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Fig. S1. FTIR spectra of C2G4 coating from 30 °C to 200 °C.
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Fig. S2. UV-vis spectra of GA, CS, and C2G4.
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Fig. S3. Zeta potential values of GA, CS, and C2G4 solutions.
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Fig. S4. Images of C2G2, C2G3, C2G4, and C2GS5 at 80 °C and room temperature.
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Fig. S5. Rheological properties of CG gel.



Fig. S6. SEM images of CG adhered to RPUF. (a)C2G2@RPUF, (b) C2G3@RPUF, (c) C2G4@RPUF, (d) C2G5@RPUF, (¢)
CS@RPUF.
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Fig. S7. Lap shear test model.



Fig. S8. Images of CG adhered to RPUF. (a) Digital photograph of a 500 g weight lapped on CG@RPUF. (b) Digital photograph

of CG@RPUF after testing with a universal testing machine.
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Fig. S9. SEM images of CG coatings with different ratios showing their microstructures: (a) C2G3@RPUF, (b) C2G4@RPUF,
(c¢) C2G5@RPUF
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Fig. S10. Cross-sectional SEM images of CG adhered to wood. (a) C2G3@ wood, (b) C2G4@ wood, (¢) C2G5@ wood.
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Fig. S11. SEM images of CG coatings with different ratios showing their microstructures: (a) CS@RPUF, (b) C2G2@RPUF, (c)
C2G3@RPUF, (d) C2G4@RPUF, (¢) C2G5@RPUF, (f) GA@RPUF.
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Fig. S12. Schematic diagram of C2G4 bonding on the substrate.
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Fig. S13. Infrared thermal imaging monitoring photos and time-dependent temperature curves of RPUF on hot stage and cold stage.
(a) Pseudo-color thermal image of the RPUF composite on the hot plate. (b) Temperature curve of RPUF on the hot plate as a
function of time. (c) Pseudo-color thermal image of RPUF on the cold plate. (d) Temperature curve of the composite on the cold

plate as a function of time.
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Fig. S14. Specific modulus of pure RPUF and coated RPUF.
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Fig. S15. Digital photographs of (a) RPUF and (b) C2G4@RPUF after butane burning at 1200 °C.
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Fig. S16. THR curves of RPUF and C2G4@RPUF
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Fig. S17. TGA and DTG curves of GA, CS, and C2G4 under nitrogen atmosphere.
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Fig. S18. TGA and DTG curves of pure RPUF and C2G4@RPUF under nitrogen atmosphere.

19



—=—Paper

——C2G4@Paper

80

g
= 80
£
>
L
= a0

20 ——Paper

124 —+— C2GA@Paper
0 14
100 200 300 400 500 600 700 100 200 300 400 500 600 700

Temperature (°C) Temperature (°C)

Fig. S19. TGA and DTG curves of pure Paper and C2G4@Paper under nitrogen atmosphere.
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Fig. S20. TGA and DTG Curves of pure Wood and C2G4@Wood under nitrogen atmosphere.
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Fig. S21. TGA and DTG curves of pure Cotton and C2G4@Cotton under nitrogen atmosphere.
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Fig. S22. States of C2G4 Heated at Different Temperatures in a Quartz Tube.
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Supplementary Tables

Tab. S1. Formulations of pure RPUF.

Samples 4110 A-1 Ty, AKS8805 H,0 CsHy, PMDI
(php?) (php) (php) (php) (php) (php) (php)
RPUF 100.0 0.2 0.16 2.5 1.0 5.0 131.4

(a) php: parts per hundred polyether polyols by weight.
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Tab. S2. Weight gain rate of C.Ga4 on different substrates

Samples RPUF Paper Wood Cotton

Weight gain rate  (wt %) 15+0.5 18+0.5 8+0.5 22+0.5
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Tab. S3. Thickness of CG coating, compressive strength, compressive modulus, and thermal
conductivity of pure RPUF and coated RPUF.

