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Supplementary Text 1. Database development for information extraction of HEA

To construct the knowledge base for the information extraction module, We
designed a specialized instruction template for the HEA domain to guide the model in
identifying and extracting critical information. Each data sample was formatted using
few-shot prompts, which enabled the model to learn to extract relevant parameters. For
each selected paper, fifteen pieces of information are extracted, which includes
bibliographic information (title, abstract, authors, publication year, journal, and DOI) and
core data of the article (material, composition, testing condition, phase, research method,
content of the study, performance indicators, innovation point, and conclusion). The
former serves as a key for article identification, while the latter represents the focus of
our analysis. To ensure the high quality of data entries, we implemented a strict multi-
step preprocessing workflow: (1) Using DOI as a unique identifier, we identified and
merged redundant entries that might appear multiple times in different literature retrieval
queries; (2) Entries with missing core data of the article were manually supplemented by
domain experts; if the information could not be recovered, "Null" was filled in to ensure
entry integrity; (3) All data were organized into key-value pairs and stored in JSON

documents to facilitate the training and retrieval of downstream models.



Supplementary Text 2. Extended technical details
2.1 Model training dynamics

The training process was monitored via loss and learning rate curves (Fig. S5). A
rapid decrease in loss values within the first 10 epochs indicated efficient initial learning,
followed by a gradual stabilization of both training and validation losses. The close
alignment between these losses throughout training confirms strong model generalization
without overfitting. Optimization employed a cosine annealing scheduler with a warm-
up phase. The learning rate increased during an initial ~25-epoch warm-up period to a
peak, fostering rapid progress, before decaying via a cosine curve to enable fine-grained
convergence. The stable, coordinated evolution of the loss and learning rate curves
validates the effectiveness of the training strategy, resulting in a robust and efficient
optimization process.
2.2 Detailed SHAP interpretation for Young’s modulus prediction

The dominance of VEC is explained by its control over phase selection: VEC < 6.87
favors BCC, VEC > 8 favors FCC, with BCC phases exhibiting higher modulus due to
stronger covalent bonding [1]. Element-specific roles: Ti and Zr act as BCC stabilizers.
Zr (radius 160 pm) contributes significantly to lattice distortion, indirectly increasing
modulus by hindering dislocation motion [2]. Electronegativity difference drives local
charge redistribution (e.g., in Al-Ti/Zr pairs), forming strong polar bonds that resist elastic
deformation more effectively than geometric distortion alone. The composite
feature Mixing Entropy x VEC highlights synergy: entropy stabilizes the solid solution,
while VEC fine-tunes phase selection for optimal stiffness.High-melting-point elements
(Mo, W, Nb) enhance bonding via d-orbital participation, directly increasing elastic

constants (e.g., shear modulus in BCC phases) [3].



2.3 Detailed SHAP interpretation for yield strength prediction

Niobium is the top contributor due to severe lattice distortion from its large atomic
size (radius 1.46 A) and its tendency to segregate to grain boundaries, pinning dislocations
[4]. Atomic radius difference generates substantial lattice distortion energy (~0.75
eV/atom for a 4.6% difference), elevating the Peierls-Nabarro stress (up to 200 MPa) and
hindering dislocation motion [5]. The “enthalpy-entropy competition”: Negative mixing
enthalpy favors stable solid solutions, while mixing entropy promotes single-phase
formation; their lower relative importance suggests kinetic effects (short-range order)
outweigh pure thermodynamic entropy in strengthening. The Electronegativity difference
x Atomic radius difference product captures nano-scale clustering (e.g., Ni-Al pairs),
inducing a precipitation-like strengthening effect. A high Young‘s modulus strengthens
the lattice against dislocation nucleation by increasing phonon stiffness. Synergy of
specific elements: Zr causes shear modulus fluctuations (£15%) due to its large radius
(1.60 A); Ni reduces stacking fault energy (SFE < 30 mJ/m?) promoting nano-twinning;

Cr segregation to grain boundaries inhibits crack propagation.
2.4 Region-wise quantitative interpretation for interaction plots

To avoid overloading the main text, we provide here the detailed region-wise
thresholds and representative numeric values used to describe the interaction patterns in
Fig. 2g-h. Based on Fig. 2g, the pattern of synergistic regulation of elastic modulus (E)
by electronegativity difference (AEN) and atomic radius difference (AR) is clearly
presented: Low-modulus stability zone (AR > 8, AEN < 10): E stabilizes at 132-135 GPa
(e.g., 134.8 GPa at AR=9.3), dominated by atomic size mismatch. Peak-stiffness
region (AEN=25.8-33.8, AR=2.3-3.3): Maximum E values (160-164 GPa) occur at
AEN=29.8/AR=3.3 (164.15 GPa), where electronegativity-driven charge redistribution

synergizes with controlled lattice distortion. Gradient transition belt (AEN=17.8-21.8):



E increases 28% (132—169 GPa) as AR decreases from 9.3 to 0.3, demonstrating atomic
size matching as the stiffness determinant. Critically, the stiffness enhancement
window (AEN=25.8-33.8, AR=2.3-3.3) exhibits a 10+ GPa modulus gain per 5-unit AEN
increase, quantifying cooperative bond-strengthening effects.

