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Experimental Section

Materials: All chemicals were used without further purification. 4-Dibenzothiophenebronic
(TPPTS), Benzo[b]naphtho[1,2-d]thiophene (BZNTP) and Dibenzo[b,d]thiophen-3-aMine
(BZTPA), Shanghai Haohong Scientific Co. Ltd; Polyvinyl pyrrolidone (PVP), Shanghai
Acmec Biochemical Co. Ltd; Polymerized Styrene Butadiene Rubber (SBR), Shanghai Titan
Scientific Co. Ltd; Dichloromethane (CH,Cl,), Sinopharm Chemical Reagent Co. Ltd;
Rhodamine B (RhB) and ethanol, Sinopharm Chemical Reagent Co. Ltd.

Characterizations and instruments: Room temperature prompt PL spectra were recorded on
a Hitachi F-4700 fluorescence spectrometer. Room temperature delayed PLspectra,
temperature-dependent PL spectra and all long-lived decay profiles were recorded on an
Edinburgh FS5 spectrophotometer. Fluorescence lifetimes were recorded on an Edinburgh
FLS1000 spectrophotometer. UV-vis absorption spectra were obtained on a PERSEE TU-1901
spectrophotometer. FT-IR spectra were recorded using a Nicolet is50 IR spectrometer. Typical
stress-strain curves were recorded on a YG004 electronic power machine. The Huawei pura 70
and ultraviolet lamp (10 W, 310 nm) were employed to take photographs. Thermogravimetric
analysis was carried out using a powder sample with a heating rate of 10 °C K-1 under N2
atmosphere on a NETZSCH STA449 F5 synchronous thermal analyzer. The differential
scanning calorimetry data were tested with a Mettler differential scanning calorimetry.
Thermogravimetric analysis (TGA) was carried out in the temperature range of 0—480 °C on a
TGA 2 thermal analyzer (Mettler-Toledo International Inc) with a heating rate of 5 °C/min.
Differential scanning calorimetry (DSC) analysis was performed on a DSC 3 instrument
(Mettler-Toledo International Inc) to measure the glass transition temperature (7,) of the film.
All tests were conducted in a nitrogen atmosphere: first, the temperature was raised from —70
°C to 130 °C with a rate of 10 °C/min, maintained for 5 min, and then dropped to —70 © at the
same rate. Next, the sample was heated with a rate of 10 °C/min in the range of —70—130 °C.
Dynamic mechanical analysis (DMA) was carried out using a DMA 8000 (Perkin Elmer
Instruments). Sample was heated from -115 °C to 50 °C at a rate of 6 °C min-!, with a frequency

of 1 Hz. Glass transition temperatures (7,) are reported as the peak maxima in tan (J).

Calculation Details: All calculations were carried out using the Gaussian 16 and ORCA 5.0.3
software packages.!!?! Geometry optimizations of the ground state (Sy), the first excited singlet
state (S;), and the first excited triplet state (T,) were performed using density functional theory
(DFT) and time-dependent density functional theory (TD-DFT) at the PBE0/def2-SVP level.[34]

Spin-orbit coupling (SOC) matrix elements required for intersystem crossing (ISC) analysis
4



were calculated using the ORCA package with ZORA scalar relativistic corrections and the
ZORA-def2-SVP basis set.[**] Wavefunction analyses, including electron-hole distribution and
natural transition orbitals, were carried out using Multiwfn.l%! Electron and hole density

