
 Designing Z-Scheme rGO-SnS₂ Synergistic Photocatalyst for 

Photocatalytic Mineralization of Atrazine and 2,4-Dichlorophenoxyacetic 

Acid and Applying Machine Learning for Predictive Modelling of 

Photocatalytic Performance

1. Mott-Schottky Analysis 

Mott-Schottky (M–S) analysis was used to determine the flat-band potential of SnS₂ and rGO. 

The electrochemical measurements were performed using a standard three-electrode system, 

with the modified glassy carbon electrode and an Ag/AgCl reference electrode. A 0.5 M 

Na₂SO₄ aqueous solution was employed as the supporting electrolyte for all measurements. 

Initially, 5 mg of SnS₂ and rGO were dispersed in 380 μL of ethanol, followed by the addition 

of 20 μL of Nafion solution (5 wt%) as a binder. The suspensions were sonicated for 30 minutes 

for homogeneous dispersion. Then, the prepared inks were drop-cast on the surface of a 

polished GCE and dried at room temperature. The measurements were conducted at a 

frequency of 1 kHz with an RMS amplitude of 10 mV. For SnS2 and rGO, the potential was 

scanned from –0.8 V to +0.4 V vs. Ag/AgCl, with the applied DC bias set to 0 V. 

M-S analysis is generally expressed by [1], 
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The potential (V) Ag/AgCl reference can be converted into V (RHE) using the following 

Equation. 

All potentials were initially measured versus the Ag/AgCl reference electrode and subsequently 

converted to the reversible hydrogen electrode (RHE) scale using Equation (2) [2, 3]. 

 .. (Eq..2) 𝐸𝐹𝐵 (𝑅𝐻𝐸) =  𝐸 (𝐴𝑔/𝐴𝑔𝐶𝑙) +  0.197 𝑉 + 0.059 × 𝑝𝐻

Mott–Schottky (M–S) analysis was employed to estimate the flat-band potentials (Vfb) of SnS₂ 

and rGO, as depicted in Fig. S1. The linear regions of the 1/C² versus potential plots were fitted 

using the Mott–Schottky equation to extract the Vfb values. The SnS₂ plot exhibited a positive 

slope, indicating n-type semiconductor behavior, whereas the negative slope observed for rGO 

confirms its p-type nature. Based on the converted Vfb values and known band gap energies, 
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the positions of the conduction band (ECB) and valence band (EVB) were calculated. For SnS₂, 

the ECB and EVB were determined to be 2.018 eV and –0.412 eV, respectively. In the case of 

rGO, the ECB and EVB were found to be 2.468 eV and –0.142 eV, respectively.

Fig. S1. Mott–Schottky plots of rGO and SnS2

2. Photocatalytic studies of rGO and rGO-SnS2 (RS) nanocomposites

The removal of agrochemicals was completed within 3 minutes of exposure to natural sunlight. 

For additional testing, the test tubes were kept for an extra 15 minutes, showing no significant 

change in degradation and confirming that 3 minutes is the optimal time for photocatalytic 

degradation in this experiment. Control studies were performed by keeping one set with the 

catalyst under dark conditions and another set without the catalyst in light conditions. The 

results showed no change in the concentration of agrochemicals. Hence, the fact was 

established that the catalyst in the presence of light causes almost 90 % degradation of the ATZ 

and 2,4-D.



Fig. S2: Control and blank study evaluating the photocatalytic degradation performance of 

RS nanocomposites against ATZ and 2,4-D (a) Absorbance of agrochemicals under various 

control conditions, (b) % removal under various control conditions, showing significant 

degradation only when both catalyst and light are present, (c) Kinetic study showing 

absorbance vs. time for ATZ under different RS nanocomposites, confirming rapid 

degradation under light.

3. Identification of agrochemicals using UV-Vis spectroscopy

Identifying degradation products is crucial for understanding the photocatalytic mechanism of 

ATZ and 2,4-D, and for assessing the potential generation of secondary pollutants to develop 

a comprehensive mechanism. The degradation products in the supernatant were identified 

using UV-vis spectroscopy. Fig. S3 confirms the major metabolites of ATZ and 2,4-D, 

supported by the relevant literature. The absorption spectrum of ATZ and 2,4-D aqueous 

solution was recorded using UV-vis spectroscopy at a wavelength of 220 and 200 nm, 

respectively. After degradation in the UV-Vis spectra (Fig. S3 (a-b)) of different RS 

photocatalysts, the appearance of new peaks and shifts in existing peaks indicate the formation 

of metabolites and intermediates, as discussed below. 



