Supplementary Information

Self-powered, ultrabroad band photodetector with large open circuit voltage using colloidal PbSe QDs

Yuquan Chen^{a,b+},Chandrasekar Perumalveeramalai ^{b+}, Chuanbo Li ^a, SVN Pammi^c, Jagadeesh Babu Bellam^b, Xiaoming Zhang ^{a*}, Peipei Ma^{d*}

^aOptoelectronics Research Centre, School of Science, Minzu University of China, Beijing 100081, China

^bDepartment of Physics, Madanapalle Institute of Technology & Science, Madanapalle, 517 325, Andhra Pradesh, India

^c School of Technology, Woxsen University, Telangana, Hyderabad, 502345, India.

^dSchool of Integrated Circuits, North China University of Technology, Beijing 100144, China

*Corresponding Author: Email: <u>mapeipei@ncut.edu.cn (P Ma)</u>, <u>xmzhang@muc.edu.cn</u> (X Zhang)

+ Contributed equally

Figure S1. The X-ray diffraction pattern of colloidal PbSe QDs synthesized for (a) 60 s; (b) 120 s; (c) 300 s.

s.

Figure S3. Statistical graph of particle size distribution of PbSe colloidal QDs. The growth time of QD is (a) 60 s; (b) 120 s; (c) 300 s.

Figure S4. The absorption spectra of PbSe QDs synthesized for different growth time.

Figure S5. (a) The absorption spectra of ZnO and CuSCN layers; (b) corresponding Tauc plot; (a) Tauc plot of PbSe QDs synthesized for 200 s.

Figure S6. The ultraviolet photoelectron spectroscopy (UPS) study of functional layers. Full scan of (a) ZnO; (b) PbSe; (c) CUSCN; (d,f,h) High energy cutoff for (d) ZnO; (f) PbSe; (h) CuSCN; Low energy cutoff for (e) ZnO; (g) PbSe; (i) CuSCN.

Wavelength	n _{ID} (Ideality factor)	-
405	1.5	
650	0.65	
780	3.86	
850	0.61	
980	1.81	
1550	1.89	

Table S1. The Ideality factor at different wavelength

Calculation of Photoresponsivity

The photoresponsivity (*Rph*), which is a measure of the electrical output per optical input of a photodetector and is described as the change in current in the photodetector device after the illumination of photons of various power levels, is defined as

$$R = \frac{I_{Ph} - I_d}{P}$$
------Equation 1

where I_{ph} and I_d in Ampere is the photocurrent and dark current respectively. *P* in Watt is the total illumination power on the device active area. In our case, the active area of device the overlapping area of bottom electrode and top electrode *i.e.* 2 mm × 1 mm.

Calculation of Specific detectivity

Specific detectivity, which is one of the Figures of merits of a photodetector used to characterize the performance of the photodetector, determines the minimum illumination light power that can be used to permit a detector to distinguish from noise, and it can be defined as

 $D^* = R\sqrt{\frac{A}{2qI_d}}$ _Equation 2