Fig. 2h reveals the non-monotonic synergistic effect of mixed entropy (AS) and
valence electron concentration (VEC) on yield strength (YS). High-strength
plateau (VEC < 5): YS sustains >1300 MPa (e.g., 1357 MPa at VEC=3.6/AS=17),
minimally affected by AS (7-17 J-mol™"-K™). Critical collapse zone (VEC=5.8-9.8,
AS=10-12): YS drops 30% to 980-1100 MPa, reaching a minimum (1008 MPa at
VEC=7.3/AS=10). Entropy-compensated strengthening (VEC>9.8, AS>14): YS recovers
to 1300-1357 MPa (peak 1357 MPa at VEC=9.5/AS=17), confirming entropy-mediated
reversal of VEC softening. The inflection point (VEC=7.3) shows each 1 J-mol™-K™" AS
increase elevates YS by = 40 MPa (349 MPa gain at AS:10—17). This establishes
an entropic pinning pathway for high-VEC alloys (>9.5): optimizing strength at AS > 14

J-mol™- K.



Supplementary Text 3. Human-computer interaction module design

Based on the integrated materials design system, this section focuses on the proposed
human-computer interaction (HCI) module, which follows the core logic of dynamic
perception-real-time feedback-closed-loop optimization. The module aims to achieve
bidirectional collaboration between users and the Al system through multimodal
interaction technologies, including voice input, emotion recognition, and visual feedback.
3.1 Key components of the module

Multimodal Input Interface.

Voice Command Parsing: User voice commands (e.g., "prioritize yield strength
optimization") are captured in real time via browser-native speech recognition
APIs. Semantic parsing is performed by integrating domain knowledge bases
(e.g. composition rules of high-entropy alloys) to generate structured query
requests.

Emotion State Mapping: User emotion scores (1-5) are quantified in real time
through facial expression recognition (face-api model) and acoustic feature
analysis (e.g., fundamental frequency, rhythm), which are dynamically injected
into the optimization algorithm’s weight parameters.

Intelligent Decision Engine.

Dynamic Weight Adjustment: User emotion scores are converted into objective
function weight adjustment factors, driving a novel NSGA-II algorithm to
balance performance metrics (YS, E) and user preferences during Pareto front
exploration. Real-Time Optimization Trigger: When emotion scores <2 or
voice commands request re-optimization, the system automatically enhances

population diversity to avoid local optima. Integrated Extraction-Optimization:



This system seamlessly integrates key information extraction, critical property
prediction, and composition system optimization directly from scientific texts.
By unifying these three functionalities, the framework significantly broadens its
user base, enabling both novices and experts to efficiently obtain tailored
assistance for their specific research or application needs.

3.2 Design principles and innovations
Real-Time Assurance.

Computationally intensive tasks (e.g., NSGA-II optimization) are decoupled
from interaction tasks using Web Worker multithreading technology, ensuring
interface response times <100 ms.

Multimodal Fusion.

A pioneering "emotion-voice-visualization"  tri-channel  interaction
mechanism is proposed, where emotion feedback and voice commands
collaboratively regulate optimization directions, significantly improving user
satisfaction compared to single-modality systems.

Scalable Architecture.

The modular design enables rapid adaptation to other material systems (e.g.,

battery electrode materials) by updating feature databases and domain-specific

knowledge parsing rules.
3.3 Speech interaction module

Fig. S4(a) shows the Speech interaction module. It employs a real-time stream
processing architecture that integrates native browser speech recognition APIs with
asynchronous front-end programming models, constructing an end-to-end speech input

parsing system. This system comprises three hierarchical layers: speech capture,



recognition-parsing, and error control, achieving comprehensive audio-to-text conversion
through multithreading coordination.

During the speech capture phase, the system accesses browser media device layers
via the WebKitSpeechRecognition interface, invoking the underlying AudioContext API
to acquire microphone audio streams [6]. An event-driven mechanism enables real-time
speech signal acquisition, configured with appropriate sampling rates (Hz) and mono-
channel audio streams to meet speech recognition engine specifications. Intermediate
result feedback is disabled to ensure full-sentence recognition triggered exclusively by
endpoint detection, thereby minimizing redundant computational overhead.

