Supplementary Information (SI) for RSC Mechanochemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

for

Dry-vortex grinding facilitates a [2 + 2] cycloaddition reaction that triggers a cascade-like reaction that improves the yield under substoichiometric conditions

Angela A. Colmanet, Daniel K. Unruh, and Ryan H. Groeneman*

Department of Natural Sciences and Mathematics, Webster University, St. Louis, MO, USA

Office of the Vice President for Research, University of Iowa, Iowa City, IA, USA

1. Materials, General Methods, and Synthesis of the Solids	Page 2
2. Powder X-ray Diffraction Diffractograms	Page 3-12
3. ¹ H NMR Spectroscopic Data	Page 13-16
4. Pictures of the Experimental Setup for the Dry-Vortex Grinding	Page 17

1. Materials, General Methods, and Synthesis of the Solids

Materials

The reactant *trans*-1,2-bis(2-pyridyl)ethylene (**2,2-BPE**) along with the template 2,4,6-trifluorophenol ($C_6H_2F_3OH$) were both purchased from Sigma-Aldrich Chemical (St. Louis, MO, USA) and used as received.

General Methods

Photoreactions were conducted using UV-radiation from a 450 W medium-pressure mercury lamp in an ACE Glass photochemistry cabinet. The ground solid that contains the cocrystal $2(C_6H_2F_3OH) \cdot (2,2-BPE)$ was placed between a pair of Pyrex glass plates for irradiation. The photoreactivity of the resulting solid was determined by using ¹H NMR spectroscopy. ¹H NMR spectrum was collected using a Bruker Avance 400 MHz spectrometer using DMSO- d_6 as a solvent. The dry-vortex grinding occurred within a clear 30 mL SmartSnap Grinding Jar along with 2 ball bearings (5 mm diameter) using a VWR Vortex Genie 2.

Synthesis of the Stoichiometric Co-crystal (2:1 Molar Ratio)

The solid containing a stoichiometric amount of the template was synthesized by dryvortex grinding 81.4 mg of $C_6H_2F_3OH$ along with 50.0 mg of **2,2-BPE** in a 30 mL SmartSnap Grinding Jar along with 2 ball bearings (5 mm diameter) at a 2:1 molar ratio, respectively. The molecular components were dry-vortex ground for 30 minutes where at both the 10 and 20 minute marks the resulting solid was scraped from the edges before continuing grinding.

Synthesis of the Substoichiometric Co-crystal (1:1 Molar Ratio)

The solid containing a substoichiometric amount of the template was synthesized by dryvortex grinding 40.7 mg of $C_6H_2F_3OH$ along with 50.0 mg of **2,2-BPE** in a 30 mL SmartSnap Grinding Jar along with 2 ball bearings (5 mm diameter) at a 1:1 molar ratio, respectively. The molecular components were dry-vortex ground for 30 minutes where at both the 10 and 20 minute marks the resulting solid was scraped from the edges before continuing grinding.

Synthesis of the Substoichiometric Co-crystal (0.5:1 Molar Ratio)

The solid containing a substoichiometric amount of the template was synthesized by dryvortex grinding 20.3 mg of $C_6H_2F_3OH$ along with 50.0 mg of **2,2-BPE** in a 30 mL SmartSnap Grinding Jar along with 2 ball bearings (5 mm diameter) at a 0.5:1 molar ratio, respectively. The molecular components were dry-vortex ground for 30 minutes where at both the 10 and 20 minute marks the resulting solid was scraped from the edges before continuing grinding.

2. Powder X-ray Diffraction Diffractogram

Figure S1. Powder X-ray diffraction data for stoichiometric (2:1 molar ratio) co-crystal sample after a grinding experiment and before photoreaction for the resulting solid (blue) along with the theoretical pattern for $2(C_6H_2F_3OH)\cdot(2,2-BPE)$ (orange) and 2,2-BPE (green).

Figure S2. Powder X-ray diffraction data for stoichiometric (2:1 molar ratio) co-crystal sample after a grinding experiment and after photoreaction for the resulting solid (blue) along with the theoretical pattern for $2(C_6H_2F_3OH) \cdot (2,2-BPE)$ (orange).

Figure S3. Powder X-ray diffraction data for stoichiometric (2:1 molar ratio) co-crystal sample after a grinding experiment and after photoreaction for the resulting solid (blue) along with the theoretical pattern for **2,2-TPCB** (orange).

Figure S4. Powder X-ray diffraction data for substoichiometric (1:1 molar ratio) co-crystal sample after a grinding experiment and before photoreaction for the resulting solid (blue) along with the theoretical pattern for $2(C_6H_2F_3OH) \cdot (2,2-BPE)$ (orange) and 2,2-BPE (green).