isosurfaces were visualized using VMD.["]
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Fig. S1 Prompt and delayed PL emission spectra of TPPTS/BZTPA/BZNTP@PVP films at
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Fig. S2 Long-lived decay curves of TPPTS/BZTPA/BZNTP@PVP films at room temperature.
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Fig. S3 Delayed PL spectra of TPPTS@PVP@SBR with different polymer ratios.
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Fig. S4 Delayed PL emission spectra (a) long-lived decay curves (b) of TPPTS@PVP@SBR
films with different proportions at room temperature (SBR/PVP=10/1).
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Fig. S6 Prompt PL excitation spectra of TPPTS/BZTPA/BZNTP@PVP@SBR films at room
temperature.
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Fig. S7 Fluorescence lifetimes of TPPTS@PVP@SBR, BZTPA@PVP@SBR, and
BZNTP@PVP@SBR films at room temperature.
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Fig. S8 FT-IR spectra of series doped films.
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Fig. S9 Temperature-dependent prompt (a) and delayed PL (b) emission spectra and decay
curves (¢) of TPPTS@PVP@SBR from 80 K to 280 K (4ex =310 nm).



=3

C
0.8 0.5
—80K 10°4 @ 80K t=755.08ms
- = 9 120K 7=659.38 ms
) ©0.44 160K 7=619.79 ms
£0.5+ 5 i o 200K t=558.12ms
8 S A 240K t=519.31 ms
N
< o, 031 *® 280 K 7=461.54 ms
- < -\
%04 x -\
2 2021 2
2 2
©0.2 [7]
E B0
0.0 r r r r 0.0 — r r r =
400 500 600 700 400 500 600 700 4 6 8 10 12 14 16
Wavelength (nm) Wavelength (nm) Time (s)

Fig. S10 Temperature-dependent prompt (a) and delayed PL (b) emission spectra and decay
curves (¢) of BZTPA@PVP@SBR from 80 K to 280 K (4¢x =310 nm).
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Fig. S11 Temperature-dependent prompt (a) and delayed PL (b) emission spectra and decay
curves (¢) of BZNTP@PVP@SBR from 80 K to 280 K (4¢x =310 nm).
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Fig. S12 The excited-state energy level diagrams for TPPTS, BZTPA, and BZNTP molecules.
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Fig. S13 Delayed emission spectra of TPPTS@PVP@SBR and absorption spectra of RhB.
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Fig. S14 Thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC)
traces (second heating curve) for TPPTS@PVP@SBR.
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Fig. S15 Dynamic mechanical analysis (DMA) temperature sweeps for TPPTS@PVP@SBR.
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Table S1. The fitting parameters for phosphorescence lifetimes of PVP-doped polymer films

at room temperature.

Sample Aex (M) Ay (nm) 1y (ms)  A; (%) 1(ms) Ay (%) <> (ms) 1
TPPTS@PVP 457 3333 81.72 570.6 18.28 376.68  1.3857
BZTPA@PVP 310 484 206.8 4.54 629.8 95.46 610.59  1.3413
BZNTP@PVP 513 260.2 100 --- --- 260.20  1.3459

Table S2. The fitting parameters for phosphorescence lifetimes of TPPTS@PVP@SBR films

with different proportions at room temperature.

Sample Aex Jem  Ti(ms) A1 (%) T1(ms) A, (%) <t>(ms) 1
(m)  (am)
TPPTS@PVP@SBR-0.01% 127.5 47.25 328.5 52.75 233.53 1.3211
TPPTS@PVP@SBR-0.05% 252.9 77.28 439.7 22.72 295.34 1.3679
TPPTS@PVP@SBR-0.10% 310 448 261.4 75.08 3253 24.92 277.32 1.2956
TPPTS@PVP@SBR-0.20% 209.7 52.82 319.5 47.18 261.50 1.1749

Table S3. The fitting parameters for fluorescence lifetimes at room temperature.

Sample Adex (M) Ae (nm) Ty (nS) A (%) 12(ns) Ay (%) <> (ns) x>
TPPTS@PVP@SBR 365 3.427 36.47 3346  63.53 22.51 1.3833
BZTPA@PVP@SBR 310 370 2.085 4270 2826  57.30 17.08 1.3989
BZNTP@PVP@SBR 372 2421 44.13  28.03  55.87 16.73 1.4972

Table S4. The fitting parameters for phosphorescence lifetimes at room temperature.