Compressive Compressive Specific Thermal
Thickness Density
Samples strength modulus modulus conductivity
(1um) (mg cm)

(Mpa) (Mpa) (Mpa cm?3 g) (mW m' K1)
RPUF 0 53.87+0.38 0.53+0.080 7.07+0.67 131.16£13.18 28.33+0.36
C2G2@RPUF 5.45+0.5 55.67+3.61 0.62+0.002 8.75+0.05 157.8+9.35 27.63+0.67
C2G3@RPUF 11.49+5.42 52.29+1.04 0.57+0.036 8.63+0.27 165.15£6.76 27.3840.13
C2G4@RPUF 17.45+4.51 52.07+1.17 0.59+0.032 9.37+0.43 179.85+6.25 24.85+0.35
C2G5@RPUF 26.71+15.22 53.27+0.12 0.59+0.008 8.55+0.05 160.5+1.12 25.06+0.23
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Tab. S4. Detailed data for pure GA, CS, C2G4, RPUF, C2G4@RPUF, Paper, C2G4@Paper, Wood,
C2G4@Wood, Cotton, and C2G4@Cotton were obtained from TGA measurements at a heating rate
of 10 °C/min over a temperature range from 50 °C to 720 °C.

Tso® Tso0? Timax1® Tmax2® Tinaxs® Tumaxs®  Residue Charsgoc®
Samples
(§(9) (W9 (§(9) (W9 (49 (49 (wt %)

GA 247 273 272 341 - - 4.5
CS 243 400 299 644 - - 5.5
C2G4 193 221 211 290 - - 10.3
RPUF 272 350 340 - - - 21.9
C2G4@RPUF 214 341 217 313 338 - 21.6
Paper 291 365 359 659 - - 17.5
C2G4@Paper 195 364 222 348 442 644 9.9
Wood 89 365 375 - - - 14.8
C2G4@Wood 66 357 70 218 365 - 11.6
Cotton 277 361 364 - - - 11.0
C2G4@Cotton 205 358 222 365 - - 43

(@) Ts o, Ts09%, Tmaxt> Tmax2s Tmax3, and Tiaxg refer to the temperatures at which 10 % weight loss, 50
% weight loss, and the first, second, third, and fourth maximum weight losses occur, respectively.
(b) Residues at 700 °C
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Tab. SS. Cone calorimeter testing data for RPUF and C2G4@RPUF.

Spmples Pure RPUF C2G4@RPUF
pHRR? (kW m2) 219.0+6.57 175.8£16.5
AHRR? (kW m-?) 79.5+0.5 70.8+£0.93

pSPR® (m? s1) 0.067+0.010 0.042+0.005

TSP (m?) 5.5+0.37 3.9+0.17

Initial Mass (g) 14.4+0.7 17.8+£0.5
Mass loss (g) 12.0+£0.4 12.6+0.6
Mass loss (wt%) 83.242.57 70.6+0.5
pCOP® (mg s) 0.0039+0.0002 0.00250+0001
pCOY? (kg kg™) 4.56+0.25 0.62+0.02
FGI® (kW m s1) 13.4+0.68 10.1+0.78
FPI¢ (m? s kW) 0.018+0.003 0.023+0.001

(a) pHRR and AHRR refer to peak heat release rate and average heat release rate, respectively.
(b) pSPR, TSP, pCOP, and pCOY refer to peak smoke production rate, total smoke production,
peak carbon monoxide production rate, and peak carbon monoxide release rate, respectively.