Figure S5. Powder X-ray diffraction data for substoichiometric (1:1 molar ratio) co-crystal sample after a grinding experiment and after photoreaction for the resulting solid (blue) along with the theoretical pattern for $2(C_6H_2F_3OH) \cdot (2,2-BPE)$ (orange).

Figure S6. Powder X-ray diffraction data for substoichiometric (1:1 molar ratio) co-crystal sample after a grinding experiment and after photoreaction for the resulting solid (blue) along with the theoretical pattern for **2,2-TPCB** (orange).

Figure S7. Powder X-ray diffraction data for substoichiometric (0.5:1 molar ratio) co-crystal sample after a grinding experiment and before photoreaction for the resulting solid (blue) along with the theoretical pattern for $2(C_6H_2F_3OH) \cdot (2,2-BPE)$ (orange) and 2,2-BPE (green).

Figure S8. Powder X-ray diffraction data for substoichiometric (0.5:1 molar ratio) co-crystal sample after a grinding experiment and after photoreaction for the resulting solid (blue) along with the theoretical pattern for $2(C_6H_2F_3OH) \cdot (2,2-BPE)$ (orange).

Figure S9. Powder X-ray diffraction data for substoichiometric (0.5:1 molar ratio) co-crystal sample after a grinding experiment and after photoreaction for the resulting solid (blue) along with the theoretical pattern for **2,2-TPCB** (orange).

TriFOH 22BPE 100% 30min

Scan ID: TriFOH 22BPE 100percent 30 min.raw • TriFOH 22BPE 100% 30min

Scan Parameters: 3.0°/50.014°/0.01978°/114.6(s), I(p)=48520/1039, Cu(40kV,40mA), Wednesday, October 30, 2024, 8:32 AM Control File: \\VPR-MATFAB-012\data\unruh\Groeneman\20241030\TriFOH 22BPE 100percent 30 min.wrk.xml

 Zero Offset = 0.2189 (0.2237) Kα2 Peaks Present 	 Displacement = -0.2102 (0.2198) Kα2/Kα1 Ratio = 0.5 		Distance Slack = 0.0 X-Ray Polarization = 1.0			
Geometry: Diffractometer Lp	Fitted-Range: 5.0° - 50.0°	BG-Model:	Polynomial (7)	λ: 1.54	059Å (Cu)	
PSF: pseudo-Voigt Broade	ening: Individual FWHM Curve	Instrument:	LaB6 (Martin2023	3)		
Phase ID (2)	Chemical Formula	PDF-#	Wt% ((o) DD%	6 (σ) RIR	μ
C24H16F6N2O2 (PO)	C24H16F6N2O2	C6H2F3OH_22	BPE.cif 96.4 (0.7) 90.4	(2.0) 0.47	11.8
trans-1,2-bis((2-Pyridyl)ethylene (C12H10N2	22-BPE.c	if 3.6 (0.2) 9.6	(0.7) 2.37	12.1
			X	RF(Wt%): N2	0=9.7%, CO2=	223.3%

Refinement Converged (R/E=6.1), + Round=4, Iter=6, P=63, R=10.8% (E=1.77%, EPS=0.5)

Figure S10: Powder X-ray diffraction Rietveld refinement (Whole Pattern Fitting) within Jade Pro to determine the amount of the co-crystal $2(C_6H_2F_3OH) \cdot (2,2-BPE)$ and 2,2-BPE in the diffractogram.

3. ¹H NMR Spectroscopic Data

Figure S11. ¹H NMR spectrum of the co-crystal $2(C_6H_2F_3OH) \cdot (2,2-BPE)$ before the [2 + 2] cycloaddition reaction (400 MHz, DMSO-*d*₆).

Figure S12. ¹H NMR spectrum of the stoichiometric (2:1 molar ratio) solid after dry-vortex grinding along with 50 hours of UV exposure resulting in a 97% yield for the [2 + 2] cycloaddition reaction (400 MHz, DMSO- d_6).

Figure S13. ¹H NMR spectrum of the substoichiometric (1:1 molar ratio) solid after dry-vortex grinding along with 75 hours of UV exposure resulting in a 98% yield for the [2 + 2] cycloaddition reaction (400 MHz, DMSO- d_6).

Figure S14. ¹H NMR spectrum of the substoichiometric (0.5:1 molar ratio) solid after dry-vortex grinding along with 40 hours of UV exposure resulting in a 97% yield for the [2 + 2] cycloaddition reaction (400 MHz, DMSO- d_6).

4. Pictures of the Experimental Setup for the Dry-Vortex Grinding

Figure 15. Picture of the 30 mL SmartSnap Grinding Jar.

Figure 16. Picture of the glass plates for UV exposure.

Figure 17. Picture of the dry-vortex grinding of the components.