Sample Jex (Mm) Aoy (nm) 17 (ms)  A; (%) 1 (ms) Ay (%) <t>(ms) v
TPPTS@PVP@SBR 448 252.9 77.28 439.7 22.72 295.34 1.3679
BZTPA@PVP@SBR 310 478 242 .4 99.71 1150 0.29 245.03 1.3567
BZNTP@PVP@SBR 513 221.2 96.94 591.3 3.06 232.52 1.4150

448 165.8 66.16 315.9 33.84 216.59  1.0118

TPPTS@PVP@SBR@RhB 310
590 111.1 5899 3586  41.01 21260  1.3924
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Table S5. The fitting parameters for temperature-dependent phosphorescence lifetimes of

TPPTS@PVP@SBR.
Temperature (K) Aex (nm)  Aey (nm) 1y (ms) A; (%) 1(ms) Ay (%) <t>(ms) o
80 508.9 93.13 1046 6.87 545.80 1.4042
120 474.6 87.03 883.6 12.97 527.65 1.0696
160 481.8 92.15 963.3 7.85 519.60 1.4151
310 448
200 430.6 88.58 816.4 11.42 474.66 1.0077
240 326.0 70.36 602.9 29.64 408.07 1.0008
280 221.0 56.95 459.2 43.05 323.55 1.2066
Table S6. The fitting parameters for temperature-dependent phosphorescence lifetimes of
BZTPA@PVP@SBR.
Temperature (K) Aex (nm) Ay (nm) 1y (ms) A; (%) 1(ms) Ay (%) <> (ms) e
80 697.6 85.75 1101 14.25 755.08 1.0359
120 354.0 26.82 771.3 73.18 659.38 1.4020
160 465.5 45.13 746.7 54.87 619.79 1.1220
200 310 478 300.3 35.56 7004  64.44 558.12 1.4854
240 198.9 22.83 614.1 77.17 519.31 1.4828
280 133.5 12.36 507.8 87.64 461.54 1.1301
Table S7. The fitting parameters for temperature-dependent phosphorescence lifetimes of
BZNTP@PVP@SBR.
Temperature (K) Aex (nm)  Aey (nm) 1y (ms) A; (%) 1(ms) Ay (%) <> (ms) x>
80 340.1 95.90 1268 4.10 378.14 1.1465
120 334.2 96.29 1281 3.71 369.33 1.1374
160 334.8 96.91 1347 3.09 366.08 1.1882
200 210 o1 311.6 95.87 1165 4.13 346.85 1.4067
240 271.7 90.90 646.9 9.10 305.84 1.0479
280 215.1 82.19 456.9 17.81 258.16 1.2627
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Table S8. The fitting parameters for phosphorescence lifetimes under different strains of

TPPTS@PVP@SBR.

Strain (%) Aex (nm)  Aey (nm) T, (ms) A1 (%) t(ms) Ay (%) <t>(ms) x
100 211.9 78.64 376.8 21.36 247.12 1.3728
200 97.97 39.79 231.0 60.21 178.07 1.2217
300 310 448 75.47 40.94 197.5 59.06 147.54 1.2698
400 73.06 37.34 181.3 62.66 140.88 1.1705
500 57.22 53.69 207.9 46.31 127.00 0.9396

Table S9. The fitting parameters for phosphorescence lifetimes over different stretching
cycles of TPPTS@PVP@SBR.

Times Ao (nm) Ay (nm) 1 (ms)  A; (%) 1 (ms) Ay (%) <> (ms) 1
10 191.0 64.17 375.7 35.83 257.18 1.2813
20 172.5 55.34 311.3 44.66 234.49 1.1129
30 310 448 110.4 45.24 290.4 54.76 208.97 1.3160
40 90.50 39.82 243.9 60.18 182.82 1.1671
50 88.82 39.28 230.0 60.72 174.54 1.3134
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