dataset. The histogram 

illustrates the occurrence count of primary elements (including Ti, Nb, Zr, Al, Mo, Ta, V, 

Fe, Ni, Cr, Co, etc.), demonstrating that the dataset provides a representative coverage of 

the compositional space for transition metal high-entropy alloys despite its focused size.



Figure S3. The flowchart of the algorithm of component optimization.



Figure S4. Schematic diagram of boundary condition.



Figure S5. Schematic diagram of the principle of speech recognition and emotion 

recognition module.  a. Speech Recognition: Microphone captures sound waves which 

will be recognized and be processed by speech recognization engine, then model generate 

text output. b. Emotion Recognition: Facial data from video is analyzed in perception and 

matching layers to identify emotional patterns. The dominant emotion score guides 

downstream decisions.  



Figure S6. Loss change and learning rate adjustment curve.



Figure S7. Leave-One-Out Cross-Validation (LOOCV) assessment of model robustness. 

Parity plots comparing the experimentally measured values against the LOOCV predicted 

values for (a) Yield Strength (R2=0.683, RMSE=280.98 MPa) and (b) Young's Modulus 

(R2=0.735, RMSE=20.84 GPa). 



Figure S8. RMSE of the YS model regarding changes in boosting rounds. 

RMSE decreases rapidly in the first 100 generations and then stabilizes. There is a 

reasonable difference between the training set and the test set, with the training set having 

a significantly higher accuracy than the test set.



Figure S9. RMSE of the E model regarding changes in boosting rounds. 

RMSE decreases rapidly in the first 400 generations and then stabilizes. There is a 

reasonable difference between the training set and the test set. In the E model, the 

accuracy of the training set is slightly higher than that of the test set, demonstrating that 

the model has high accuracy.



Figure S10. Strain distribution of the AlCoCrFeNi2.1 HEA at the strain of 0.1 % (elastic 

stage), 0.5 % (yielding stage), 1 % and 5 % (plastic stage).



Table S1. Some of the data used for performance prediction [16-28].

HEA Composition Mixing Entropy Mixing Enthalpy Young’s modulus 

Al0.2CoCrFeNi 12.56 -6.21 216

Al0.45CoCrFeNi 13.08 -8.66 208

Al0.7CoCrFeNi 13.30 -10.57 200

AlCoCrFeNi 13.38 -12.32 387

  AlHfNbTaTiZr 14.89 -15.77 103

  AlMo0.5NbTa0.5TiZr 14.53 -18.28 122

AlMo0.5NbTa0.5TiZr0.5 14.42 -17.58 133

AlMoNbTiV 13.38 -12.8 149.6

AlMoTaTiV 13.38 -12.96 165.8

AlNb1.5Ta0.5Ti1.5Zr0.5 12.51 -16.2 105.7

AlNbTa0.5TiZr0.5 12.96 -19.68 124

AlNbTaTiV 13.38 -13.44 121

AlNbTiV 11.52 -16.25 104.8

CoCrFeNi 11.52 -3.75 225

CoCrFeNiTi 13.38 -16.32 135

AlCoCrFeNi 13.38 -12.32 194

AlCoCrFeNiSi0.2 14.22 -16.39 188

AlCoCrFeNiSi0.4 13.01 -18.14 183

AlCoCrFeNiSi0.6 14.77 -22.75 178



Table S2. The parameters of CPFE model.

Value
Symbol Parameter

FCC BCC

Burgers vector (Å) b 2.52 [29] 2.50 [29]

initial dislocation density (m-2) ρ0 1.20×1013 [30] 1.40×1014 [31]

Initial hardening parameter (MPa) 0h 345.0 705.0

Saturated slip resistance (MPa) ss 1450.0 2950.0

Reference shearing rate (s-1) 0& 10-3 [32]

Strain rate sensitivity exponent n 0.04

Latent-hardening parameter q 1.4 [33]

CRSS (MPa) sr 255.0 793.0

Sensitivity of hardening moduli r 2.25 2.0

C11 289.0 291.7

C12 124.0 125.0Elastic constants (GPa) [34]

C44 82.7 83.4



Table S3. The representative hyperparameters used to train the XGBoost model. 

Hyperparameter Optimization Range / Value

learning_rate 1×10-4 ~0.3(log-uniform)

max_depth 8 ~15

n_estimators 500 ~2000

subsample 0.6 ~1.0

colsample_bytree 0.4 ~1.0

gamma 0 ~2



Table S4. The hyperparameters for classical NSGA-II algorithm.

Hyperparameter Value

pop_size 100

crossover_prob (SBX) 0.9

crossover_eta (SBX) 15

mutation_eta (PM) 20

termination 200



Supplementary Data 1

The complete dataset used for the training and testing of the information extraction model 

for HEAs. This file comprises data extracted from 250 papers, including alloy 

compositions (Al, Co, Cr, Fe, Ni, etc.), processing conditions, and mechanical properties 

(yield strength and Young’s modulus). The data is provided in Microsoft Excel (.xlsx) 

format.
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