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Table S1. Refinement of X-ray Rietveld parameters for a composite of sulfur and BAC.

Structure (S-
BAC)

Space 
group

Density of 
S (g/cc)

Lattice 
parameter

Site x y z

S1 0.81294745 -0.037023615 -0.050928295
S2 0.7427133 -

0.0037920221
0.017941648

S3 0.7765132 0.042594533 0.07237818

Orthorhombic Fddd 2.0702357
81800213
3

a = 10.4751215 Å, 
b = 12.878142 Å, 

c = 24.50939 Å
and 

α = β = γ = 90° S4 0.78624827 -0.09246102 0.1292379
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Table S2. Assignment of main peaks and their corresponding vibrations identified in the BAC 

sample.

Wavenumbe
r

Assignment

3440 cm-1 stretching vibration O-H

residual water as moisture, a band of a functional group -OH bond on a 
graphitic structure

2920 cm-1

2845 cm-1

stretching vibration CH2 (2920 cm-1 asymmetrical mode, 2845 cm-1 
symmetrical mode)

typical band of aliphatic hydrocarbons; bands of the CH3 group are also 
visible in the spectrum

1570 cm-1 stretching vibration C=C 

1445 cm-1

  875 cm-1

  712 cm-1

vibration bands of carbonates

1175 cm-1 stretching vibration C-O 

a band of alcohol, epoxy or alkoxy groups

1090 cm-1

1060 cm-1

  605 cm-1

  507 cm-1

vibration bands of phosphates
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Figure S1. A thermogravimetric analysis (TGA) plot of the melt-impregnated sulfur-BAC 

composite char reveals that the sample contains 90 wt% sulfur.
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Figure S2. The morphological analysis of BAC is carried out through Field emission scanning 

electron microscopy (FE-SEM) and High-resolution transmission electron microscopy (HR-

TEM). (a-c) The FE-SEM micrograph of BAC at various sizes. (d and e) The HR-TEM 

micrograph mapping of BAC at various magnifications. (f) The HR-TEM elemental mapping 

of BAC indicates the presence of carbon.
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Figure S3. The FE-SEM micrograph of melt-impregnated sulfur-BAC composite char at 

various magnifications.
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Figure S4. The FE-SEM micrograph of coated sulfur-BAC composite slurry on aluminum foil 

at various magnifications.
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Figure S5. (a) The cyclic voltammetry profiles of the BAC-based SCSD were measured at the 

different operating potential windows (1.0 to 2.5 V). (b) The Effect of specific capacitance of 

BAC-based SCSD with respect to the different operating potential windows (1.0 to 2.5 V).
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Figure S6. (a) The Bode phase angle plot for BAC-based SCSD. (b) The plot of a specific 

capacitance with respect to frequencies of the BAC-based SCSD.
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Figure S7. The plot of (a) areal capacitance vs. scan rate and (b) areal capacitance vs. applied 

current of the BAC-based SCSD.
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Figure S8. (a) The cyclic stability performance for the BAC-based SCSD over 5000 cycles. 

(b) The Nyquist plot before and after cyclic stability of the BAC-based SCSD.
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Figure S9. (a) The galvanostatic charge-discharge profile of the BAC-based printable device 

was measured at a constant current of 0.75 mA in the operating potential window from 0.0 to 

2.5 V. (b) The plot of areal capacitance vs. applied current of the BAC-based printable device.
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Figure S10. (a) The Ragone plot of the BAC-based printable device. (b) The Nyquist plot of 

the BAC-based printable device before and after cyclic stability.
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Figure S11. The cyclic stability and Coulombic efficiency of sulfur-BAC composite-based 

cathode over 500 cycles at a C-rate of (a) 1 C and (b) 0.5 C, respectively.
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Table S3. Summary of electrochemical performances of BAC-based SCSD and recently 

reported supercapacitor devices using ionic liquid and organic liquid as electrolytes.

Si. 

no.

Electrode

material

Electrolyte Potential 

window 

(V)

Energy   

density 

(Wh kg-

1)

Power 

density 

(W kg-1)

Reference

1 rGO LiClO4/PC 1.6 9.4 678 R11

2 rGO BMIBF4 4 16.5 1600 R22

3 rGO [SET3][TFSI]-

GO

2.5 17.7 875 R33

4 rGO-CMK-5 LiPF6 2.5 23.1 - R44

5 Carbon EMIMBF4-

EMIMTf2N

4 17 1000 R55

6 Carbon-grafted 

NiO

EMI-DCA 4 21 - R66

7 Activated carbon PYR14TFSI 3.5 20 700 R77

8 biomass-derived 

activated carbon

EMIMBF4 2.5 23.52 4166 This 

work
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Table S4. The summary of cyclic stability of Li-S batteries using various reported Li-S cathode 

materials (sulfur and carbon material composite) with the S-BAC cathode.

Si. 
no.

Electrode 
composition

Initial 
capacity 

(mAh g-1)

Retained 
capacity 

(mAh g-1)

Current 
rate 

(C-rate)

Cycle 
number 

Reference

1 Sulfur -
activated 
carbon 

composite

800 500 2 C 50 cycles 8

2 Sulfur - porous 
carbon 

nanoplates 
composite

1177 762 0.1 C 50 cycles 9

3 Sulfur - ketjen 
black 

composite

1037 510 0.5 C 500 cycles 10

4 Sulfur - GO 
composite

562 311 0.5 C 600 cycles 11

5 Sulfur - ketjen 
black 

composite

1204 802 0.2 C 100 cycles 12

6 Sulfur - 
activated 

carbon foam 
composite

1000 750 0.2 C 100 cycles 13

7 S - BAC 
composite

53 114 1 C 500 cycles This work
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