Upon audio stream acquisition, the system initializes a speech recognition engine
instance using the standard Web Speech API. While the current implementation is
optimized for Mandarin Chinese (zh-CN) as a proof of concept, the API inherently
supports multiple languages (e.g., English 'en-US'). The recognition language can be
easily configured by setting the corresponding language code, ensuring broad
international accessibility and adaptability. The system then selects optimal transcription
texts. The workflow encompasses acoustic feature extraction, phoneme alignment, and
context-aware word graph search based on n-gram language models [7], ultimately
generating textual sequences for linguistic-to-text conversion [8].

The error control layer implements dual-level fault tolerance:

(1) Automatic reconnection via exponential backoff strategies handles capture device
permission exceptions, network interruptions, and engine internal errors [9].

(2) UI feedback components (ElMessage) deliver real-time error codes and user
guidance.By leveraging Web Workers to migrate speech recognition tasks to background

threads, the system prevents main-thread blocking-induced interaction latency, ensuring



interface response times remain below 100 ms [10].
3.4 Emotion recognition module

Fig. S4(b) shows the emotion recognition module. It employs the Face-API model,
adopting a cascaded multimodal processing architecture [11] that integrates computer
vision and deep learning technologies to construct an end-to-end emotion analysis system.
This model consists of two hierarchical layers: a facial information perception layer and
an emotion pattern matching layer, achieving comprehensive emotion classification
through multi-stage feature propagation [12] from face detection to emotion
categorization.

During facial information acquisition, the system first captures camera video streams
via browser APIs. Utilizing an SSD (Single Shot Multibox Detector) architecture [13]
based on the MobileNetV1 feature extraction network, it generates candidate bounding
boxes through a sliding window approach and filters regions with confidence scores
exceeding predefined thresholds to localize facial areas.

Following facial localization, the model invokes a lightweight dlib-based keypoint
detection model [14], which returns coordinates for 68 facial landmarks, including eye
contours, eyebrow arches, and mouth boundaries, forming a structural facial mesh. The
system applies affine transformation to align faces and normalize pose variations,
ensuring standardized inputs for subsequent analysis.

After processing facial data, the system activates a convolutional neural network
(CNN)-based emotion classification model [15], which calculates probability
distributions across seven emotional states (e.g., happiness, sadness, anger) and selects
the highest-probability emotion as the dominant output. This emotional weight is then

integrated into downstream decision-making modules to guide adaptive processing.



The emotion recognition module innovatively implements a cascaded "detect-align-
classify" pipeline, progressively reducing computational complexity—for instance,
performing coarse face detection before fine-grained feature analysis. Technical
optimizations include replacing standard convolutions with depthwise separable
convolutions, reducing computational costs by approximately 75%, and integrating
feature pyramids within the SSD framework to enhance detection accuracy through multi-
scale feature map fusion. For emotion classification, a 3-5 layer CNN architecture extracts
texture features from critical regions (e.g., eye corners, mouth edges). Additionally,
WebGL backend utilization enables GPU-accelerated parallel computing to optimize

inference speeds.



Abtract:

Interstitial atom doping can enhance
mechanical properties and phase structure, but
its impact on corrosion resistance is not well-
researched. This study investigated the
influence of carbon-doping on the
microstructure and corrosion resistance of
CoCrkeNi high-entropy alloys. The results
show that alloy doped with a moderate carbon
content (C0.3 alloy) have the best corrosion
resistance in 3.5 wt% NaCl solution, while
alloys with carbides (M7C3) show poor
corrosion resistance. The stability,
semiconductive property, and composition
of the passivation films were characterized to
reveal the corrosion mechanisms. These
findings provide a theoretical basis for the
development and application of carbon-doped
high-entropy alloys.

JSON Documents:
"extracted info": {
"Material": "CoCrFeNi",
"Composition": "carbon-doping",
"Testing Condition": "3.5 wt% NaCl solution™,
"Phase": " Null",
"Research Method": "Null",

"Content of the Study":
"microstructure, corrosion resistance",
"Performance Indicator":
"stability, semiconductive property,compositioen”,
"Innovation Point": "Null",
"Conclusion": "The results show that alloy doped
with a moderate carbon content (C0.3 alloy) have
the best corrosion resistance in 3.5 wt% NaCl
solution , while alloys with carbides (M7C3)
show poor corrosion resistance."

Figure S1. Workflow of information extraction for HEA literature database

construction.