(c¢) FPI and FGI refer to fire performance index and fire growth index, respectively.
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Tab. S6 Other published bio-based flame-retardant RPUF composites

Thermal A Compressive
P content Lol A pHRR A TSP Flame-retardant
Method FRs conductivity strength Refs.
(wt %) (%) (%) (%) elements
(mW/(m K)) (%)
C2G4@RPUF 0 29 -19.7 -29.1 24.8 (-12.3%) +10.37 C/ON This work
Coated RPUF-4 3.87 39.7 -60.1 -20.6 - - C/O/N/P Yuetal!
RPUF3/APP@PDA/PEI/
- 425 -20.3 -14.01 40.7 (+0.7) = C/O/N/P/S Han et al
PDA@ODT
RPUF/H,--PEC 15.98 28.0 -41 -16.1 27.5(-8.3) +17.0 C/O/N/P Luoetal.?
CS/GEL/PA-Na 29 - -53.5 - - - C/O/N/P Tang et al.*
Coating
G5A3@RPUF 11.98 31 -49.4 -24.7 24.0(-14.3%) 37.5% C/O/N/P Feng et a.l®
CS-BP/PUF - 26.3 -39.5 +53.7 - -0.3 C/O/N/P Yin et al.®
RPUF/PAC; - 282 -61.8 -88.8 - +34 C/N/O/P Fang et al.”
RPU/P1B7TM2 6.28 248 -0.3 +40.1 34.4(-0.2) +4.6 C/O/N/P Yang et al.®
RPUF-10A/3S 1431 60 -53.52 +116.5 28.1 (-15.1) - C/N/O/P/Si Gao et al.”
Ct-RPUF/L/FR 1.59 253 -8.6 -24.9 30.11 (-8.79) +22.0 C/O/N/P/Si Lietal.®
RPUF/L/FR 1.72w 24.0 -45.29 <19 33.01(+11.5) +10.42 C/N/O/P Lietal'
CA/OSEP12.5 - 24.1 -52.1 -18.7 - +35.3 C/O/N/Si/P/Mg Zhang et al."!
CP3 0 231 -55.5 -78 - +65 C/O/N/S/Si/Al Suetal.”?
Additive RPUF-C3 0.85 22.1 -19.0 -4.4 - +14.9 /O/N/P Zhang et al."”®
C/N-RPUF/5 wt%
0.58 26.5 -39.6 -78.4 51.0 (+7.8) +36.2 C/O/N/P Selvaraj et al.'*
DOPOP
RPUF3 0.08 19.7 -29.7 -0.2 40.4 (+3.6) +51.8 /O/N/P Han et al.?
RPUF-C5ST2SE3 0 234 -35.9 -18.19 - +19.9 C/O/Si/Mg/N Zhang et al.'s
L3PU-G3 177 31.8 -61.9 -29.4 50 (-25%) +540% C/O/N/P Sun et al.'®
RPUFc-150 0 18 - - 342 (-5.5) -6.2 C/O/N/S Fidan et al."”
1.6Hex-TEP 17 21.8 +9.2 -12.0 26.02 (+2.0) =59 c/op Zemta et al.'®
Reactive
BIO2/EG/GO 24 272 -54.4 -15.5 34.2(-31.0) +57.1 C/O/N/P Acufia et al."”
Hoyos-Martinez
F_REF 0 19.9 - - 23.7(-5.2) -22.5 Cc/o
etal®
Nguyen-Ha et
7B-PU/5Si0,/ATH,s0 0 24 -41.7 +6.6 46.0 (+21.1) -1.4 C/N/O/Si/Al
al?!
Reactive
RPUF-D10 - - - - - -34.16 C/O/P/Al Zhang et al.
and
dPUF/10E/10D 222 25.7 0 +61.7 30.9 (+7.6) -23.8 c/or Akdogan et al.?
Additive
RPUF/15VED/15EG 1.1 30.5 -66.1 -63 35 (+16.7) +16.9 C/O/N/P Chen et al.#
RPUF/7.5%LP-2.5%EG 0.78 256 -28.2 -21.9 - +39.6 C/O/N/P/Si Cao et al.®®
Packing G5PA0.5/RPUF 1.91 28.5 -38 -54 28.6 (-21.6) +93.69 C/O/N/P Yuetal?®
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