ATZ exhibits two main peaks at 220 nm and 268 nm, as the literature confirms. For rGO, there 

is no additional peak and change in peak positions at any wavelength, only a decrease in 

intensity. The appearance of new peaks and shifts in wavelength in the UV-vis spectrum of 

RS-0.125, RS-0.25, RS-0.5, and RS-1 suggests the formation of new species. In RS-0.125, no 

new peak appears, but the peak at 268 nm disappears. In RS-0.25, the peak shifts from 220 nm 

to 225 nm, indicating the transformation of ATZ to Atrazine-desethyl-desisopropyl-2-hydroxy 

(DEDIHAT) [4]. Additionally, a new peak at 255 nm confirms the formation of Atrazine-2-

hydroxy (HAT) [4, 5]. Similarly, for RS-0.5, the intensity at 225 nm and 255 nm decreases, 

indicating the degradation of DEDIHAT and HAT. The most effective photocatalyst, RS-1, 

shows the disappearance of all main and newly formed peaks during the degradation process, 

confirming the complete degradation of ATZ into various metabolites, including DEDIHAT 

and HAT.

2,4-dichlorophenoxyacetic acid (2,4-D) is a combination of two structures and exhibits 3 main 

peaks: one corresponding to phenoxyacetic acid (PAA) at 200 nm [6] and two corresponding 

to 2,4-dichlorophenol (2,4-DCP) at 230 nm and 287 nm [7-9]. rGO shows a decrease in 

intensity at 220 nm, 230 nm, and 287 nm, with no new peaks or shifts in wavelength. In 

contrast, all the RS nanocomposites show shifts in peak positions or the appearance of new 

peaks. In the RS-0.125 nanocomposite, a new peak appeared at 255 nm, which is the formation 

of any metabolites of 2,4-D. In the RS-0.25 nanocomposite, new peaks appeared at 194 nm, 

and 211 nm, supporting the formation of hydroquinone (HQ), hydroxycarboxylic acid (HCA), 

or succinic acid (SA), as confirmed by [10-12]. In the RS-0.5 sample, two new peaks appeared 

at 225 nm and 252 nm, which are linked to the formation of HQ [10]. HQ, known to have three 

peaks at 194 nm, 225 nm, and 289 nm, is confirmed by literature [10]. The best photocatalyst, 

RS-1, shows the disappearance of all previous peaks, with only two small peaks between 260 

nm and 271 nm, confirming the formation of phenol (Phe.) [8, 13]. During the degradation of 

2,4-D, it transforms into various metabolites, including HCA, SA, HQ, and phenol.



Fig. S3. Degradation of different photocatalysts showing major metabolites of (a) ATZ and 

(b) 2,4-D confirmed by UV-Vis spectroscopy (Reaction conditions: 10 ppm solution, 

1mg/ml, 3 minutes, sunlight)

4. Testing the reliability of the model using an unknown dataset

ANN turns out to be the best-performing model among the three models, SVM, GP, and ANN. 

To further test the reliability of the model, the dataset was further divided into a training and 

testing set, still performing satisfactorily for the test set as well. For the training set, the R2 and 

MSE are 0.99 and 0.0028, respectively. For the test set, the R2 and MSE are 0.83 and 0.26, 

respectively, as depicted in fig. S4. Residual error plots and q-q plots are generated to justify 

the robustness of the model further. Fig. S4 illustrates the residual error density plot for the 

training and test sets. Residuals represent the difference between actual and predicted values, 

are centered near 0, with having mean error and standard deviation close to 0, justifying the 

model's minimal overall bias. Fig (E) and (F) show the Q-Q plot of the training and test sets, 

which assess whether the residuals follow a normal distribution or not. The blue dots represent 

the residuals, and the red line is the ideal normal distribution. A close alignment between blue 

and red points signifies that the residuals are normally distributed. If the blue points align 

closely with the red line, it signifies that the residuals are normally distributed. In both training 

and testing, the residuals are normally distributed, validating the model’s accuracy. 



Fig. S4. (A) Plot of ANN model prediction analysis for training set (B) Plot of ANN model 

prediction analysis for test set (C) Residual error density plot for training set (D) Residual 

error density plot for training set (E) Q-Q Plot of training set (F) Q-Q Plot for test set

To further assess the reliability and robustness of the model, it was further tested with an 

unknown data set having similar investigational and output features. The data set included 

photocatalyst (BZ-10, BZ-5, Biochar, BZ-1, and ZnO), contaminant (ATZ, 2,4-D), Initial 

concentration of the pollutant, dosage of the catalyst, pH, and time as the investigational 

features, while removal efficiency was the output feature. The ANN model used in the previous 

data set was applied to this data set for the prediction analysis of the removal efficiency of the 

photocatalyst. The model demonstrated tremendous performance, achieving R2 values of 0.996 

and 0.88, and MSE of 0.185 and 0.331, for the training and test sets, respectively. Further 



validation by residual error density plot and Q-Q plot, showing normal distribution fit 

indicating that the model is free of systematic biasness as displayed in fig S5 (C), (D), (E), and 

(F). Hence, ANN can be a reliable model for the simulation of removal efficiency for unseen 

data. Following shown are the table (S1) displaying hyperparameter tuning for ANN, SVM and 

GP model. 

