Supplementary Information (SI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2025

Supplementary information

A renewable carbon material derived from native European deciduous

trees serves as a sustainable electroactive substance for multifunctional

energy storage systems

 Surjit Sahoo^{1,2*}, Thiba Nagaraja¹, Monika Michalska⁴, Suprem R. Das ^{1, 3*}
 ¹Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS 66506, USA
 ²Mechanical Engineering Department, Indian Institute of Technology, Jammu 181221, Jammu & Kashmir, India.
 ³Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
 ⁴Department of Chemistry and Physico-Chemical Processes, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic

* Corresponding author, Email: srdas@ksu.edu, surjit488@gmail.com

Structure (S-	Space	Density of	Lattice	Site	X	У	Z
BAC)	group	S (g/cc)	parameter				
			a = 10.4751215 Å,	S1	0.81294745	-0.037023615	-0.050928295
Orthorhombic	Fddd	2.0702357	b = 12.878142 Å,	S2	0.7427133	-	0.017941648
		81800213	c = 24.50939 Å			0.0037920221	
		3	and	S3	0.7765132	0.042594533	0.07237818
			$\alpha = \beta = \gamma = 90^{\circ}$	S4	0.78624827	-0.09246102	0.1292379

Table S2. Assignment of main peaks and their corresponding vibrations identified in the BAC sample.

Wavenumbe	Assignment				
r					
3440 cm ⁻¹	stretching vibration O-H				
	residual water as moisture, a band of a functional group -OH bond on a graphitic structure				
2920 cm ⁻¹	stretching vibration CH_2 (2920 cm ⁻¹ asymmetrical mode, 2845 c				
2845 cm ⁻¹	symmetrical mode)				
	typical band of aliphatic hydrocarbons; bands of the CH ₃ group are also visible in the spectrum				
1570 cm ⁻¹	stretching vibration C=C				
1445 cm ⁻¹	vibration bands of carbonates				
875 cm ⁻¹					
712 cm ⁻¹					
1175 cm ⁻¹	stretching vibration C-O				
	a band of alcohol, epoxy or alkoxy groups				
1090 cm ⁻¹	vibration bands of phosphates				
1060 cm ⁻¹					
605 cm ⁻¹					
507 cm ⁻¹					

Figure S1. A thermogravimetric analysis (TGA) plot of the melt-impregnated sulfur-BAC composite char reveals that the sample contains ~90 wt% sulfur.

Figure S2. The morphological analysis of BAC is carried out through Field emission scanning electron microscopy (FE-SEM) and High-resolution transmission electron microscopy (HR-TEM). (a-c) The FE-SEM micrograph of BAC at various sizes. (d and e) The HR-TEM micrograph mapping of BAC at various magnifications. (f) The HR-TEM elemental mapping of BAC indicates the presence of carbon.

Figure S3. The FE-SEM micrograph of melt-impregnated sulfur-BAC composite char at various magnifications.

Figure S4. The FE-SEM micrograph of coated sulfur-BAC composite slurry on aluminum foil at various magnifications.

Figure S5. (a) The cyclic voltammetry profiles of the BAC-based SCSD were measured at the different operating potential windows (1.0 to 2.5 V). (b) The Effect of specific capacitance of BAC-based SCSD with respect to the different operating potential windows (1.0 to 2.5 V).

Figure S6. (a) The Bode phase angle plot for BAC-based SCSD. (b) The plot of a specific capacitance with respect to frequencies of the BAC-based SCSD.

Figure S7. The plot of (a) areal capacitance vs. scan rate and (b) areal capacitance vs. applied current of the BAC-based SCSD.

Figure S8. (a) The cyclic stability performance for the BAC-based SCSD over 5000 cycles.(b) The Nyquist plot before and after cyclic stability of the BAC-based SCSD.

Figure S9. (a) The galvanostatic charge-discharge profile of the BAC-based printable device was measured at a constant current of 0.75 mA in the operating potential window from 0.0 to 2.5 V. (b) The plot of areal capacitance vs. applied current of the BAC-based printable device.

Figure S10. (a) The Ragone plot of the BAC-based printable device. (b) The Nyquist plot of the BAC-based printable device before and after cyclic stability.

Figure S11. The cyclic stability and Coulombic efficiency of sulfur-BAC composite-based cathode over 500 cycles at a C-rate of (a) 1 C and (b) 0.5 C, respectively.