Elemental Frequency Distribution in the Dataset

Frequency (Count)

e o ® o0 e 2 @ S ¢ ¥ ©® ¢ N @
Element

Figure S2. Frequency distribution of constituent elements in the dataset. The histogram
illustrates the occurrence count of primary elements (including Ti, Nb, Zr, Al, Mo, Ta, V,
Fe, Ni, Cr, Co, etc.), demonstrating that the dataset provides a representative coverage of

the compositional space for transition metal high-entropy alloys despite its focused size.
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Figure S3. The flowchart of the algorithm of component optimization.
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Figure S4. Schematic diagram of boundary condition.
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Figure S5. Schematic diagram of the principle of speech recognition and emotion
recognition module. a. Speech Recognition: Microphone captures sound waves which
will be recognized and be processed by speech recognization engine, then model generate
text output. b. Emotion Recognition: Facial data from video is analyzed in perception and
matching layers to identify emotional patterns. The dominant emotion score guides

downstream decisions.



Loss change and learning rate adjustment curve
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Figure S6. Loss change and learning rate adjustment curve.
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Figure S7. Leave-One-Out Cross-Validation (LOOCYV) assessment of model robustness.
Parity plots comparing the experimentally measured values against the LOOCV predicted
values for (a) Yield Strength (R2=0.683, RMSE=280.98 MPa) and (b) Young's Modulus

(R2=0.735, RMSE=20.84 GPa).
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Figure S8. RMSE of the YS model regarding changes in boosting rounds.
RMSE decreases rapidly in the first 100 generations and then stabilizes. There is a
reasonable difference between the training set and the test set, with the training set having

a significantly higher accuracy than the test set.
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Figure S9. RMSE of the E model regarding changes in boosting rounds.
RMSE decreases rapidly in the first 400 generations and then stabilizes. There is a
reasonable difference between the training set and the test set. In the E model, the
accuracy of the training set is slightly higher than that of the test set, demonstrating that

the model has high accuracy.
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Figure S10. Strain distribution of the AICoCrFeNi, ; HEA at the strain of 0.1 % (elastic

stage), 0.5 % (yielding stage), 1 % and 5 % (plastic stage).



Table S1. Some of the data used for performance prediction [16-28].

HEA Composition Mixing Entropy  Mixing Enthalpy ~ Young’s modulus
Aly,CoCrFeNi 12.56 -6.21 216
Alp 4sCoCrFeNi 13.08 -8.66 208
Aly;CoCrFeNi 13.30 -10.57 200

AlICoCrFeNi 13.38 -12.32 387
AIHfNbTaTiZr 14.89 -15.77 103
AlMog sNbTag sTiZr 14.53 -18.28 122
AlMoy sNbTa0.5TiZry s 14.42 -17.58 133
AIMoNbTiV 13.38 -12.8 149.6
AlMoTaTiV 13.38 -12.96 165.8
AIND, sTagsTi; 5210 5 12.51 -16.2 105.7
AINDbTaysTiZr s 12.96 -19.68 124
AINbTaTiV 13.38 -13.44 121
AINbTIV 11.52 -16.25 104.8
CoCrFeNi 11.52 -3.75 225
CoCrFeNiTi 13.38 -16.32 135
AlCoCrFeNi 13.38 -12.32 194
AlCoCrFeNiSig, 14.22 -16.39 188
AlCoCrFeNiSi 4 13.01 -18.14 183
AlCoCrFeNiSig g 14.77 -22.75 178




Table S2. The parameters of CPFE model.

Value
Symbol Parameter
FCC BCC
Burgers vector (A) b 2.52[29] 2.50 [29]
initial dislocation density (m) Po 1.20x10"3 [30] 1.40x10'[31]
Initial hardening parameter (MPa) hy 345.0 705.0
Saturated slip resistance (MPa) S, 1450.0 2950.0
Reference shearing rate (s™!) )% 103 [32]
Strain rate sensitivity exponent n 0.04
Latent-hardening parameter q 1.4 [33]
CRSS (MPa) Tor 255.0 793.0
Sensitivity of hardening moduli r 2.25 2.0
Cn 289.0 291.7
Elastic constants (GPa) [34] Cp 124.0 125.0

Cas 82.7 83.4




Table S3. The representative hyperparameters used to train the XGBoost model.

Hyperparameter Optimization Range / Value
learning_rate 1x10** ~0.3(log-uniform)
max_depth 8~15
n_estimators 500 ~2000
subsample 0.6 ~1.0
colsample_bytree 0.4~1.0

gamma 0~2




Table S4. The hyperparameters for classical NSGA-II algorithm.

Hyperparameter Value
pop_size 100
crossover_prob (SBX) 0.9
crossover_eta (SBX) 15
mutation_eta (PM) 20
termination 200




Supplementary Data 1

The complete dataset used for the training and testing of the information extraction model
for HEAs. This file comprises data extracted from 250 papers, including alloy
compositions (Al, Co, Cr, Fe, Ni, etc.), processing conditions, and mechanical properties
(yield strength and Young’s modulus). The data is provided in Microsoft Excel (.xlsx)

format.
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