Fig. S5. (A) Plot of ANN model prediction analysis for unknown data set, training set (B) 

Plot of ANN model prediction analysis for unknown data set, for test set (C) Residual error 

density plot for training set (D) Residual error density plot for training set (E) Q-Q Plot of 

training set (F) Q-Q Plot for test set

Table S1: Hyperparameter tuning results for ANN, SVM, and GP models



SVM

sigma C RMSE Rsquared MAE RMSESD RsquaredSD MAESD R2_corrected
0.01 1 0.278622 0.540599 0.222348 0.124492 0.286628 0.102471 0.192422
0.01 10 0.275819 0.525842 0.228328 0.114803 0.304443 0.092261 0.36211
0.01 50 0.270307 0.574357 0.226606 0.117357 0.314908 0.098563 0.490139
0.01 100 0.255637 0.625219 0.215317 0.120026 0.326486 0.101043 0.571543
0.05 1 0.266648 0.570897 0.219969 0.124017 0.306242 0.102402 0.344934
0.05 10 0.247439 0.678917 0.208258 0.118089 0.33258 0.099025 0.659663
0.05 50 0.245254 0.703417 0.202917 0.128086 0.320226 0.110236 0.821089
0.05 100 0.26557 0.659538 0.212215 0.13434 0.342771 0.118054 0.827018
0.1 1 0.262261 0.617993 0.221186 0.127486 0.336766 0.109581 0.490419
0.1 10 0.244452 0.704077 0.204732 0.132731 0.339658 0.114544 0.781548
0.1 50 0.279585 0.655246 0.223514 0.15679 0.384685 0.136655 0.826541
0.1 100 0.302711 0.619837 0.246633 0.151588 0.385912 0.132245 0.842758
0.5 1 0.274126 0.620028 0.228094 0.138653 0.349767 0.119703 0.701522
0.5 10 0.361476 0.481146 0.2887 0.171675 0.367839 0.140758 0.738801
0.5 50 0.455618 0.427521 0.360338 0.178349 0.411079 0.148752 0.750094
0.5 100 0.496126 0.435198 0.403225 0.195845 0.397309 0.173663 0.402197

GP

sigma RMSE Rsquared MAE RMSESD RsquaredSD MAESD
0.01 0.295872 0.337031 0.250584 0.018472 0.181033 0.014603
0.12 0.267218 0.405524 0.219989 0.028514 0.16829 0.029952
0.23 0.266034 0.413589 0.219214 0.026627 0.150362 0.029423
0.34 0.27257 0.382424 0.225519 0.025357 0.158304 0.026902
0.45 0.279947 0.342226 0.232354 0.024925 0.166599 0.025756
0.56 0.286208 0.305768 0.238077 0.025043 0.171607 0.025648
0.67 0.29106 0.276569 0.242417 0.025545 0.176058 0.026021
0.78 0.294671 0.254728 0.245585 0.026311 0.181673 0.0266
0.89 0.297292 0.239228 0.248022 0.027251 0.188707 0.027378

1 0.299151 0.228819 0.24982 0.028294 0.1968 0.028213

ANN

layer1 layer2 layer3 decay MSE R_squared
4 2 0 0.0001 0.03930421 0.64494459
6 2 0 0.0001 0.0370857 0.66498552
8 2 0 0.0001 0.00201192 0.98182526
4 4 0 0.0001 0.03791453 0.65749829
6 4 0 0.0001 0.04133252 0.62662178
8 4 0 0.0001 0.00083691 0.99243979
4 6 0 0.0001 0.02990112 0.72988761
6 6 0 0.0001 0.0005927 0.96464581
8 6 0 0.0001 0.0010819 0.96022663



4 2 0 0.001 0.04166291 0.62363726
7 2 0 0.001 0.04280682 0.97330367
8 2 0 0.001 0.04300284 0.6115329
4 4 0 0.001 0.03739743 0.66216951
6 4 0 0.001 0.0012663 0.98856081
8 4 0 0.001 0.00080187 0.96275633
4 6 0 0.001 0.04059408 0.63329256
6 6 0 0.001 0.04072576 0.63210298
8 6 0 0.001 0.00158308 0.98569921
4 2 0 0.01 0.04274517 0.61386059
6 2 0 0.01 0.00133073 0.98797886
8 2 0 0.01 0.00230707 0.97915902
4 4 0 0.01 0.03755799 0.66071908
6 4 0 0.01 0.00185693 0.98322534
8 4 0 0.01 0.03605616 0.67428595
4 6 0 0.01 0.03585812 0.67607494
6 6 0 0.01 0.03562966 0.67813868
8 6 0 0.01 0.03915131 0.64632578
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