Si.	Electrode	Electrolyte	Potential	Energy	Power	Reference
no.	material		window	density	density	
			(V)	(Wh kg ⁻	(W kg-1)	
				¹)		
1	rGO	LiClO ₄ /PC	1.6	9.4	678	R1 ¹
2	rGO	BMIBF4	4	16.5	1600	R2 ²
3	rGO	[SET ₃][TFSI]-	2.5	17.7	875	R3 ³
		GO				
4	rGO-CMK-5	LiPF ₆	2.5	23.1	-	R4 ⁴
5	Carbon	EMIMBF ₄ -	4	17	1000	R5 ⁵
		EMIMTf ₂ N				
6	Carbon-grafted	EMI-DCA	4	21	-	R6 ⁶
	NiO					
7	Activated carbon	PYR ₁₄ TFSI	3.5	20	700	R7 ⁷
8	biomass-derived	EMIMBF ₄	2.5	23.52	4166	This
	activated carbon					work

Table S3. Summary of electrochemical performances of BAC-based SCSD and recentlyreported supercapacitor devices using ionic liquid and organic liquid as electrolytes.

Si. no.	Electrode composition	Initial capacity	Retained capacity	Current rate	Cycle number	Reference
		(mAh g ⁻¹)	(mAh g ⁻¹)	(C-rate)		
1	Sulfur - activated carbon composite	800	500	2 C	50 cycles	8
2	Sulfur - porous carbon nanoplates composite	1177	762	0.1 C	50 cycles	9
3	Sulfur - ketjen black composite	1037	510	0.5 C	500 cycles	10
4	Sulfur - GO composite	562	311	0.5 C	600 cycles	11
5	Sulfur - ketjen black composite	1204	802	0.2 C	100 cycles	12
6	Sulfur - activated carbon foam composite	1000	750	0.2 C	100 cycles	13
7	S - BAC composite	53	114	1 C	500 cycles	This work

Table S4. The summary of cyclic stability of Li-S batteries using various reported Li-S cathode

 materials (sulfur and carbon material composite) with the S-BAC cathode.

References:

- 1 Z. Liu, H. Zhang, Q. Yang and Y. Chen, *Electrochim. Acta*.
- 2 Y. Chen, X. Zhang, D. Zhang and Y. Ma, *Mater. Lett.*, 2012, 68, 475–477.
- 3 N. das M. Pereira, J. P. C. Trigueiro, I. de F. Monteiro, L. A. Montoro and G. G. Silva, *Electrochim. Acta*, 2018, **259**, 783–792.
- 4 Z. Lei, Z. Liu, H. Wang, X. Sun, L. Lu and X. S. Zhao, *J. Mater. Chem. A*, 2013, **1**, 2313–2321.
- 5 W. Lu, K. Henry, C. Turchi and J. Pellegrino, *J. Electrochem. Soc.*, 2008, **155**, A361–A367.
- 6 A. Paravannoor, S. V Nair, P. Pattathil, M. Manca and A. Balakrishnan, *Chem. Commun.*, 2015, **51**, 6092–6095.
- A. Balducci, R. Dugas, P.-L. Taberna, P. Simon, D. Plee, M. Mastragostino and S. Passerini, *J. Power Sources*, 2007, **165**, 922–927.
- 8 H. S. Ryu, J. W. Park, J. Park, J.-P. Ahn, K.-W. Kim, J.-H. Ahn, T.-H. Nam, G. Wang and H.-J. Ahn, *J. Mater. Chem. A*, 2013, **1**, 1573–1578.
- 9 G. Xu, B. Ding, L. Shen, P. Nie, J. Han and X. Zhang, *J. Mater. Chem. A*, 2013, 1, 4490–4496.
- 10 H. Zhou, Q. Tang, Q. Xu, Y. Zhang, C. Huang, Y. Xu, A. Hu and X. Chen, *RSC Adv.*, 2020, **10**, 18115–18123.
- 11 S. Song, L. Shi, S. Lu, Y. Pang, Y. Wang, M. Zhu, D. Ding and S. Ding, *J. Memb. Sci.*, 2018, **563**, 277–283.
- 12 J. H. Ahn, H.-J. Shin, S. Abbas, K.-Y. Lee and H. Y. Ha, *J. Mater. Chem. A*, 2019, **7**, 3772–3782.
- 13 J. Zhang, J. Xiang, Z. Dong, Y. Liu, Y. Wu, C. Xu and G. Du, *Electrochim. Acta*, 2014, **116**, 146–151.